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Abstract

Background: Comparative genomics approaches, where orthologous DNA regions are
compared and inter-species conserved regions are identified, have proven extremely powerful for
identifying non-coding regulatory regions located in intergenic or intronic regions. However, non-
coding functional elements can also be located within coding region, as is common for exonic
splicing enhancers, some transcription factor binding sites, and RNA secondary structure elements
affecting mRNA stability, localization, or translation. Since these functional elements are located in
regions that are themselves highly conserved because they are coding for a protein, they generally
escaped detection by comparative genomics approaches.

Results: We introduce a comparative genomics approach for detecting non-coding functional
elements located within coding regions. Codon evolution is modeled as a mixture of codon
substitution models, where each component of the mixture describes the evolution of codons
under a specific type of coding selective pressure. We show how to compute the posterior
distribution of the entropy and parsimony scores under this null model of codon evolution. The
method is applied to a set of growth hormone | orthologous mRNA sequences and a known
exonic splicing elements is detected. The analysis of a set of CORTBP2 orthologous genes reveals a
region of several hundred base pairs under strong non-coding selective pressure whose function
remains unknown.

Conclusion: Non-coding functional elements, in particular those involved in post-transcriptional
regulation, are likely to be much more prevalent than is currently known. With the numerous
genome sequencing projects underway, comparative genomics approaches like that proposed here
are likely to become increasingly powerful at detecting such elements.

tion of transcription, post-transcriptional regulatory

Background

Vertebrate genomes are now recognized as containing a
huge number of non-coding functional regions, a large
fraction of which is likely to be involved in regulating the
various steps of gene expression [1-4]. While most of the
attention has been centered on understanding the regula-

mechanisms now appear to be more important than orig-
inally thought. Cis-regulation of pre-mRNA splicing is
believed to be operated by splicing factors binding
intronic and exonic splicing enhancers and helping to
include or exclude specific exons from the transcript [5,6].
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Post-splicing, parts of the mature mRNA often folds into
some RNA secondary structure that determines the level of
mRNA degradation [7] as well as mRNA localization [8].
Translational efficiency and accuracy have been shown to
be largely determined by the choice of synonymous
codon, thus imposing some selective pressure on the
codons of certain genes [9]. Translation is also known to
be affected by certain secondary structure elements in the
mRNA [10]. While most of the known examples of forma-
tion of functional secondary structure are restricted to the
5'and 3' UTRs, the coding portion of the mRNA has also
been shown to form functional structures [11]. Finally,
there are also examples of transcription factor binding
sites located in coding exons (e.g. in CD28 [12]). The
method presented here should allow the detection of
many of these functional elements, which we call coding
regions under non-coding selection (CRUNCS). To this
point, the computational methods that have proven the
most valuable for identifying non-coding functional
regions are based on comparative genomics. The guiding
principle of this family of approaches is that functional
features of a DNA sequence tend to evolve slower than
non-functional ones, because of selective pressure. This
simple idea is at the core of phylogenetic footprinting, a
method that compares orthologous regulatory DNA
regions to identify short conserved motifs likely to be
transcription factor binding sites [13,14]. The key here is
that most of the DNA in promoter regions is non-func-
tional, with the exception of the regulatory elements we
are interested in. The same reasoning applies to the detec-
tion of intronic splicing enhancers [15]. With the ongoing
sequencing of a large number of vertebrate genomes [16],
the power of these methods is quickly improving and,
coupled with algorithmic improvements [17], they are
now able to detect very short regions under selection, or
regions under weak selection.

The search for CRUNCS is more challenging. Although
the same "conservation implies function" principle
applies in this case, it needs to be used more cautiously.
Indeed, CRUNCS are not located in non-functional
sequences as are, for example, most known transcription
factors binding sites, but rather in coding regions. This
means that the sequence conservation observed in exons
may be the result of two types of selective pressures. The
first one is the pressure to maintain the function of the
protein encoded by the gene, which probably explains
most of the sequence conservation observed in coding
regions. The second type of selective pressure applies only
to CRUNCS, which are required to maintain their regula-
tory role. To apply phylogenetic footprinting to the detec-
tion of CRUNCS, one needs to determine which type of
selective pressure is responsible for the sequence conser-
vation observed.

The method suggested here takes a conservative approach
to the problem. Given a set of aligned orthologous coding
sequences, we first evaluate the degree of conservation of
each column of the alignment, using either a parsimony
score or an entropy score. We then put the burden of
explaining the conservation observed as much as possible
on the shoulders of the selective pressure on the protein
product. Because most amino acids are encoded by many
synonymous codons, amino acid selective pressure leaves
room for some sequence variation. A region of the
sequence will be predicted to be an CRUNCS only if the
conservation observed cannot be explained solely by the
need for conservation of the encoded amino acids. The
method introduced here build a mixture model of codon
evolution, and then uses it as a null model to assess the
significance of the observed degree of conservation. We
illustrate our approach on two sets of orthologous verte-
brate genes (growth hormone 1 and CORTBP2) and com-
pare it to a related approach by Blanchette [18].

