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Abstract

Background: Functional constraint through genomic architecture is suggested to be an important dimension of
genome evolution, but quantitative evidence for this idea is rare. In this contribution, existing evidence and
discussions on genomic architecture as constraint for convergent evolution, rapid adaptation, and genic adaptation
are summarized into alternative, testable hypotheses. Network architecture statistics from protein-protein interaction
networks are then used to calculate differences in evolutionary outcomes on the example of genomic evolution in
yeast, and the results are used to evaluate statistical support for these longstanding hypotheses.

Results: A discriminant function analysis lent statistical support to classifying the yeast interactome into hub,
intermediate and peripheral nodes based on network neighborhood connectivity, betweenness centrality, and
average shortest path length. Quantitative support for the existence of genomic architecture as a mechanistic basis
for evolutionary constraint is then revealed through utilizing these statistical parameters of the protein-protein
interaction network in combination with estimators of protein evolution.

Conclusions: As functional genetic networks are becoming increasingly available, it will now be possible to
evaluate functional genetic network constraint against variables describing complex phenotypes and environments,
for better understanding of commonly observed deterministic patterns of evolution in non-model organisms. The
hypothesis framework and methodological approach outlined herein may help to quantify the extrinsic versus
intrinsic dimensions of evolutionary constraint, and result in a better understanding of how fast, effectively, or
deterministically organisms adapt.
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Background
Genetic constraint and evolutionary outcomes
Understanding the genetic dimension of evolutionary
constraint is crucial to understanding adaptation and
other repeatedly observed outcomes of evolution such as
convergent phenotypes, rapid adaptation, or genic evolu-
tion (see Glossary in Table 1). For example, divergent
genetic populations of the well-studied Caribbean lizard
Anolis cybotes [3] have nonetheless evolved convergent
phenotypic, ecological, reproductive, and physiological
adaptations to high elevations on three separate

mountain chains, which is mirrored by genomic adapta-
tions in a subset of genes [4–7]. These observations
made in natural populations suggest that the variants
available to mutation and selection may be constrained
at the genomic level, enabling faster adaptations and
higher rates of convergent evolution than were possible
without constraint.
Many studies have shown the non-independence of

genes from one another, be it through physical linkage,
phylogenetic relationship (e.g., in the case of whole gen-
ome duplications), or functional interaction (Fig. 1).
Futuyma [8] cited Schluter [9], noting that correlations
between genes could reduce the degrees of freedom on
which selection can operate. Mayr [10] stated that
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“coadapted” genes are a result of natural selection, being
brought together to form a “balanced system”, but ruled
out that such gene complexes would be of any interest
to evolutionary biology, as ultimately only the complete
phenotype is selected (8, p.184ff). Nonetheless, evolu-
tionary trajectories of complex phenotypes have been ex-
tensively studied through the concept of the genetic
variance-covariance or G-matrix [11]. Some mechanistic
properties of the genome leading to the constraints that
can be expressed as a G-matrix are trait polygeny, trait
pleiotropy, and linkage (Figs. 1), [12], but the evolution-
ary constraints of correlated traits implied from a G-
matrix can be rapidly overcome in only a few genera-
tions [13], hinting at additional genomic properties influ-
encing evolutionary constraint. A more detailed look
into the mechanistic basis of constrained phenotypic
evolution at the molecular level is therefore necessary,
and now made possible through the rapid accumulation
of genomic and other molecular -omics data sets in the
public domain.

Genetic constraint through gene functional importance
The functional importance of a gene has long been
thought to cause such evolutionary constraint at the mo-
lecular level: protein-coding genes that are indispensable
for the organism should be highly conserved and thus,
be constrained through evolution, as most nonsynon-
ymous mutations would be detrimental to protein func-
tion and thus would most likely result in non-adaptive
phenotypes. Consequently, these genes should have a
lower rate of molecular evolution. Such genes have
formerly been identified through their “dispensability”.
This term describes how essential genes are for organis-
mal function within a certain environmental context,
which can be estimated through knockout experiments
(Table 1).
Zhang and Yang [14] reviewed evidence from empir-

ical studies, but found that essential genes are not evolv-
ing more slowly than nonessential genes. Instead, highly
expressed genes seem to have lower rates of protein evo-
lution (dubbed the “E-R anticorrelation” [15, 16], which

Table 1 Glossary of terms

Evolutionary constraint [1]: the phenomenon of evolution producing a finite number of genomic and associated phenotypic outcomes from
a near infinite number of possible genetic variants.

Genetic constraint The portion of evolutionary constraint, which is determined at the level of genes or their gene products, for
example codon constraint or developmental genetic pathways.

Functional network
constraint

The portion of network constraint attributed to the structure or architecture of gene interactions that can be
expressed in the form of a network. Networks consist of nodes (genes) and edges (functional interactions between
these genes).

Genic evolution The phenomenon of different evolutionary outcomes being the outcome of independent mutation and selection
events in different genes. For example, the occurrence of convergent evolution in diverging populations, both of
which are caused by evolution in distinct genes.

Rapid adaptation The phenomenon of adaptive change in allele frequencies of a population to natural selection, taking place within
just a few generations.

Convergent evolution /
convergence

Traditionally defined as similar phenotypes evolving from similar selective pressure in response to similar
environments [2]. May be caused at the genomic level through genomic re-use of the same genes or alleles, which
is also called parallel genetic evolution or genomic re-use.

Gene dispensability A variable to estimate gene essentiality. The less dispensable a gene is for organismal growth and function, the
more essential it is. An estimator for the mean fitness effect of all possible mutations of a gene across environments
the cell is likely to encounter. In yeast, this is experimentally determined through knockouts.

