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Abstract 

Background: Austropotamobius torrentium is a freshwater crayfish species native to central and south‑eastern 
Europe, with an intricate evolutionary history and the highest genetic diversity recorded in the northern‑central 
Dinarides (NCD). Its populations are facing declines, both in number and size across its entire range. By extanding cur‑
rent knowledge on the genetic diversity of this species, we aim to assist conservation programmes. Multigene phylo‑
genetic analyses were performed using different divergence time estimates based on mitochondrial and, for the first 
time, nuclear DNA markers on the largest data set analysed so far. In order to reassess taxonomic relationships within 
this species we applied several species delimitation methods and studied the meristic characters with the intention of 
finding features that would clearly separate stone crayfish belonging to different phylogroups.

Results: Our results confirmed the existence of high genetic diversity within A. torrentium, maintained in divergent 
phylogroups which have their own evolutionary dynamics. A new phylogroup in the Kordun region belonging to 
NCD has also been discovered. Due to the incongruence between implemented species delimitation approaches and 
the lack of any morphological characters conserved within lineages, we are of the opinion that phylogroups recov‑
ered on mitochondrial and nuclear DNA are cryptic subspecies and distinct evolutionary significant units.

Conclusions: Geographically and genetically isolated phylogroups represent the evolutionary legacy of A. torrentium 
and are highly relevant for conservation due to their evolutionary distinctiveness and restricted distribution.

Keywords: Austropotamobius torrentium, Species delimitation, Species validation, MOTU, ESU, Phylogeographic 
patterns, nuDNA, mtDNA, Evolutionary history
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Background
The stone crayfish (Austropotamobius torrentium 
(Schrank, 1803)) is an indigenous European crayfish spe-
cies (ICS) [1]. It is the smallest of all European ICS and 
is considered a keystone species in freshwater ecosystems 

[2]. The stone crayfish is a cold-adapted species active at 
water temperatures > 5 °C with a mean annual water tem-
perature that does not exceed 10 °C [2]. It inhabits smaller 
pristine waterbodies at high altitude in central and south-
eastern Europe (Fig. 1) that are related to karstic forma-
tions [1, 2]. The species exhibits high genetic diversity 
represented by the eight distinct mtDNA lineages/phylo-
groups discovered so far [3–5].

Lately, studies have shown that populations of the stone 
crayfish, as well as those of other ICS, are declining [1, 
6]. They are threatened by habitat deterioration [2], water 

Open Access

*Correspondence:  imaguire@biol.pmf.hr
†Leona Lovrenčić, Lena Bonassin and Ljudevit Luka Boštjančić contributed 
equally to this work.
1 Division of Zoology, Department of Biology, Faculty of Science, 
University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7456-8449
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-020-01709-1&domain=pdf


Page 2 of 20Lovrenčić et al. BMC Evol Biol          (2020) 20:146 

quality decline [7], climate change [6, 8], the presence/
spreading of non-indigenous invasive American crayfish 
species and their pathogens, e.g., Aphanomyces astaci 
causative agent of the disease crayfish plague [9, 10]. ICS 
are offered differing levels of protection under interna-
tional and national laws, with the stone crayfish listed in 
the Annexes II and V of the EU Habitats Directive [11]. 
The conservation status of A. torrentium remains unre-
solved as it noted as being “data deficient” on the global 
IUCN Red List [12], whilst in Croatia it is classed as vul-
nerable [13].

The maintenance of genetic diversity is considered fun-
damental to modern conservation efforts, as it is essen-
tial for securing the evolutionary potential and long-term 
survival of a species [14]. In order to protect vulnerable 
species adequate conservation plans are urgently needed 
on a global scale which requires sound knowledge of both 

the morphologic and genetic diversity of this species in 
addition to the identification of evolutionary independ-
ent lineages within the species [2, 15, 16].