Results and Discussion

Given a multiple alignment of orthologous mRNA
sequences, our goal is to identify alignment columns that
are conserved beyond what would be expected by chance
if the corresponding sites were evolving only under the
selective pressure on the amino acid they contribute to
encode. Such sites are likely to be under non-coding selec-
tive pressure. This section, which constitutes the main
contribution of this paper, is structured as follows. First,
we define two commonly used sequence conservation
scoring methods: the entropy, and the parsimony score.
We then describe a methods for assigning a p-value to a
given entropy or parsimony score, under null models of
evolution of codons that are only under coding selective
pressure. Under this method, we model codon evolution
as a mixture of codon substitution models and use these
models to assign a posterior p-value to a given conserva-
tion score.

Two measures of sequence conservation

A number of methods have been proposed to measure the
degree of conservation of a set of orthologous sequences
and to identify regions under selective pressure (see [19]
for an evaluation of some of these methods for finding
regulatory elements in intergenic regions). In this paper,
we consider two such methods, the entropy score and the
parsimony score, and later show how to assess the statisti-
cal significance of these scores in the context of coding
regions.

Entropy

In the area of transcription factor binding sites detection,
a popular method for evaluating sequence conservation is
the entropy (see, for example, [20]). Given a set of orthol-
ogous nucleotides x;, x,, ...,x, from n different species, the
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entropy measures the distance between the observed fre-
quency of A, C, G, and T's at that site and the uniform dis-
tribution: entropy (x,, %, ...x,) = -2ae{ACGT} f,
log,(f,), where f,is the relative frequency of nucleotide «.
Perfectly conserved sites have an entropy of zero, while
the worst levels of conservation obtain a score of 2.

Parsimony score

A major drawback of the entropy score is that it does not
take into consideration the phylogenetic relationships
among the sequences being compared, and indeed the
method is mostly used for motif discovery within a single
species. An alternative to the entropy score is the parsi-
mony score [21]. Given a set of orthologous nucleotides
Xy, Xy ..., X, and a phylogenetic tree T whose leaves are
labeled with these nucleotides, the parsimony score is
defined as the minimum number of substitutions, per-
formed along the branches of the tree T, that can explain
the set of nucleotides observed at the leaves. It is thus a
lower bound on the actual number of substitutions at that
site, and, in cases where this number is not too large com-
pared to the number of branches in the tree, it is a fairly
good estimate of the actual number of substitutions that
occurred at that site. The parsimony score of a set of n
nucleotides can be computed in time O(n) using Sankoff's
algorithm [22] or Fitch's algorithm [21]. Figure 1 gives an
example of orthologous nucleotides whose conservation
is well characterized by either the entropy or the parsi-
mony scores. Entropy and parsimony scores attempt to
measure the total selective pressure on a given site. While,
for non-coding regions, this selective pressure can be
assumed to come completely from the presence of non-
coding functional elements, this is not the case in coding
regions. The rest of this paper describes how to measure
the statistical significance of a certain conservation
(entropy or parsimony) score when the site under study
lies within a coding region.

Conservation p-values under a mixture of codon models
In this section, we introduce a null model of coding
sequence evolution that consists of a mixture of codon
substitution models representing the evolution of codons
that are under different types of purely coding selective
pressure. We then show how to compute posterior p-val-
ues for the entropy and parsimony scores of orthologous
sequences evolving under those models.

Mixture models for codon evolution

Different positions in a protein sequence are usually sub-
ject to different types of coding selective pressures. Some
are constrained to have a specific amino acid (e.g. the
active site in a zinc finger has to be a cystein), while others
are free to have any residues with some particular chemi-
cal properties (say, a hydrophobic residue), and still oth-

/N\
QPP PP

PQrYorYore
Ha P QQ P e

Parsimony:
Entropy:

1 (good)
1(fair)

4 (poor)
1(fair)

4 (poor)
1.75 (poor)

Figure |

Example of alignment columns where parsimony score and
relative entropy differ greatly in their assessment of sequence
conservation.

ers are under little or no selective pressure at all. Selective
pressure on amino acids translates into selective pressure
on codons, which explains part of the sequence conserva-
tion observed at the mRNA level in coding exons. We
describe a mixture model of amino acid evolution, and
the corresponding mixture model of codon evolution. We
derive a set of 50 amino acid substitution rate matrices

Qf, .. ng, together with codon rate matrices Qf,...,

Q% , describing the substitution rates for as many classes

of selective pressures on amino acids. The choice of mod-
eling codon evolution with only 50 classes is a compro-
mise between an highly accurate modeling of codon
evolution (which would most likely require a larger
number of classes [23]) and constraints on computing
time. Tests carried out with 100 classes instead of 50
resulted in very similar results (data not shown).