Pleiotropy and cost of
complexity

Traditionally defined as one gene influencing more than one trait. In the papers cited in this study, has been defined
as gene products with more than one functional interactions with other gene products, with the link to pleiotropy
of phenotypic traits being implied. It is therefore called “gene pleiotropy”.

Gene expression level CAI The amount of mRNA produced by each gene in regular somatic cells. CAI (Codon Adaptation Index) is used as a
substitute variable in this paper, and is derived from codon use bias in yeast that correlates with mRNA levels.

Omega ω The ratio of nonsynonymous to synonymous substitutions dN/dS. It is assumed that dS remains constant, and dN is
used here as an estimator for directional evolution.

Gamma γ A score developed for estimating events of rewiring functional connections between network nodes over the course
of evolution. Developed on the example of five species of yeasts.

Neighborhood connectivity A network statistic used to describe the structure of a functional genetic network. Describes the number of
connections of all neighbors of each node. Highest values are expected in intermediately located nodes within a
network.

Betweenness centrality A network statistic used to describe the structure of a functional genetic network, describing where a node lies
within paths between other nodes. Nodes with many paths progressing through them may be important in
transmitting information. Highest values are expected in nodes central to a network.

Average shortest path
length

A network statistic used to describe the structure of a functional genetic network. Shortest distance between a node
and other nodes. Highest values are expected in peripheral nodes of a network.
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some authors relate to translational selection on amino
acids with different metabolic cost [15]. Many studies
have ascribed an important role to gene expression
levels in constraining the evolutionary rate of proteins
[17–19]. But perhaps, functional importance needs to be
defined differently than via gene essentiality or dispens-
ability, and expression level may be a correlative variable
linked to another cause. In Saccharomyces cerevisiae (in
following: yeast), which was used for many studies on
protein evolutionary rate and functional importance, es-
sential genes are required for organismal growth and
performance under optimal environmental conditions. A
gene that renders an organism nonfunctional may thus
predominantly be active in genetic pathways related to
development and growth. However, in a multicellular or-
ganism such as a vertebrate, also the genes that are es-
sential for organismal viability and reproduction are of
high functional importance, and potentially could be
under evolutionary constraint [20], such as in the

example of genes coding for eye color determining mat-
ing success in Drosophila melanogaster [21]. A high pro-
portion of the human genome has also been found to be
under selective constraint in other mammals, indicating
that gene dispensability is not a binary variable [22]. As
reviewed by Zhang and Yang [14], Wilson et al. [23] sug-
gested that evolutionary rate may be determined by both
functional importance and functional constraint [14, 23].
If functional importance measured as (negative) gene
dispensability does not predict variations and constraints
of evolutionary rate, perhaps functionally more con-
strained genes are the ones evolving slowly. Prior studies
have attempted to identify functional constraint in terms
of which sites within a protein are essential for perform-
ing its function, called protein functional site constraint
in Fig. 1. The Neutral Theory [24] already identified
codon constraint where nonsynonymous mutations are
of larger consequence than synonymous ones as being
important for evolution (Fig. 1).

Genetic constraint through gene pleiotropy and network
architecture
During the recent decades, network thinking has
emerged as a powerful approach for better understand-
ing biological realities [25]. The network concept might
also have deep implications in evolutionary biology.
Gene interaction networks were found to evolve either
faster or slower than comparable genes functioning
without being connected to others [26–29], and gene
regulatory circuits convergently evolve in the absence of
shared ancestry [30]. The overall network architecture
or hierarchy of genes within the network is likely to con-
tribute to the speed and mode of evolution and the
phenotype components associated with it, regulated
through functional constraint of nodes within the net-
work [25]. For example, a study by Jeong and colleagues
[31] found that genes with many functional interaction
partners are also likely to be essential, which, however,
does not provide enough evidence to extrapolate directly
from functional constraint to evolutionary outcome.
Functional genetic network structure has been shown

to affect evolutionary outcomes through “gene plei-
otropy” in yeast: gene products that interact with many
others are thought to be involved in many cellular path-
ways and by that means, to have multiple (pleiotropic)
effects on the cellular function [32, 33]. Fitness effects of
mutations in pleiotropic genes could be partitioned
across several phenotypic components, increasing the
likelihood of maladaptive effects, which means that they
should be more conserved through evolution and evolve
more slowly [32]. However, it is important to note, des-
pite that a connection between pleiotropic gene and
pleiotropic phenotype was implied in these studies [32,
33], gene pleiotropy or the number of functional