The first morphological studies aimed to distinguish 
between different populations of the stone crayfish [17] 
which resulted in the identification of four subspecies: 
Austropotamobius torrentium torrentium [17], A. t. mac-
edonicus [18], A. t. dalmatinus [18] and A. t. danubicus 
[19, 20]. Later, studies based mainly on meristic char-
acteristics confirmed previously described subspecies 
[20, 21]. Recently, Maguire et  al. [22] discovered differ-
ences among distinct populations (representing differ-
ent mtDNA phylogroups defined by preciding genetic 
analyses [4]) of the stone crayfish in a small geographical 
region in Croatia. This was achieved by analysing a num-
ber of individual morphometric and meristic character-
istics with these findings corroborated by a large scale 

Fig. 1 Geographical distribution of different A. torrentium mtDNA phylogroups in Europe produced in ArcGIS 10.3 program package and finished 
in the program Inscape 1.0 by authors of this study. Symbols used on the map: dots represent samples from previous research [3–5], and triangles 
samples from this study. Colours depict mitochondrial phylogroups: black—central and south‑eastern Europe (CSE), blue—Gorski Kotar (GK), 
purple—Lika and Dalmatia (LD), orange—Žumberak, Plitvice and Bjelolasica (ŽPB), pink—southern Balkans (SB), green—Banovina (BAN), red—
Zeleni Vir (ZV), gray—Apuseni Mountain (APU) and turquoise blue—Kordun (KOR), new phylogroup discovered in the present study. River systems 
abbreviations: Db Danube, Dr Drava, Sv Sava, Ti Tisza, Mo Morava. Also shown: the extent of the Lake Pannon at 9.5 Ma, 6.5 Ma and 4.5 Ma (adapted 
according to Magyar et al. [76]) and shaded in blue. Possible pre‑glacial and post‑glacial dispersal routes are indicated; red arrows indicate: (1) 
possible colonisation of the Apuseni Mountains through delta systems of paleo‑Danube and paleo‑Tisza on the northern shelf margin of the Lake 
Pannon and (2) colonization of southern Balkan after formation of the freshwater Danube drainage system. Orange arrows (3) indicate post‑glacial 
recolonisation of northern part of A. torrentium areal through leading edge expansion of CSE phylogroup (adapted according to Klobučar et al. [4]). 
Shaded gray area in the main map is enlarged in the bottom left corner
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geometric morphometric analyses applied to stone cray-
fish populations for the first time [23]. Even though these 
studies confirmed morphological delineation between 
phylogroups (the cephalon shape being pertinent), it was 
shown that morphological variation within phylogroups 
is also present [22, 23]. Freshwater crayfish are known 
to exhibit high intraspecific morphological variation 
and plasticity reflecting environmental influence and/
or genetic background [22, 24, 25]. Hence, it is hard to 
find unique and unambiguous morphological character 
specific only for one phylogroup that would be suitable 
to clearly distinguish between phylogroups thus resolv-
ing the taxonomic status of A. torrentium phylogroups in 
addition to describing a new species.

Until now, molecular phylogenetic studies of A. torren-
tium were based on the analyses of mitochondrial genes 
for cytochrome c oxidase subunit I (COI) and 16S riboso-
mal RNA (16S rRNA) [3–5, 26, 27]. Trontelj et al. [3] dis-
covered three highly divergent mtDNA phylogroups: one 
distributed in the southern part of the Balkan Peninsula, 
another in a small area on the border between Slovenia 
and Croatia, and the third that encompasses the rest of 
Europe. This finding indicated that the stone crayfish 
should be considered a species complex. Later, Klobučar 
et al. [4] confirmed Trontelj et al. [3] findings, and discov-
ered the existence of four additional phylogroups, with 
the highest genetic diversity found in the Dinaric region 
of Croatia. The phylogroups were named after geographi-
cal areas of their distribution: central and south-eastern 
Europe (CSE), southern Balkans (SB), Banovina (BAN), 
Gorski Kotar (GK), Lika and Dalmatia (LD), Zeleni Vir 
(ZV), Žumberak, Plitvice and Bjelolasica (ŽPB), with 
the five latter situated in the north and central Dinar-
ides (NCD). Recently, Pârvulescu et al. [5] discovered the 
existence of a new phylogroup, endemic to the Romanian 
Apuseni Mountain region (APU). Combining the molec-
ular mtDNA analyses with morphological data, the APU 
phylogroup was proposed as a new species Austropota-
mobius bihariensis [28].