We learn amino acid functional categories using the Pfam
database of amino acid sequence alignments of protein
domains [24]. We start by learning the amino acid station-
ary distribution of each rate category. We then use these
distributions to classify the Pfam alignment columns, and
use this classification to estimate the amino acid and
codon substitution rate matrices for each class.

The stationary amino acid distributions 7,, 7,, ..., 75, and
class prior probability distribution 7 are estimated using
an unsupervised Expectation-Maximization algorithm
(see Methods) in order to fit the Pfam alignments as
closely as possible. Figure 2 (top) shows the amino acid
distribution obtained for each of the 50 classes (see also
Supplementary data). We observe that most of the
expected functional classes are present among our 50
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classes. First, for each amino acid, there is at least one cat-
egory where that amino acid has a probability at least 0.5.
These correspond to positions that tolerate little variation
outside of that particular amino acid. Less constrained cat-
egories include several combinations of residues with sim-
ilar properties: hydrophobic residues (ILV), small neutral
residues (AST), aromatic residues (YF), positively charged
residues (KR), etc. The class of negatively charged amino
acids (DE) is surprisingly not directly represented,
although these two amino acids show up together in sev-
eral more weakly defined classes. Various categories corre-
spond to positions under little selective pressure. Many of
our classes are similar to those reported by Sjolander et al.
[25] using a related procedure.

Amino acid and codon substitution rate matrices

For each of the 50 classes above, an amino acid substitu-
tion rate matrix and a codon substitution rate matrix are
derived. We first compute the probability of each Pfam
alignment column to belong to each of the classes, and
use these to estimate the probability of amino acid and
codon transitions between human and mouse sequences.
Rate matrices are then derived from these empirically esti-
mated transition probabilities matrices. The detailed pro-
cedure is described in Methods.

Figure 2 (bottom) shows two of the codon rate matrices
obtained. Note how mutations toward codons encoding
favored amino acids occur at a high rate, whereas substi-
tutions away from those are rare. Notice that these rate
matrices automatically take into account codon biases, as
they are built from mRNA sequences. We make the
assumption that the codon biases of human and mouse,
which are reflected in our rate matrices, are representative
of the codon biases in the other species used in our anal-
ysis. This assumption appears to hold quite well within
mammals and birds, and to a lesser extent within verte-
brates in general [26]. However, we recognize the fact that
some genes (e.g. those requiring a high rate of translation)
may have codon biases that are stronger than the average,
resulting in an unexpected degree of conservation. Still,
since this type of selective pressure would most likely
apply to the entire transcript, it would be easily detectable
using our approach, and would not result in false identifi-
cation of other types of non-coding elements.

Distribution of conservation scores

We now return to the problem of identifying regions
under non-coding selective pressure in a multiple align-
ment of orthologous coding mRNA sequences X =X ...
X,
sponding to the i-th codon in the alignment. Let X;(j) be

where X; is the triplet of alignment columns corre-

the codon observed in species j € {1...s}, where s is the
number of column triplets in the alignment, and let X; ,(j)

be the nucleotide at position p (p = 1, 2 or 3) in that
codon. Given a column of orthologous codons X;, we

want to assess whether the conservation observed at posi-
tion p of the codon is unexpected. To this end, we com-
pute the posterior p-value of the observed conservation
score (entropy or parsimony score) of that codon posi-
tion, under the null hypothesis that the columns are only
under coding selective pressure.

To describe more formally our null model of sequence
evolution, we need to introduce some notation. Let T =
(V, E) be a binary phylogenetic tree with vertices V, edges
E, root r, and with leaves numbered 1,2,...,n. Let A(u, v) be
the length of the branch going from node u to node v, let
a(c) be the amino acid encoded by codon ¢, and let Q be
some codon substitution rate matrix. The codon transi-
tion probability matrix for a branch (u,v) is given by P,
= eHu)Q[27]. Let b(c) be the background probability of
codon ¢, which is assumed to be the stationary distribu-
tion of Q. These three parameters (T, 4, Q) describe a
process that generates random but related codons at the
leaves of the tree T, by drawing a codon from the station-
ary distribution of Q at the root of T and letting it mutate
along the branches of the tree using the appropriate tran-
sition probability matrices. Let C(u) be the random varia-
ble representing the codon that has been generated by this
process at node u of the tree.