Fig. 1 Examples for different levels of genetic constraint. Linkage is
a transient constraint, which is broken up through recombination or
other chromosome rearrangements. If a gene arises through
duplication, phylogenetic constraint means that the function of its
gene product may be non-independent with relation to the
ancestral gene product. Codon constraint describes the likelihood of
the different codon positions to produce beneficial mutations.
Protein functional site constraint describes constraint located in
genomic regions that code for functional sites of proteins versus
other regions of the proteins. This is related to the idea that gene
products form a functional genomic network. Within this network,
interactions of these gene products also pose an element of
constraint on evolution, but this is not well researched
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connections a gene has with others should be regarded
as a distinct concept from phenotypic pleiotropy, unless
such a relationship to pleiotropic phenotype has been
demonstrated. Proteins with many interactants may be
constrained in the evolution of their functional sites to
instances of co-evolution with the interactant genes, in
order to maintain their functionality [34]. A correspond-
ing model of evolutionary constraint on evolution
through gene pleiotropy that was explicitly based on
functional network node hierarchy within an interac-
tome was proposed by Pavlicev and Wagner [35]. They
argued that for genetic adaptation in a target gene to
happen, selection has to overcome the inertia generated
through stabilizing selection of the genes functionally
connected with the target [35]. The premise of this
model is that any change in genotype-phenotype inter-
action represents a change in a developmental pathway
and, due the position of a gene within a network, will
have pleiotropic effects on the phenotype [35]. Empirical
research into this topic found that most pleiotropic
genes with many interaction partners only had a small
pleiotropic effect on the phenotype, but some genes with
large phenotypic effect were also more pleiotropic [20].
High gene pleiotropy is assumed to have a cost for adap-
tation, which was explained as nodes central to a net-
work with many interaction partners evolving slower
[20, 36]. This idea, dubbed the “cost of complexity” [37]
would lead to faster evolution of organisms with less
complex genomic architecture due to this constraint be-
ing relaxed [20], and to adaptive selection on standing
genetic variation preferentially to occur in genes with
low pleiotropic effects [38]. Concerning evolutionary
outcomes, gene pleiotropy was suggested to limit events
of genomic co-evolution [34], genomic adaptation [38],
and convergent evolution [38] in nodes central to a net-
work. Consequently, the properties of nodes within a
functional genetic network may be informative to under-
stand their evolutionary constraint. However, gene plei-
otropy was defined by most of these authors [32–35, 37]
as synonymous with the number of interactants, and also
with centrality in a network - but looking at more re-
cently generated interactomes, nodes topologically cen-
tral to the network are usually not the nodes with the
highest number of connections. Instead, nodes with
most connections are located in intermediate positions
within a network [39]. The number of edges of a node
consequently, may not be sufficient to disentangle the
effects of network structure on evolutionary constraint
since it only measures one of a network’s many proper-
ties. The concept of variable genomic networks existing
within populations was first explored by Wagner [40]
and was represented through a hypothetical “genotype
space” of similar phenotypes that might correspond to
the concept of “phenotypic optima”. Selection can cause

a population to modify their genotype networks in a way
that renders them more robust to changes in the fitness
landscape.
While the concept of network architecture influencing

evolutionary outcomes is known from the studies out-
lined above and from others, in many cases this concept
has not been sufficiently transformed into testable hy-
potheses yet, and correspondingly, no straightforward
methodology exists for biologists to test them empiric-
ally. The first aim of this paper is to deconstruct the ab-
stract concept of gene pleiotropy by setting genomic
network architecture in relation to the three evolution-
ary outcomes: 1) genomic re-use generating convergent
phenotypes, 2) the simultaneous occurrence of conver-
gence and divergence within a genome, resulting in
genic adaptation, and 3) the speed of adaptation. For this
purpose, I propose three categories of nodes with differ-
ent putative evolutionary trajectories. I set these categor-
ies in relation to previously defined hypotheses and
expectations aligning functional network constraint to
evolutionary outcomes. The second aim is to demon-
strate how these hypotheses can be quantitatively tested.
First, the nodes of the yeast interaction network are
transformed into categories based on network statistical
parameters and discriminant function analysis. Secondly,
these are then tested for differences of estimators of evo-
lutionary outcomes using data from yeast evolution. For
this I use published data, which aligns this study to
others with similar questions [15, 41, 42] but utilizes a
novel approach.

Results
Aim 1: novel node classification scheme based on
network statistics
A testable, hypothetical scenario of how functional gen-
etic network architecture could influence evolutionary
outcomes is shown in Fig. 2. The relationship between
pre-existing hypotheses and results from the present
study is shown in Table 2. Values for three network stat-
istical parameters were obtained from the yeast interac-
tome whose definition corresponds to the above
outlined node types. Those parameters were average
shortest path length (maximal in peripheral nodes),
neighborhood connectivity (maximal in nodes inter-
mediate to the network), and betweenness centrality
(maximal in nodes connecting subnetworks). Maximal
values for each statistical parameter were used to bin
nodes into P, I and H nodes (which stands for periph-
eral, intermediate, and hub nodes). A Discriminant
Function Analysis yielded significant support for the al-
location of network statistical parameters to these P, I,
and H node categories (Fig. 3, Table 3). To explore the
network position of nodes that have undergone conver-
gent adaptation, yeast ORF IDs that were demonstrated
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experimentally to show convergent genomic adaptation
in independent experiments, strains, or species of yeasts
were identified from the literature ([38, 48–52], Table 4).
These nodes were classified as C-nodes. All network
statistical parameters significantly differed between node
categories, as shown with Kruskal-Wallis tests: Average
shortest path length: KW-H (3,2208) = 1220.590, p <
0.0001; neighborhood connectivity, KW-H(3,2204) =
926.571, p < 0.0001; betweenness centrality KW-H(3,
2208) = 293.849, p < 0.0001 (Fig. 4). I-nodes contain the
highest number of edges and connect sub-networks, but
are not defined with respect to their expression. C-nodes

had network statistical parameters most similar to I-
nodes (cf. inset network in Fig. 4).

Aim 2: genetic constraint and network architecture
influencing evolution
To test the influence of functional network constraint
on the evolutionary outcomes rapid adaptation and con-
vergent evolution, as well as gene expression, I rear-
ranged and expanded on this [41] data set (see
Methods). I then tested, how network statistical parame-
ters relate to estimators of evolutionary parameters ω, γ,
and CAI (Codon Adaptation Index). The amount of
mRNA produced by each gene in regular somatic cells
can be estimated by CAI which is derived from codon
use bias in yeast that correlates with mRNA levels (based
on [54, 55]). First, a general linear model was run with
evolutionary parameters as dependent variables, and net-
work parameters as predictor variables. All three net-
work statistical parameters were found to significantly
predict estimators for evolutionary outcomes (Table 5).
All node categories have significantly different values for
ω (KW-H(3,2204) = 20.1345, p = 0.0002), CAI (KW-H(3,
2195) = 26.1472, p = 0.00001) and γ (KW-H(3,2195) =
36.7936, p = 0.00000), as shown by Kruskal-Wallis tests
(Fig. 5). Figure 5 shows that the highest values of ω are
found both in P and I-nodes with almost identical me-
dian values (0.93 vs. 0.91), while γ is highest in P and I-
nodes and H nodes, as expected, had highest values of
CAI.
The effect size of network statistical parameters as