Species delimitation requires integrative taxonomic 
approach that combines molecular, morphological, eco-
logical, and geographical data to build species hypotheses 
[29, 30]. This approach enables taxonomy to go beyond 
naming the species and assists in understanding the pro-
cesses that shape the species [31, 32].

Even though mitochondrial genes (COI and 16S rRNA) 
are appropriate for resolving taxonomic relationships 
between genera and species [33–35], they show some 
drawbacks in species delimitations (e.g., higher failure 
rate at proposing species delimitation hypothesis com-
pared to nuclear markers) [31, 36, 37]. Therefore, the 
need for a nuclear marker that can be used in the recon-
struction of genetic relationships as well as in the species 

delimitation has been recognised [38, 39]. Yao et al. [40] 
proposed the second internal transcribed spacer (ITS2) 
as a nuclear marker that is complementary to mitochon-
drial COI and 16S rRNA, and is suitable in studying rela-
tionships of lower taxonomic categories (e.g. genera, 
species) [41] as well as for species delimitation [42].

In order to extand current knowledge about the stone 
crayfish diversity and provide baseline for conservation 
programs, the aims of our study were:

(a) to update phylogenetic findings based on the largest 
dataset used so far that includes new samples from 
previously unstudied stone crayfish populations 
from Croatia, Slovenia and Republic of North Mac-
edonia

(b) to test if ITS2 is a good nuclear marker for phylo-
genetic inference on A. torrentium and verify phy-
logenetic congruence between mitochondrial and 
nuclear DNA markers

(c) to evaluate alternative scenarios in the background 
of the currently observed distribution, genetic vari-
ability and phylogeographic patterns via varied 
molecular clock calibrations

(d) to apply species delimitation methods aiming to 
identify Molecular Operational Taxonomic Units 
(MOTUs) within A. torrentium, and to reassess 
their taxonomic status

(e) to study meristic characteristics on a large data set 
in order to find reliable character/characters that 
will clearly and undoubtedly distinguish MOTUs

(f ) to give new perspectives in A. torrentium conserva-
tion programs through the identification of Evolu-
tionary Significant Units (ESUs).

Results
Sequence data
We obtained a total of 153 (58 new) COI and 72 (24 new) 
16S rRNA unique haplotypes. The concatenated COI/16S 
rRNA data set included 151 (78 new) haplotype combi-
nations (Additional file 1). Analyses of COI gene revealed 
166 (27.95%) variable sites, of which 141 (23.74%) were 
parsimony informative, while 65 (13.59%) sites were vari-
able in 16S rRNA sequences, with 51 (10.27%) of them 
being parsimony informative. Obtained ITS2 sequences 
showed only 27 (2.45%) variable sites, and 20 (1.81%) 
were parsimony informative. Analysis of the ITS2 
sequences using FastGap revealed gapmatrix with 26 
(2.35%) gap sites, 13 being informative.

Phylogenetic reconstruction
All implemented criteria of phylogenetic reconstruction 
(BA, MP and ML) yielded mostly congruent topologies 
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for COI/16S rRNA concatenated data set (Fig.  2a). The 
new phylogroup, belonging to the Kordun region (part 
of NCD) was discovered, while majority of the newly 
obtained sequences nested within the eight previously 
reported phylogroups [4, 5]. Moreover, phylogroups 
belonging to the NCD region (ZV, GK, ŽPB, LD, BAN, 
KOR) and APU appeared as monophyletic clades, well 
supported by bootstrap values and Bayesian posterior 
probabilities (Fig. 2a). The ‘Southern Balkans’ (SB) phylo-
group was not supported as monophyletic; it comprised 
four sub-clades and two individual haplotypes repre-
sented in a basal polytomy with the monophyletic CSE 
clade. Numerous sub-clades also existed within well-sup-
ported monophyletic CSE phylogroup.