We are interested in computing the distribution of the
conservation score of a given position p of a set of random
orthologous codons generated at the leaves of the tree. We
start by showing how to compute this distribution for the
entropy score entropy(C,(1),C,(2), ..., C,(n)), and later
show the modifications required to do the same for the
parsimony score. For a fixed codon position p € {1,2,3},
and for any node u € V, let Y, = (Y,(A), Y,(C), Y,(G),
Y,(T)) be a random multivariable where Y, (&) is the
number of nucleotides of type a at position p of the
codons at the leaves of the subtree rooted at u. Notice that
Y, is only a function of the codons at the leaves of sub-
tree(u), and not of those at the internal nodes of sub-
tree(u). The p-value of a certain entropy score e for
position p is obtained by summing the probabilities of all
values of Y, that yield an entropy score ¢ or better:

Pr{entropy(C,(1), Cy(2), ..., Cy(n)) < e] = Y

PrY, = (ya:¥e,vg vl

+,

entropy(y

We will show how to compute Pr[Y, = (v, Vo ¥ ¥)IC(u) =
k], for every node u and all choices of y,, y,, ¥, v, and k,
using a dynamic programming algorithm visiting the
nodes of T in post-order. When u is a leaf, we have
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Figure 2

Mixture of codon substitution models based on amino acid functionality classes. (Top) Stationary distributions estimated from
the Pfam database for the 50 functional classes. Each row corresponds to one class. The numbers on the right are the prior
probability of each class. (Bottom) Two examples of codon rates matrices, where dark cells correspond to high substitution
rates and light cells to low rates. The left matrix corresponds to a functional class that favors hydrophobic residues (ILV), while
the right matrix comes from a class that favors the glycine amino acid (G).
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Deﬁne (ya' YL" yg' yt) ® (‘zal Zer Zg' Zt) L= (ya+ Zar yc+ Zer yg+ Zg/
Y+ z,). Now, let u be an internal node with children v and
w. Notice that Y, = Y, ® Y,. We compute the desired con-
ditional probabilities at node u based on those at nodes v
and w:

Pr[Yy, = (Var¥Ye Vg ve) | Cu) =] =
Pr[Y, = Ay [C(v) = x| Pr{Yyy = Ay | C(w) = x| Pl (K50 ) - Pl (K0 K1) (2)
K,k &Codons
st
Ay @A =(Yar¥e Vet

Implementation optimizations and computational com-
plexity analysis are given in Methods.

Distribution of parsimony scores

The method described in the previous section can be sur-
prisingly easily modified to compute the conditional p-
value of parsimony scores instead of that of the entropy
score. We need to redefine the random variable Y, = (y,, v,,
Yg Vo) so that y, is now the parsimony score obtained for
the nucleotides at position p of codons at the leaves of the
subtree rooted at u, assuming that the nucleotide at the
ancestral node u is required to be a. Note that this set of
four numbers per node is exactly that computed by the
Sankoff algorithm for computing parsimony scores [22].
We also redefine the ® operator as

(ya/ Yo Yo yt) ® (za' Zer Zgr Zt) = (min(ya tZy Yot Zg + L, Ya

+z,+1,y7 + 2z +2),

min(y, +z, ¥+ 2z + 1, yg +2,+ 1, yz + 2z +2),
min(y, + 2, Yo+ 2g + 1, yg +2,+ 1, yg + zg +2),
min(y,+z, y,+ 2z + 1, y7 +2,+ 1, y7 + 27 +2))

where y; =min,jy;. Notice that this is again in direct anal-
ogy to Sankoff's algorithm. Again, Y, =Y, ® Y, and we get
parsimony (C,(1), (C,(2),..., C,(n)) = min(Y,). With these
redefinitions, Equation 2 holds without any modifica-
tions needed. We get

Pr{parsimony(C, (1), Cy(2), ..., Cy(n)) <] = 2

xeCodons

PrlY, = (ya, e vg ) | C(r) = K]-b(x)

Ya¥e Vg iENs.t.

min(y, Yo Vg ¥ )<

Posterior distributions of conservation scores

Having shown how to compute the p-value of a given
entropy or parsimony score under a fixed codon rate
matrix, it is simple to compute posterior p-values for the
case where the functional class is not known in advance.
Consider a given set of aligned codons X; = (X;(1), ...,
X;(n)) encoding the set of amino acids A; = (A(1), ...,
A,(n)). Define the unobserved variables Z;, = 1 if the site i
belongs to functional class k, and zero otherwise. We first
compute the posterior probability of each Z;,, given the
observed amino acids at site i:

() Pr[A; (1), ..., Ai(n) | Zi =1,Qf]

Pr[Z;;, =1| A; (1), ... A;(n), Q] = ,
[ Zip =11 Ai(1), .., Ai(n), Qi ] Ekg{l_,,so}f(kl)Pr[A"(l)’""Ai(n)‘zi’k’ZI'QZ]

where Pr[A,(1), ..., A(n)|Z;, = 1, Q};] is computed using

Felsenstein's algorithm [28], with rate matrix Qj, . Finally,
we obtain the posterior estimate pv,,(i,p) for the p-value

of the entropy score e observed at position p of codon i, by
summing over all classes:

PUpost(isp) = Prlentropy(C,(1), ..., Cp(n)) < e | Ai(1), .., Ai(m)]
= Z Prlentropy(C,y (1), Cp(2), ... Cp(n)) S €| Qi |- Pr(Z; ), = 1] A1), ..., Ay(n)],

k=1...50

and similarly for parsimony scores p-values.

Conditional p-values

An alternative to trying to guess the type of selective pres-
sure under which a given codon evolves is to use a single
codon rate matrix but subject to the constraint that the
random codon generated at each leaf has to encode the
amino acid that was actually observed at that leaf. This
approach was originally proposed by Blanchette [18]. This
model does not rely on amino acid classifications and in
fact allows sites to change function during their evolution.
By conditioning on the observed amino acids at the leaves
of the tree, we ask: given that in species j, the codon had to
encode amino acid a(X)(i)), for each leafj € {1, ..., n}, is
the conservation observed in X; surprising? Notice how,
compared to the mixture model approach, this model
transfers the responsibility of sequence conservation even
more onto the shoulders of coding selection. See Figure 3
for an example. Mathematical details are provided in
Methods.

A sliding window approach

Until now, we have shown two ways to compute p-values
for individual alignment columns. Since most non-coding
functional elements are expected to span several consecu-
tive positions (5-15nt for transcription factor binding sites
and exonic splicing enhancers, and up to a few hundred
nucleotides for RNA secondary structure elements), we
can improve the sensitivity of the method by using a sim-

Page 6 of 13

(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7(Suppl 1):S9

Human

G T (V)
Mouse G

G

G

T (A)
T(G)
T(D)
T(@L)
0

107
107

Chicken
Frog
Fugu

0-2
0.9

P-value (mixture):

—_—_WE 00 -

G
Parsimony score: 0
1

P-value (conditional):

Figure 3

Example of codons where the posterior p-values under the
mixture of codon models differs significantly from p-values
obtained from the conditional p-value method. Amino acids
V,A,G,D,L do not have any common properties, so, under
the codon mixture model, the column is assigned to a func-
tional class with little selective pressure, explaining why the
p-value produced for the first codon position is small. In con-
trast, under the conditional p-value approach, the amino
acids almost completely determine the first codon position
(the only exception being the Fugu codon, encoding a leu-
cine, which could have used a T at the first position), so a
poor p-value is reported.

ple sliding window approach. For each position i, let pv(i)
be the p-value obtained for the i-th column of the align-
ment (not the i-th codon), and let w be the width of the
sliding window (assume w is odd, for simplicity). We
Compute Si = Hj = i- <Fences>Quw/2<Fences>N...i + <Fences>Qu/
s<fencessN PV(j). If we assume that, under the null model,
pv(j) is approximately uniformly distributed, a com-
pounded p-value can be assigned to S;: cpv(i) = Pr[Product
of wiid. uniform (0,1) <§;] = S,(1 + % .1 .1 - In(S)/j1).
This is the type of p-value being reported in the Applica-
tions section. It should however be noted that although
the uniformity assumption holds quite well for the third
codon positions, the first two codon positions are often
completely determined by the codon they encode, so the
range of possible p-values they can take is quite small.
This results in the compounded p-values being quite con-
servative.

Implementation

The algorithms were implemented in C++ and the pro-
gram is available upon request. A number of optimiza-
tions described in [18] have also been implemented and
make the program relatively fast. In particular, a caching
mechanism allows to re-use the results of computations
done on previous columns. This allows the program to

handle very long sequences quickly. All analyses reported
here have been obtained in less two hours of computation
on a desktop machine.