predictors for variables estimating evolutionary out-
comes relative to CAI was then determined. When
CAI was incorporated into the analysis to predict
values of ω and γ, average shortest path length (P-
node classifier) was the predictor with highest power
(0.99), followed by its interaction term with CAI
(0.97), then CAI itself (0.92), followed by neighbor-
hood connectivity (the I-node classifier, 0.83). Only
betweenness centrality (the H-node classifier) was not
significantly contributing to this model (Supplemen-
tary Tables 1 and 2). As mentioned previously, Fig. 5
shows that the estimator of gene expression levels is
highest in H-nodes, which might explain why CAI
was seen as a better predictor for ω and γ than be-
tweenness centrality. However, AIC based model se-
lection revealed that a global model of all four
variables including CAI and network parameters ex-
plains ω and γ better than CAI itself (Supplementary
Tables 3 and 4). For ω, the only model with higher
likelihood than the global model is that excluding be-
tweenness centrality, whilst the CAI-only model ranks
8th. The rewiring score γ is best explained by the
global model and the CAI-only model ranks 5th.

Fig. 2 Proposed testable relationship between functional genomic
network architecture, network node position, and evolutionary
outcomes. SN are subnetworks within the functional genomic
network of a population with distinct functions (e.g., metabolic
pathways). Standing genetic variation exists within nodes, but
depends on their position within the network. Black nodes (H) are
essential for organismal function and not likely to accumulate non-
synonymous mutations; Grey nodes (I) are functionally connected
with many others and constrained in accumulating non-
synonymous mutations. White nodes (P) are functionally connected
to fewest others and most likely to accumulate non-synonymous
mutations. Resulting from this, three evolutionary outcomes can be
explained: Rapid adaptation is facilitated in white nodes through
their high standing genetic variation. Selection being constrained to
operate on these nodes in a specific subnetwork increases the
speed of adaptation. Convergent evolution is facilitated through the
finite number of networks that are related to specific functions and
shared among species through common ancestry. The likelihood of
convergent evolution within one subnetwork in response to
selection increases through the moderate level of genetic variance,
combined with constraint posed by the high number of
connections to other nodes. Genic evolution is facilitated through
the selection pressure only having an effect in the subnetwork with
organismal functions related to it but not in others. Selection is likely
to operate on standing genetic variation, which is likely
concentrated in white nodes (shown as blue squares). These
different processes can explain the coexistence of convergent and
divergent (rapid, genic) evolution within the genomes of
a population
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Discussion
Aim 1: novel node classification scheme based on
network statistics
One scenario of how functional genetic network archi-
tecture could influence evolutionary outcomes (Fig. 2) is
the topography of nodes in a functional genomic
network. When selection acts upon a population (for ex-
ample, through a sudden change in climate), advanta-
geous mutations will be selected from standing genetic
variation (allele frequencies). A population will have
standing genetic variation in different nodes of the
network, which is dependent on the topological position
of the nodes. Organisms possess a finite subset of bio-
chemical pathways (underlying functional genetic net-
works) such as those related to temperature homeostasis
[56–58], and that align to a finite amount of selected
phenotype components. Figure 2 shows how the popula-
tion must adapt to this newly arising selective pressure
through selection of advantageous mutations in one of
these subnetworks, but not by selecting mutations in any
other subnetwork, as these are unrelated to the stimulus
or organismal fitness in response to it, and would there-
fore not result in adaptation. This does not mean that
other subnetworks are not under any selection, or under

stabilizing selection for other causes, or that selection on
one subnetworks does not influence others, but is a sim-
plification here used for the purpose of classifying nodes.
This constrains the number of mutations in the genome
that selection will operate on, and thus determines the
evolutionary response through genetic constraint. Sec-
ond, and of high importance for the new classification
scheme proposed here, node hierarchy within these sub-
networks poses an additional level of constraint: and this
additional level reduces the “evolutionary search space”
for potential beneficial variants.
This can be illustrated through the following hypothet-

ical construct, which reduces network structure to dis-
tinct types of nodes. Network nodes, which are
functionally important for the operation of the network
(hub nodes central to the network, H-nodes), are less
likely to harbor significant genetic variation in first- or
second-codon positions or regulatory regions because of
their high functional constraint. Consequently, genetic
variation, as well as adaptation to an environmental se-
lective pressure, should both be more likely to occur
within non-hub nodes within the subnetwork. Nodes
with the highest number of edges are intermediately po-
sitioned within a network (intermediate nodes, I-nodes)

Table 2 Hypotheses relating network constraint to evolutionary outcomes and results of hypothesis assessment using a node
classification scheme in yeast

Evolutionary
outcome

Hypothesis (H) Alternative Hypothesis (HA) Results in this paper following assessment
with hierarchical node classification
scheme.

Speed of
evolution

Indispensable or essential genes are more
constrained and evolve slowly [43].

Functionally important and thus
functionally constrained genes evolve
slowly, independent of dispensability [23].
Highly expressed genes evolve slowest [15,
16].

HA: Functionally most constrained genes
(H-nodes) have the lowest substitution
ratios of all categories, and are most highly
expressed, but have lower scores of
evolutionary rewiring than P and I-nodes.