The Bayesian inference of phylogeny based on the 
nuclear gene ITS2 yielded a tree topology with seven well 
supported phylogroups and the KOR lineage (Fig.  2b). 
Unlike in mtDNA phylogeny, CSE haplotypes have not 
formed separate monophyletic clade, but rather com-
bined with SB haplotypes in a well supported clade. Phy-
logenetic relations among groups were not resolved with 
the majority of them form polytomy within A. torren-
tium, with the exception of well-supported separation of 
APU phylogroup (Fig. 2b).

In general, the common feature of the phylogenetic 
recontructions of both datasets was that phylogroups 
were well supported in the phylogenetic trees, but the 
relationship among them was unresolved, showing weak 
support for deeper nodes.

Phylogeographic analysis and genetic diversity
A median-joining (MJ) network for concatenated 
COI/16S rRNA data set was used to visualise haplo-
type relatedness and haplotype distribution within A. 
torrentium (Fig.  2c). All nine phylogroups were highly 
divergent and separated by large numbers of mutational 
steps. The newly discovered KOR phylogroup was 42 
mutational steps distant from closely related ŽPB phylo-
group. The CSE phylogroup showed a complex structure 
consisting of large number of closely related haplotypes 
with a broad geographical distribution, separated by a 
small number of mutational steps. The SB phylogroup 
comprised six subclades separated by a large number of 
mutational steps. The SB and CSE phylogroups showed 
the smallest between-group number of mutational steps, 
whilst the ZV phylogroup showed the largest number of 
mutational steps when related to its closest neighbouring 
phylogroup BAN. Further, contrary to the relations in the 
phylogenetic tree, the APU phylogroup was closest to the 
BAN and not to the ZV phylogroup.

The results of TCS network analysis, based on the COI 
data set (used also as species delimitation approach; 
Additional file 2), were concordant with MJ results. The 

TCS network revealed the existence of 18 MOTUs with 
CSE, GK, ZV, LD, KOR, APU and ŽPB phylogroup each 
representing one MOTU. The SB phylogroup was split 
into nine separated MOTUs. The BAN phylogroup was 
split into two MOTUs; haplotype 41 formed the first one, 
and the second contained all other BAN haplotypes.

The obtained values of uncorrected sequence diver-
gences (p-distances) and patristic distances within and 
between phylogroups for COI, 16S rRNA and ITS2 are 
shown in Additional file 3. The obtained values of genetic 
distances for all genes were calculated using p-distances 
and K2P distances were congruent. The p-distances 
between phylogroups ranged from 4.98 to 9.62% for COI, 
and from 0.00 to 5.05% for 16S rRNA gene. The highest 
values of genetic distances were observed when ZV, GK 
and APU clades were compared with other phylogroups, 
for both 16S rRNA and COI markers. The range of p-dis-
tances within phylogroups for the COI gene was between 
0.17 and 5.33%, and between 0.00 and 2.75% for 16S 
rRNA gene. The values of p-distances for the ITS2 gene, 
which showed less genetic variation than mitochondrial 
genes, were mostly congruent to the results obtained for 
mitochondrial genes, ranging from 0.00 to 0.79% between 
groups, and from 0.00 and 0.29% within groups (Addi-
tional file 3). Patristic distances between the phylogroups 
indicated various molecular divergence between several 
phylogroup pairs with values ranging from 0.08 to 0.22.

Time of divergence
Divergence time estimates based on a mitochondrial data 
set using three molecular clock and four geological cali-
brations are presented in Fig. 3 (for details see Additional 
file  4). The results of divergence time approximations 
overlapped, with the mean values of three molecu-
lar calibration approaches as follows: (a) ~ 17.90  Ma 
for the split between A. pallipes and A. torrentium, 
(b) ~ 8.80 Ma for the split between populations belonging 
to the NCD + APU from BAN + SB + CSE phylogroups, 
(c) ~ 5.01 Ma for the split of SB + CSE phylogroups from 
BAN phylogroup, and (d) ~ 3.12 Ma for the split between 
SB and CSE phylogroups.