Analysis of simulated data

We first verify that the p-values computed by our
approach have the basic properties we would expect of
them. To start, we confirm that sequences evolving under
the null model obtain p-values that are approximately
uniformly distributed. This would be a trivial statement if
the functional category of each site was known, but in the
absence of such prior knowledge, the uniformity of p-val-
ues under the null model is less obvious. To this end, we
simulated the evolution of a 50 kb region of DNA, with
each codon belonging to one of the 50 rate categories
described above. Sequences were evolved along the
branches of the 69-leaf phylogenetic tree derived from the
GH1 data set described below. Figure 4 shows the distri-
bution of posterior p-values obtained at each of the three
codon positions. As desired, the distribution is nearly uni-
form. However, we observe a depletion of columns with
low p-values (<0.1), in particular for codon positions 1
and 2. This is due to the fact that, at these positions, a col-
umn that is perfectly conserved is not particularly surpris-
ing, and obtains a p-value around 0.2-0.3. To obtain a p-
value distribution that is closer to uniform, one would
need to use a tree with much larger total branch length.
Second, we study the power of our method to detect selec-
tion on sets of aligned codons that are perfectly conserved.
As expected, the power of our method to detect CRUNCS
depend on the amino acid encoded by the codon. Per-
fectly conserved codons encoding amino acid W cannot
be detected by our approach. On the other hand, codon
conservation is easiest to detect among four-fold and six-
fold degenerate amino acids. Among those, codons
encoding amino acids P and G, both of which have chem-
ical properties making them more difficult to exchange for
other amino acids, obtain higher p-values, because their
conservation can be explained to a larger extent by the
amino acid encoded.

Analysis biological data

We illustrate our approach on two sets of orthologous
mRNA sequences: a set of 69 vertebrate growth hormone
1 (GH1) sequences, and a set of 13 vertebrate CORTBP2
(also known as CTTNBP2) sequences (see Supplementary
data).

GH1 was one of the first gene shown to harbor an exonic
splicing enhancer, in cow [29]. The availability of a large
number of orthologous sequences makes it ideal for our
study. Figure 5 shows the compounded p-values obtained
from the mixture-based method, for the parsimony score,
using a sliding window with w = 9. The human region
orthologous to a known exonic splicing enhancer in the
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Distribution of the p-values obtained on a set of 50-kb
sequences evolving according to the null model. The tree
used for the simulation is the same as that for the GH| data-
set (see below).

cow, located around position 577 [29], is clearly identi-
fied, obtaining a compounded p-value of about 2 x 10-3.
Although this region could have been identified on the
basis of parsimony scores alone (gray curve on Figure 5),
it is highlighted much more clearly by the posterior p-val-
ues.

Figure 6 compares the posterior p-values obtained for the
entropy and parsimony scores, under the mixture model
of codon evolution, on the growth-hormone 1 data set.
The correlation between the two is quite obvious, espe-
cially for very small p-values. This is in part due to the fact
that alignment columns that are perfectly conserved
obtain the same p-values from the two methods. On the
other hand, many more sites obtain p-values between
0.01 and 0.1 using the parsimony score than using the
entropy score. These are sites that have undergone a small
number of substitutions early in vertebrate evolution, and
that obtain a good parsimony score but a poor entropy
score, as in Figure 1. In this data set, there are no sites that
obtain a good entropy p-value and a poor parsimony p-
value. Since the parsimony score p-values can be com-
puted much faster and since they appear to be strictly
more sensitive than entropy p-values, they seem to be the
method of choice in most situations.

Figure 7 compares the p-values obtained for the parsi-
mony score under the mixture model and to those
obtained under the conditional p-value approach.
Although the two are clearly correlated, there are some
important differences. First, most of the p-values obtained
for the 1st and 2nd codon positions under the conditional
probability model are very close to 1, because these two

codon positions are often completely determined by the
amino acids observed at the leaves. Under the mixture
model, the p-values obtained at these positions will
depend on the variability of the amino acids observed,
and in general will be smaller. This is also true, to a lesser
extent, for the third codon position.

Finally, the analysis of the CORTBP2 transcript is particu-
larly intriguing. Little is known about the post-transcrip-
tional regulation of this gene. We find that its mRNA
contains a very large region (roughly between positions
1500 and 2200, see Figure 8 and Supplementary mate-
rial), which obtain fairly low p-values. This region is much
too large to be a binding site, and we conjecture that it
may form some large RNA secondary structure affecting
the pre-mRNA splicing or the mRNA stability, localization
or translation. Notice that in this case, a simple parsimony
score is not sufficient for identifying the region, as many
other regions of the transcript are well equally well con-
served.

Conclusion

With the many genome sequencing projects rapidly pro-
ducing vertebrate genomic data, comparative genomic
approaches are becoming increasingly powerful. In the
case of CRUNCS, additional data is often available in the
form of ESTs and cDNAs. We believe that within one year
or two, there will be sufficient data for accurate detection
of CRUNCS in vertebrate genes, using methods like those
described here. Once many CRUNCS will have been
detected, the next step will of course be to assign functions
to these elements. Although the last word will remain
with experimentalists, we have good hopes that more
advanced bioinformatics approaches will yield insights
into these questions.