Speed of
evolution

Central nodes have the highest number of
edges; evolve very slowly because any
change will lead to maladaptive pleiotropic
effects - causing balancing selection
through cost of complexity.
[38], [37], [20], [36]

Intermediate nodes evolve fastest as their
higher number of edges allows for
evolution through rewiring
[44, 45].

HA: Nodes with highest number of edges
are intermediate to the network, evolve fast
(high ɷ) and have a high score of rewiring
(ɣ), indicating that the substitution rate of
these genes may be associated with
evolutionary rewiring events.

Speed of
evolution

Nodes with a low number of edges evolve
fastest due to higher degrees of freedom,
which allows for genetic adaptations
minimizing pleiotropic effects [46], [38]

– H: Peripheral nodes evolve fast (high ɷ)
and have a high score of rewiring (ɣ),
indicating that the substitution rate of
these genes may be associated with
evolutionary rewiring events.

Convergent
evolution

Nodes with a low number of edges should
be the prime target of convergent
evolution. Pleiotropic negative effects are
expected to be low, and mutations in
them can maximize adaptation [38].

Peripheral nodes have the highest degrees
of freedom and thus divergence is more
likely than convergence in them.
Convergent evolution should instead be
favored in nodes that allow for genetic
variance, while having reduced degrees of
freedom (I-nodes)
(This contribution).

HA: 21 out of 26 nodes with convergent
evolution demonstrated in yeasts were
classified as I- nodes by DFA, and five as P
nodes. ɷ and CAI were similar to I-nodes,
but none of these 26 nodes showed evi-
dence of evolutionary rewiring.

Genic
evolution

Adaptations can be characterized (either
causative or correlative for the speciation
process) by any number of divergent
genes within the genome, whereas other
genes are not associated with adaptation
[47].

Only the complete phenotype is selected,
the genic component is less important
[10].

H: Different clusters of functionally similar
nodes experience either higher, lower than
expected or neutral rates of evolution
across five species of yeast [41]. Causation
or correlation to the speciation process not
testable with data.
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and were shown to have weaker selective constraint [44,
45] than centrally positioned nodes, as they have lower
functional constraint than H-nodes. Consequently, they
should evolve faster. This assumption differs from the
gene pleiotropy hypothesis, which places the highest
functional constraint on these nodes (Table 2). However,
because of their high cost of complexity, adaptation in I-
nodes should be highly constrained in terms of which
genes can adapt (depending on the nature of their func-
tional interactions) and how (through changing the wir-
ing pattern with other nodes). Because of gene
pleiotropy, adaptations that do evolve in these nodes
should have a larger phenotypic effect, which combined
with the reduced possibilities for adaptation, increases
the likelihood for convergent evolution in them. Genes
peripheral in the network (peripheral nodes, P-nodes)
have higher degrees of freedom due to the lowest degree

of gene pleiotropy and should be able to accumulate
genetic variation with least cost. Therefore, the popula-
tion should already harbor more genetic variation within
these peripheral genes on which selection can operate.
Change in such nodes however, due to lower gene pleio-
tropic interactions, would result in less phenotypic effect
and thus they are less likely to promote large evolution-
ary changes. In such nodes, divergence is more likely to
accumulate than convergence. The expectation is thus
that different node types will differ in standing genetic
variation due to the different genetic constraints acting
upon them. H-nodes will be very strongly constrained
and only can accumulate little standing genetic variation,
resulting in a low potential for selection to operate on. I-
nodes will harbor sufficient standing genetic variation
but be under high functional constraint, so that selection
can only operate on a limited number of variants that all

Fig. 3 Distribution of yeast interactome nodes within network parameter space (neighborhood connectivity, average shortest path length, and
betweenness centrality). The top values for each axis are colored in shades of red (light, filled: P-nodes; light, open: I-nodes; dark, filled: H-nodes).
Convergent evolution nodes are indicated in dark blue. These top values for each axis formed the basis to classify the remaining nodes based on
discriminant function analysis

Table 3 Discriminant function analysis summary to assign node categories H, I, P to nodes within dataset. Wilks’ Lambda: 0.0704
approx. F (6,2152) = 992.780 p < 0.001

Wilks Lambda Partial Lambda F-remove 21,076 p-value Toler. 1-Toler. (R-sqr.)

Neighborhood connectivity 0.137 0.514 507.835 < 0.001 0.988 0.012

Betweenness centrality 0.105 0.673 261.039 < 0.001 0.994 0.006

Average shortest path length 0.133 0.528 480.907 < 0.001 0.983 0.017
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have multiple phenotypic effects. In different organisms,
the same variants can be selected quickly due to this re-
duced search space, which leads to parallel genomic evo-
lution resulting in convergent phenotypes.
P-nodes will be least constrained, allowing a lot of

variation but less sweeping phenotypic effects due to
lower gene pleiotropy. Selection can operate on multiple
variants in these; selective advantages are more likely
due to the lower gene pleiotropy in more genes, so selec-
tion will less likely lead to convergence. All three evolu-
tionary outcomes can (among other factors such as gene
expression levels) be explained with this mechanism of
constraint through functional genetic network structure.
As Fraser [59] pointed out, objective classification of
nodes into any such type of categories is important, and
they should reflect true topological properties of an in-
teractome. In this study, significant support was found
that the yeast network can be partitioned into these

node categories, based on the network statistical param-
eters neighborhood connectivity, betweenness centrality,
and average shortest path length.
Fraser’s [59] first exploration of the influence of mod-

ules within genomes and their hub nodes (called “modu-
larity”) found that the rate of protein evolution is faster
in intramodule hubs (nodes that link genes with high
co-expression in response to a stimulus) compared to
intermodule hubs (linking low genes with low co-
expression in response to a stimulus, defined after [60].
The node classification scheme of Fraser [59] was based
on gene co-expression and not on node topology, and
gene co-expression in response to a stimulus followed a
bimodal distribution. In this contribution, I nodes in-
stead have the highest number of edges and connect
sub-networks, but are not defined with respect to their
expression (Table 2). In line with the expectations out-
lined above, C-nodes previously identified [38, 48–52] to