Geological calibration points showed a wider range of 
different divergence times estimates. The Tisza–Dacia 
microplate tectonic displacement that, according to 
Pârvulescu et  al. [5], occurred ~ 16  Ma, gave the largest 
intervals of possible divergence times, and was not con-
sistent with other geological and molecular calibrations. 
The results of new geological calibration point used in 
this research (Fig. 3), based on the contact between the 
paleo-Tisza and paleo-Danube river systems [43], accom-
panied by the process of desalination of the Lake Pannon, 
indicated that this dispersion route could have enabled 
colonisation of the species north-east distribution range 
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Fig. 2 Phylogenetic recontruction for A. torrentium. a Phylogram inferred from concatenated COI/16S rRNA (new haplotypes obtained in this study 
are marked with an asterisk) and b phylogram inferred from ITS2 haplotypes depicting the phylogenetic relationships within A. torrentium. Numbers 
at the nodes indicate maximum likelihood and maximum parsimony nonparametric bootstrap support values and Bayesian posterior probabilities, 
respectively. c Median joining (MJ) network for concatenated COI/16S rRNA. Numbers of mutational steps are given in red above branches except 
when it equals one. The size of the circle is proportional to the frequencies of the haplotype. The black dots indicate extinct ancestral or unsampled 
haplotypes. Phylogroups are represented by different colour: black—central and south‑eastern Europe (CSE), blue—Gorski Kotar (GK), purple—Lika 
and Dalmatia (LD), orange—Žumberak, Plitvice and Bjelolasica (ŽPB), pink—southern Balkans (SB), green—Banovina (BAN), red—Zeleni Vir (ZV), 
gray—Apuseni Mountain (APU) and turquoise blue—Kordun (KOR)
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including the Apuseni region. Estimates of this calibra-
tion approach yielded results consistent with molecu-
lar and geological calibrations based on the intense 
Dinarides uplift. The median values for the key points 
in A. torrentium evolution based on this geological cali-
bration were: (a) 13.24  Ma (HPD 18.70–8.55  Ma) for 
the split of A. pallipes and A. torrentium, (b) 6.13  Ma 
(HPD 8.21–4.46  Ma) for the split of NCD + APU from 
BAN + SB + CSE phylogroups, (c) 3.67  Ma (HPD 5.22–
2.46) for the split between BAN and CSE + SB phylo-
groups and (d) 2.25 Ma (HPD 3.21–1.51 Ma) for the split 
between CSE and SB phylogroups.

Species delimitation and validation
Species delimitation analyses (ABGD, GMYC, bPTP, 
mPTP, TCS) for mtDNA (COI) confirmed the existence 
of different A. torrentium MOTUs (Fig.  4, Additional 
file 5). The number of supported groups varied depend-
ing on the applied method. In the ABGD analysis for the 
majority of prior intraspecific divergence values (P), ini-
tial partitioning identified nine MOTUs (ABGD lumper 
approach), while the results from recursive partitioning 
singled out the existence of 18 MOTUs (ABGD splitter 
approach). The ABGD lumper, as the most conserva-
tive approach, recognised six phylogroups as a single 
MOTU: APU, GK, KOR, LD, ZV, ŽPB, while BAN phy-
logroup was split into two MOTUs. CSE and SB phy-
logroups were lumped into one MOTU. The ABGD 
splitter revealed nine MOTUs in the SB phylogroup, 
while haplotypes belonging to CSE phylogroup were 
recovered as a single MOTU. Delimitation results from 
ABGD splitter were consistent with the results obtained 
by TCS method. The mPTP method delimited 21 puta-
tive MOTUs that were mostly congruent with the results 
from ABGD splitter and TCS. The bPTP recognised 
between 26 and 45 MOTUs, 9 with Bayesian support 
values over 0.95. The GMYC single threshold approach 
identified 22 ML clusters (confidence interval: 19–36) 
and 29 entities (confidence interval: 25–53), but most of 

them lacked statistical support. Overall, PTP and GMYC 
yielded unrealistically high number of MOTUs, and rely-
ing only on the supported groups, the number of recog-
nised groups was lower. Nested sampling analysis yielded 
marginal likelihood estimations ranging from − 4195 to 
− 4539 (Additional file 6). The model receiving the high-
est marginal likelihood score was GMYC, and calculated 
Bayes factor values showed decisive support for species 
tree topology associated with this species delimitation.