Finally, we expect that organisms that are under severe
genome size constraints, in particular bacteria and viruses,
will more often use CRUNCS. We believe that our
approaches will prove particularly fruitful to analyze these
genomes.

Methods

Estimating amino acid stationary distributions for each
class

The Pfam database consists of a set of multiple alignments
of homologous protein domain sequences. For some
domains, the database contains several sequences that are
very closely related. To reduce biases due to this over-rep-
resentation, one member of any pair of domain sequences
that share more than 60% identity is discarded. Let Dy, ...,
D,, be the set of alignment columns in this reduced Pfam
database, let S; be the number of species in alignment col-
umn i, let D,(j) be the amino acid from species j in column
i, and let E;(j) be the codon encoding that amino acid in
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Dark curve: compounded parsimony p-values for the GH/ gene under the mixture model, using a window size of w = 9 nucleo-
tides. Light curve: average parsimony score per alignment column, normalized by the number of leaves in the tree (which varies

from site to site, due to gaps in the alignment).

the mRNA of species j. Starting from Pfam 17.0, we have
m = 2292182 amino acid alignment columns.

For simplicity, we assume that the amino acids in a given
column are drawn independently from the same
unknown amino acid distribution. Let 7, 7,, ..., 75, be a
set of amino acid distributions, where 7,( ) is the proba-
bility of amino acid a in class k. Let 7(k) be the prior prob-

ability of class k. The class membership of column i is
unknown. Let Z;(k) be a hidden variable that takes value

1 if column i belongs to class k, and 0 otherwise. We have
PDIZ (k) = 1= [T, m(Di(7).

We search for the distributions 7, ..., 75, and prior proba-
bilities 7 that maximize Pr|D; ... D,,| =TI, _, ,, Pt[D;] =II;
—1.m 2k - 1.50 Pr[D;| (k) = 1] o(k). This is achieved using a
simple EM algorithm for learning mixtures of multino-

mial distributions, using the following update formulas to
go from iteration ¢ to iteration ¢ + 1.

. | PR TOR 0
H Ve e (1/0) S, B X Ni(@)
izl"'mZk'=1...50Hj=l...slnkl -Dy(j)- 7 (k)

and

(t+1) , H]’:l‘_,si 7 - Di(j)- 1O ()
k)« /8 Y OISO
i=l..m zk':l...SOH]&L..si - Di)- 7 ()

where N,( @) is the number of occurrences of amino acid &
in column D; and where ¢ and ¢ are normalizing con-
stants that ensure that the probabilities sum to one.

Initialized with noisy uniform distributions, the algo-
rithm converges quickly (less than 50 iterations) to the

Page 9 of 13

(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7(Suppl 1):S9

0.0001 0.001 0.01

P-value (Entropy)

0.0001-
P-value (Parsimony)

Figure 6

Comparison of the posterior p-values obtained from the
entropy and parsimony scores, under the mixture of codon
models, on the GH/ gene.

local optimum depicted in Figure 2. Ten restarts from
other random initial conditions converged to very similar
distributions, so the first one was retained.

Estimating amino acid and codon rate matrices

Once the amino acid distributions 7, ..., 75, and prior dis-
tribution 7 are learned, we can use them to compute the
posterior probability of each class k for each alignment
column D;:

Pr(Zi(k) =1]| Di] = (z(k) /") TT me(Di(7)),

j=l...s

0.001 0.01 0.1

Conditional p-value

0:0001-

Mixture-based p-value

Figure 7

Comparison of the p-values obtained from the parsimony
scores, under the mixture of codon models and under the
conditional probability computation.

where £" is another normalizing constant. For simplicity,

the amino acid and codon substitution rate matrices P

and P are estimated for each class k based only on the
observed substitutions between human and mouse
sequences (however, the class posterior probabilities of
each column are based on all available species). Any col-
umn that does not include an entry for these two species
is excluded. Let E;(human) and E,(mouse) be the codons
encoding amino acid D; (human) and D,(mouse) in the cor-
responding mRNA sequences. The transition matrices are
then estimated as follows:

zi:D,v(humzm)=oc,Di(mouse)=ﬂ Pr{Z;(k) =1 | Dil

P/ (o, B) = Pr[Z;(k) =1| D;)

z i:D; (human)=a

Zi:Ei(human)=a,Ei(mouse):ﬁ Pr[Zi (k) =1 | Di]

P (o, B) = Pr[Z;(k) =1| D;]

Z i:E; (human)=a

Finally, we estimate the instantaneous rate matrix Qj, (&,

A =InP(a, B)/t,my where t;, ,,y is the expected number

of substitutions per site between human and mouse, in
neutrally evolving DNA. Codon rate matrices are obtained
in a similar manner.