Table 4 List of yeast genes that were found to adapt to novel environments, and were additionally shown to evolve these
adaptations convergently across populations or species of yeast. Node hierarchy categories after discriminant function analysis (DFA)
are shown in the first column. P - peripheral nodes, I - intermediate nodes

DFA estimated Node hierarchy Gene symbol ORF ID Reference

I STE11 YLR362W Lang et al., 2013 [49]

I STE12 YHR084W Lang et al., 2013 [49]

I STE4 YOR212W Lang et al., 2013 [49]

P KRE6 YPR159W Lang et al., 2013 [49]

I SFL1 YOR140W Lang et al., 2013 [49]

I STE5 YDR103W Lang et al., 2013 [49]

P ANP1 YEL036C Lang et al., 2013 [49]

I GCN1 YGL195W Lang et al., 2013 [49]

I ERG5 YMR015C Gerstein et al., 2012 [50]

P ERG7 YHR072W Gerstein et al., 2012 [50]

I CNE1 YAL058W Lang et al., 2013 [49]

I GPB1 YOR371C Lang et al., 2013 [49]

P KEG1 YFR042W Lang et al., 2013 [49]

I KRE5 YOR336W Lang et al., 2013 [49]

I TOH1 YJL171C Lang et al., 2013 [49]

P SUL4 YBR294W Gresham et al. 2008 [51]

I GAL3 YDR009W Hittinger et al., 2004 [52] Stern, 2013 [38]

I GIN4 YDR507C Gresham et al. 2008 [51]

I PDR1 YGL013C Anderson et al. 2003 [53]

I SGF73 YGL066W Gresham et al. 2008 [51]

I SET4 YJL105W Lang et al., 2013 [49]

I SIR1 YKR101W Gresham et al. 2008 [51]

I ACE2 YLR131C Lang et al., 2013 [49]

I GAS1 YMR307W Lang et al., 2013 [49]

I WHI2 YOR043W Lang et al., 2013 [49]

I CKA2 YOR061W Gresham et al. 2008 [51]
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Fig. 4 Visualization of node classification scheme in yeast interactome. Values of a) average shortest path length, b) neighborhood connectivity,
and c) betweenness centrality within the yeast interactome (left panels), and values for the DFA-derived hierarchical node categories P, I and H,
and for nodes known to be under convergent evolution in yeasts (C, N = 18). The small inset network shows the location of convergently evolved
genes (C-nodes) within the interactome (yellow nodes)

Table 5 Multivariate Wilks tests of significance and powers for network parameters to explain protein evolutionary rate (ω), gene
expression (Codon Adaptation Index CAI), and evolutionary rewiring between species of yeast (γ). All predictors were significant

Wilks’ Lambda F Effect df Error df p Observed power (alpha)

Intercept 0.317 1569.597 3 2188 < 0.001 1.000

Neighborhood connectivity 0.924 59.892 3 2188 < 0.001 1.000

Betweenness centrality 0.995 3.931 3 2188 0.008 0.832

Average shortest path length 0.961 29.553 3 2188 < 0.001 1.000
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have undergone convergent genomic adaptation in inde-
pendent experiments, strains, or species of yeasts were
located within the I-nodes category, showing that con-
vergently adapting genes have similar evolutionary rates,
expression levels, and degrees, as nodes that are located
intermediately in the interactome.

Aim 2: genetic constraint and network architecture
influencing evolution
A recent paper published by Schoenrock et al. [41] uses
a data set of 4179 protein-coding genes (sourced from
13,40) to investigate the involvement of network struc-
ture in protein evolution. This data set was generated
for five species of yeasts (Saccharomyces cerevisiae, S.
paradoxus, S. bayanus, S. kudriavzevii, and S. mikatae).
The study compared a quantitative variable related to
network structure (computationally predicted re-wiring
of nodes through evolution γ), with an estimator of pro-
tein evolutionary rate on nodes (substitution rate ω,
measured as dN/dS). The authors found that the degree
of rewiring of nodes across the phylogeny was only
poorly associated with evolutionary sequence divergence,
but nodes with very low evolutionary rate had high vari-
ability of rewiring scores, which indicates that changing
gene interactions is an important mechanism how func-
tionally constrained genes may evolve. While the study
remained somewhat inconclusive about the influence of
network structure and node rewiring on protein
evolution, the data contained within it, combined with
additional data, allowed me to test the hypotheses out-
lined above using the new node classification scheme
(Table 2). In this study, all three estimators of evolution-
ary parameters (substitution rate, re-wiring score, and
gene expression levels) were significantly predicted by
the three node categories.