Single-locus species tree (COI) based on GMYC and 
multi-locus species tree (COI + 16S rRNA + ITS2) based 
on the phylogeny showed a pattern of divergence between 
phylogroups; all phylogroups formed own monophyletic 
clades (Fig. 5). Species trees were congruent, showing the 
pattern of high genetic diversity, with no clear separation 
of genetic clusters (phylogroups).

Meristics
Within-phylogroup variation in the number of spines 
on the ventral side of the merus of the third maxilliped 
was apparent, while significant difference between stud-
ied phylogroups was obtained (H (7, N = 732) = 112.94, 
P < 0.001), with crayfish from ZV possessing more spines 
compared to crayfish from other phylogroups, except 
KOR (Additional file 7).

Presence and pronunciation of rostral crista was 
inconsistent, and differed among phylogroups (χ2 21, N = 

735 = 491.58, P < 0.01); some of the crayfish from KOR, 
CSE and LD did not have rostral crista; in the rest of phy-
logroups rostral crista were present, and variation in the 
level of pronunciation exists. Crayfish from GK did not 
have weak crista, and in the SB phylogroup we did not 
record any crayfish with strong crista (Additional file 7).

In the studied phylogroups all three types of den-
ticulation on the lower surface of antennal exopodite 
(smooth = no denticulation, tubercles, spines) were 
recorded, with phylogroups differed in the percentage 
of different type of denticulation (χ2 14, N = 735 = 176.22, 
P < 0.01) (Additional file 7).

Fig. 3 Chronogram of 95% highest posterior density intervals (HPD) of divergence time estimates (in Ma) obtained with the mean values in 
brackets a using arthropod evolutionary rate [134, 135], b using decapod evolutionary rate [136], c using mid‑points of a uniform distribution 
[137], d using geological calibration based on the connection of paleo‑Tisza–paleo‑Danube river systems e and g using geological calibration 
based on the uplift of the Dinaric Mountains [4, 61], f using geological event based on the separation of the Tisza–Dacia microplate from 
Dinarides [5]. Different colours denote the HPD of distinct lineages: dark blues—split of A. pallipes and A. torrentium; light blue—split of NCD 
(north and central Dinaric phylogroups = ZV, GK, LD, KOR, ŽPB) + APU from the BAN, SB and CSE phylogroups; purple—split of BAN from CSE + SB 
phylogroups; grey—split of CSE and SB phylogroups. In the upper right corner BEAST estimates of divergence times for A. torrentium based on the 
paleo‑Danube–paleo‑Tisza geological calibration is given; maximum clade credibility tree based on concatenated sequence. Horizontal node bars 
depict the 95% HPD intervals and are coloured according to posterior probability support (blue bars—posterior probabilities > 0.95; orange bars—
posterior probabilities 0.50–0.95, green bars—posterior probabilities < 0.50. APU Apuseni, ZV Zeleni Vir, GK Gorski Kotar, LD Lika and Dalmatia, KOR 
Kordun, ŽPB Žumberak, Plitvice and Bjelolasica, BAN Banovina, SB southern Balkans, CSE central and southeastern Europe. Austropotamobius pallipes, 
Astacus astacus and Pontastacus leptodactylus were used as outgroups