Note that the codon substitution rates we obtain are
slightly underestimating the true rates for sites evolving
only under coding selective pressure, because some
sequences in Pfam are likely to be evolving slower due to
non-coding selective pressure. However, we expect that
this underestimation is negligible as the fraction of such
sites is likely to be small. In any case, underestimating the
rates will only cause conservative estimates of the conser-
vation p-values.

Computing entropy and parsimony score p-values

The probabilities Pr[Y, = (v, Vo Ve ¥)|C(u) = k,] are stored
in a hash table associated to each node, indexed by the
quintuplet (y, o ¥y Vv k). Only non-zero probabilities
are stored. To compute these probabilities for a node u
with children v and w, it is simpler to enumerate all pairs
Var Yo Vo Vo R (20 20 290 24 Ryy) of quintuplets from the
hash tables of the two children, and add the proper quan-
tity to the entry (v, Vo Vo V) @ (24 20 24 2), k) Of the hash
table at u, for all choices of k,. Please see [18] for more
details.

To study the complexity of the resulting algorithm for the
entropy p-value computation, observe that the hash table
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Dark curve: compounded parsimony p-values for the CORTBP2 gene, using a window size of w = |5 nucleotides. Light curve:
average parsimony score per alignment column, normalized by the number of leaves in the tree (which varies from site to sites,

due to gaps in the alignment).

associated with node v whose subtree contains I(v) leaves

. . (I(v)+3
will contain at most 64 - 3

] e O(I(v)?) non-zero
entries and thus computing all entries of the hash table for
node u takes O(I(v)3l(w)3) time. Depending on the topol-
ogy of T, computing the hash tables of all nodes takes
between O(n4) time for a completely skewed tree and
O(n®) time for a balanced tree. The time complexity anal-
ysis applies to both the posterior p-value and the condi-
tional p-value computations. However, for posterior p-
values, this computation needs to be repeated 50 times,
once for each rate matrix.

The hash table implementation works well in the case of
parsimony score p-value computation too, especially with
the following optimizations. First, for binary trees, the
only choices of y,, ¥, ¥, ¥, that may have non-zero proba-
bility are those where |y; - y;| <2 foralli, j € {A, C G, T}

(this is a direct consequence of the @ operator). When
evaluating the p-value for a parsimony score y, choices of
Yar Yor Vg Vesuch that min(y, v v, ¥,) > w are not affecting
the final p-value and can be safely ignored. Therefore, the
hash table associated with node v contains O(y) = O(n)
entries, and computing all entries for node u from those
of nodes v and w take O(I(u) - I(v)). Thus, one can com-
pute all entries of all tables in O(n2), irrespective of the
tree topology. More details can be found in [18].

Conditional P-values

The method of conditional p-values, introduced by Blan-
chette [18], can be summarized as follows. The method
computes the following conditional p-value:

PVeonalis p) = Prlentropy(C,(1), ...,.C,(n)) < entropy(X;,(1),
v Xip(n))]a(C(1)) = a(X,(1)), ..., a(C(n)) = a(Xi(n))]
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This p-value can be computed in a manner that is similar
to the Equation 2. Let us denote by I(u) the set of leaves in
the subtree rooted at u and let us write the set of condi-
tions‘for the subtree rooted at u as A(u) = Aj¢y,)(a(C()) =
a(X,(7))). We get

PVeona(irp) =
PrlY, = (Yo, Ve vg.ve) | C(r) =, A(r)]- Pr[C(r) = i | A(r)
xeCodons Ya¥eVg Vi €NsL
YatYetygty=n
entropy(yaye Vg e )Sentropy(Xi (1), .. Xi p(n))
and
Pr[Yy = (Ya Ve Vg 1) | C(u) = 1y, A(u)] =
Py Ky ) Pr[Al C(v) =
PrlY, = A, | C(v) = K, A1) () (K K()‘ r[A(v) | C(v) Kyl_ )
Y Pk PIAE) | C(v) = d]
deCodons
K, k& Codons .
O Bl () PHAW) | C) = x|

A, @8 =(Var¥eg i) Pu) () Pr[A(w) | C(w) = d]

de Codons

PrY,, = A, | C(w) = KWA(W)]'[ z

where Pr[C(u) = k|A(u)], is computed using Felsenstein's
algorithm and Bayes rule. As before, a dynamic program-
ming algorithm proceeding in a post-order traversal of the
tree allows the computation of all terms required.
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