With respect to rapid adaptation, the highest estimated
substitution rates are found both in P and I-nodes,
which shows that nodes located less centrally in the net-
work evolve faster than other nodes. However, periph-
eral nodes were not identified as adapting particularly
fast. CAI increases towards the center of the network,
with mRNA expression level being highest in hub nodes.
Network node hierarchy may therefore be able to
explain the E-R anticorrelation (gene expression levels
being negatively correlated with evolutionary rate [14].
H-nodes connect various subnetworks with one another,
and thus are likely to be involved in more diverse
functions (which might be partitioned across different
tissues, processes or life history phases), than nodes
more peripheral in a network (Figs. 5, 54). Such com-
mon functions may require a high amount of product,
which may translate into high levels of mRNA expres-
sion in these nodes. γ is highest in P and I-nodes, indi-
cating that evolutionary rewiring events are more
common in less central parts of the networks. An inter-
esting subject for further study may be to compare expli-
cit topologies of nodes that underwent re-wiring
through evolution, in order to determine whether they
can additionally move between I and P node categories
over time. I-nodes harbor the majority of edges within a
network - genetically re-wiring these nodes could lead to
rapid adaptation [61]. Centrality of H-nodes seems to re-
duce their adaptability while peripheral and intermediate
nodes are less constrained to adapt, and this process
may involve rewiring within the network. This demon-
strates how functional constraint can explain evolution-
ary outcomes better than estimators for gene
dispensability can. Rapid genomic adaptation within di-
versifying populations has been shown to occur as a
rapid response to selection such as anthropogenic pollu-
tion [62]. Such rapid adaptation often occurs in the

Fig. 5 Relationship between hierarchical node structure of yeast interactome and evolutionary parameters. Node types are designated as
peripheral (P), intermediate (I), or hub (H) based on discriminant function analysis, and nodes that were found to evolve convergently (C; N = 21)
in yeasts. Three evolutionary outcomes (a) substitution rate, (b) expression level, approximated through Codon Adaptation Index (CAI), and (c)
evolutionary rewiring score significantly differ among node categories (see text). C-node boxes are sorted by Median. Double red line: outliers
above median not shown in figure but included in tests. Raw data points - triangles, circles - outliers, stars - extreme values, squares - Medians,
boxes - 25-75% data, whiskers - non-outlier range
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presence of gene flow [47, 62]. This means that adapta-
tion is constrained to specific genes under selection,
which can interrupt their gene flow between popula-
tions, while alleles of other genes show uninterrupted
gene flow. The speed of such adaptation related to diver-
gence of a subset of genes within the same genome has
been dubbed the “genic theory of speciation” [47]. Such
genic evolution was shown to occur in Timema stick in-
sects [63]. Future studies could test whether such rapidly
adapting loci are preferentially located in P- and I-nodes,
and whether this leads to a change in inter-node wiring
patterns.
With respect to genic adaptation, Schoenrock et al.

[41] could show that some functionally similar nodes ex-
perienced lower than expected levels of protein evolu-
tion, indicating purifying selection. Nodes that were
evolving through fewer re-wiring events than expected,
included functions related to phosphorylation, mito-
chondrial translation, response to pheromone, small
GTPase mediated signal transduction, and transport.
Nodes that were evolving among the five yeast species
with higher than expected degrees of re-wiring, included
the functions metabolic process, and various gene ontol-
ogies related to transcription and its regulation, as well
as the regulation of transposition regulation. As indi-
cated in Fig. 2, these results prove that evolutionary out-
comes are different for functionally different
subnetworks within an interactome. It might be worth
noting that, as outlined above, none of these functions is
particularly related to growth but rather to maintaining
organismal function, which is why they would be over-
looked if conserved genes were only classified by the cri-
terion of dispensability for colony growth. Gresham
et al. [51] similarly showed that evolutionary constraint
in experimentally evolved yeast populations over 200
generations is dependent on the type of selection (limit-
ing Glucose or Phosphate vs. Sulphur), with convergence
being an outcome of the system level organization of the
respective metabolic pathway. Additionally, the same dif-
ferences in evolutionary estimators between node cat-
egories that could promote rapid adaptation, would
allow genes in different node categories to evolve with
differential speed, which would allow for genic
adaptation.
Traditionally, convergence has been studied in non-

model organisms, and with a focus on adaptive modifi-
cation of the phenotype (e.g., [64]). More recently,
phenotypic convergence has been traced back to in some
instances resulting from identical genotypic variants
(called “genomic re-use”, reviewed in [38]). These can
arise either as new parallel mutations or from parallel se-
lection of the same alleles from standing genetic vari-
ation [38] such as in the independent selection of body
armor in the ectodysplasin locus of stickleback fish [65].

Other examples have recently been uncovered in skin
toxin transport in poison frogs, [66] or in functional
genomic adaptation to cold in a range of extant and ex-
tinct mammals including the mammoth [67]. However,
convergent phenotypic adaptations can alternatively be
produced by different genes, and a recent study on con-
vergently evolved Anolis lizard ecomorphs found no
convergence at the amino acid level [68]. Convergence
events may also be exaptations, where a similar allele
evolved due to ancestrally different selective pressures
with a subsequent change of function [69]. Genomic re-
use in some distantly related lineages but not in others,
may indicate that constraint at the genomic level limits
the evolutionary search space, but can manifest in differ-
ent ways at the nucleotide level. In this study, a small
number of convergently adapting genes in yeasts were
preferentially located within I-nodes, as aligned to this
hypothesis. This supports the notion that nodes with the
highest number of edges and intermediate network pos-
ition are constrained to adapt and thus increase the like-
lihood for convergent evolution. Gresham et al. [51],
from which five C-nodes were obtained, also showed
that convergent evolution is related to system level
organization of the respective metabolic pathway. In
summary, these results clearly demonstrate a relation-
ship between network architecture and convergence, and
if additional genes will become known to evolve conver-
gently in yeast, this hypothesis can be further tested.
Previous studies had identified gene expression level

estimates (using CAI as proxy), not network topograph-
ical structure, as the predominant explanatory variable
for functional genetic constraint influencing evolutionary
outcomes. However, I could show here that in model
ranking including CAI as an additional predictor for ω
and γ, CAI in itself did not emerge as the best predictor.
These results confirm that whilst gene expression levels
are an important element of genetic constraint, the pos-
ition of highly expressed nodes as hub nodes in the net-
work, together with the other network topology
parameters, yield better explanatory power for two esti-
mators of evolutionary outcomes. These results further
support network topology as an important agent of evo-
lutionary constraint.

Conclusions
Metagenomic resequencing of every 500 generations
within a 60,000 generation E. coli long term evolution
experiment [70] revealed that certain genes accumulated
beneficial mutations through selection significantly more
often than expected by chance, and were very often af-
fected by parallel adaptation [70]. These results, together
with the incidences of recurrent genomic adaptations
reviewed herein, demonstrate that the above-described
relationship between network structure and convergent
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evolution may be expandable to organisms other than
yeasts [38]. Apart from the quick assessment performed
in this contribution, the influence of network structure
in shaping evolutionary outcomes in more complex or-
ganisms than yeast such as vertebrates still needs to be
comprehensively tested. Additionally, statistics com-
puted on edge distributions in non-model organisms
may change over time as more experimental evidence on
interactions becomes available, and evolutionary con-
straint might differ by the type of interactions studied.
As demonstrated above in the yeast example, the

impending advent of large-scale functional genomic net-
works for many new species makes it possible to convert
functional genomic network structure of related species
into variables describing hierarchical node position
within the network. Future tests relating evolution to
genomic constraint could include node architecture, and
revolve around (i) Comparing standing genetic variation
to network node position (while considering the effect of
demography, selective sweeps, genetic drift, bottlenecks,
and other levels of extrinsic constraint); (ii) Testing
whether similar subnetworks/node hierarchies adapt to
same selection pressure in different organisms. (iii)
Comparing the speed of realized adaptation to a muta-
tion/selection expectation, without considering network
constraint. The potential benefits of better understand-
ing genetic constraint leading to deterministic evolution
may be wide ranging-- in humans, the use of functional
interaction networks is omnipresent in genomic and
transcriptomic study of cancer data, and recently, calls
have been made for evolutionary methods to be applied
to cancer problems [71]. A recent study demonstrates
how the early progression of pancreatic cancer is defined
through evolutionary constraints resulting from follow-
ing one of three tumor suppressive pathways, and thus
may be predictable [72]. Recognizing network constraint
as an evolutionary force, rather than as a juxtaposition
of evolution through natural selection [73], would allow
us to quantify “background genetic constraint” through
functional network structure. The remaining variance
could then be better allocated to mutation and selection
in directing rapid, convergent, and genic phenotypic
evolution.

Methods
To assess evolutionary outcomes rapid adaptation and
convergent evolution, as well as to address the important
factor of gene expression in shaping protein-coding gene
evolution, the data set of Schoenrock et al. including
yeast ORF ID, computationally predicted evolutionary
PPI re-wiring score (γ), and substitution rate (ω) [41]
was downloaded. The re-wiring score was obtained from
comparing networks across five species of yeast [41] and
was used here to assess whether nodes that change

wiring patterns are linked to specific positions within
the network. The dataset was then rearranged and inte-
grated with data downloaded from Wall et al. [15] in-
cluding ORF ID, and CAI (Codon Adaptation Index, a
measure of RNA expression levels, based on [54]. When
analyzing networks, it is important to do so on exhaust-
ive data sets [74] to avoid experimental bias [48]. Such
an exhaustive interactome for yeast generated from the
BIOGRID database [75] was obtained from CYTOS-
CAPE v.3.6.0 [76], which contained 6508 nodes and 340,
000 edges, with data curated from 5500 studies. With
the goal to calculate a classifier that will aid in describ-
ing hierarchical node position within networks, common
network statistical parameters were calculated from this
exhaustive yeast interactome in CYTOSCAPE v.3.6.0
[76] using the Network Analyzer function. Data for the
matching node ORFs were appended to the data set, and
variables with non-normal distribution were BoxCox
transformed. The final data set contained 2209 ORFs
with only a few missing data points per variable. The
network statistical parameters obtained from the yeast
interactome were average shortest path length (maximal
in peripheral nodes), neighborhood connectivity (max-
imal in nodes intermediate to the network), and be-
tweenness centrality (maximal in nodes connecting
subnetworks). Nodes with maximum values for each one
of these three statistical parameters, and that were not
overlapping with each other (1081 nodes, Fig. 2), were
each assigned to a category: P (peripheral nodes), I
(intermediate nodes) and H (hub nodes). To assign node
categories to the remaining nodes in the network that
may be harder to allocate visually, a discriminant func-
tion analysis (DFA) was employed in STATISTICA
(V13, Tibco). All remaining nodes with significant statis-
tical support could be associated to one of these three
categories (Table 3). To explore the network position of
nodes that have undergone convergent adaptation, ORF
IDs that were demonstrated experimentally to show con-
vergent genomic adaptation in independent experiments,
strains, or species of yeasts (C-nodes) were identified
from the literature (66, 74–78), Table 4). Out of the 26
obtained C-nodes, 21 nodes were allocated by DFA to
the I-category, and five were allocated to the P-category.
It was then tested how network statistical parameters re-
late to the evolutionary parameters ω, γ, and CAI. First,
a general linear model was run with evolutionary param-
eters as dependent variables, and network parameters as
predictor variables. Differences in, respectively, network
statistical parameters or estimators for evolutionary
parameters, and node categories were tested with
Kruskal-Wallis tests. Because previous studies [17–19]
have ascribed gene expression (here measured as CAI)
an important role for constraining evolution, it is pos-
sible that whilst network statistical parameters do
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explain evolutionary parameters well, this effect could
disappear once CAI itself is considered as a predictor for
ω and γ. This assumption was therefore tested through
(i) comparing power of predictors in another linear
model, including network statistical parameters, CAI, as
well as interaction terms as predictors and (ii) compar-
ing Akaike information criteria of models generated
from these variables and their interaction terms.
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