(See figure on next page.)
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Fig. 4 Species delimitation results visualised as bars on an ultrametric Bayesian maximum clade credibility tree of A. torrentium COI gene. Next 
to the tree phylogroups obtained according to reconstruction of mtDNA and nuDNA are presented. Then follows two partitions of Automatic 
Barcode Gap Discovery (lumper and splitter) (ABGD [101]), General Mixed Yule Coalescent (GMYC [102]); Bayesian implementation of the Poisson 
Tree Processes (bPTP [140]); Multi‑rate Poisson Tree Processes (mPTP [141]), and Templeton, Crandall and Sing method (TCS [129]). Also, in the 
last column phylogroups’ abbreviations are given: ZV Zeleni Vir, GK Gorski Kotar, ŽPB Žumberak, Plitvice and Bjelolasica, LD Lika and Dalmatia, BAN 
Banovina, SB southern Balkans, CSE central and southeastern Europe, APU Apuseni. As outgroups Austropotamobius pallipes, Astacus astacus and 
Pontastacus leptodactylus were used
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The “shape” of the tip of the endopodit of the first gono-
pod differed among males from different phylogroups (χ2 
7, N = 414 = 151.67, P < 0.01), with a small percentage of 
males from CSE, ŽPB and KOR possessing a 1st gono-
pod tip measuring half the length of the gonopod (Addi-
tional file  7). The length of the second gonopod tip did 
not differ among males from different phylogroups (χ2 7, 

N = 414 = 7, P = 0.42), with all males, but a small percent-
age from ŽPB, posses the tip of the 2nd gonopod that was 
a third of the length of the gonopod (Additional file  7). 
The length of the exopodite of the second gonopod dif-
fered among males from different phylogroups (χ2 7, N = 

414 = 209.82, P < 0.01). Variation within phylogroups was 
evident, with the exception of males from ZV who all 
possessed an exopodite that was half the length of the 
second gonopod (Additional file 7).

Discussion
Phylogenetic structure, genetic diversity 
and phylogeographic analysis
This study confirmed the complexity of A. torrentium’s 
phylogenetic structure which consists of nine highly 
divergent and genetically diverse phylogroups [3–5]. An 
important discovery of this study was the establishment 
of novel haplotypes distributed in the Kordun region 
(part of NCD) forming a new Kordun phylogroup (KOR) 
(Fig. 2a, c). This is the result of the comprehensive sam-
pling of a previously poorly studied region and indicates 
that future studies could potentially reveal more diversity 
within stone crayfish. All phylogroups were well sup-
ported as deeply divergent monophyletic clades, with 

the exception of the SB phylogroup that shows a para-
phyletic relationship towards CSE phylogroup on both a 
mitochondrial and nuclear phylogenetic reconstructions. 
Even though the phylogroups were highly supported, 
their phylogenetic relationship is best described as unre-
solved polytomy (Fig. 2a, b). This lack of resolution could 
have emerged from a rapid and simultaneous divergence 
of the phylogroups [4, 44, 45].

For both mitochondrial genes, ranges of genetic dis-
tances between and within the phylogroups (Additional 
file  3) were in accordance with previously reported in 
Trontelj et al. [3], Klobučar et al. [4], Petrusek et al. [27] 
and Berger et al. [46]. Some of the observed ranges of the 
COI genetic distances between phylogroups were within 
the range of genetic distances found between Asta-
cus species [3, 47], Austropotamobius species [3, 48] or 
Australian Parastacidae crayfish [49]. The lowest value 
of sequence divergence calculated between SB and CSE 
demonstrate their genetic similarity. Namely, ancestors 
of SB phylogroup went through a southern expansion 
[4, this study], presumably through paleo-Morava, right 
tributary of the paleo-Danube. This idea is supported by 
the fact that the oldest SB clades are distributed nowa-
days in Serbia’s Morava tributaries (Fig. 1). Populations of 
SB sub-clades were probably isolated during glaciations 
in the numerous micro-refugia in the southern part of 
the Balkan Peninsula and did not come into the second-
ary contact post-glacially which resulted in high genetic 
distances among them, which is similar to the findings of 
Laggis et al. [50] for the noble crayfish (Astacus astacus) 
and Economidis and Banarescu [51] for freshwater fishes. 

Fig. 5 Species tree of A. torrentium inferred with *BEAST and visualised with DENSITREE, based on GMYC species delimitation model (a) and 
multilocus species delimitation (b). Next to the trees phylogroups’ abbreviations are given: ZV Zeleni Vir, GK Gorski Kotar, ŽPB Žumberak, Plitvice and 
Bjelolasica, LD Lika and Dalmatia, BAN Banovina, SB southern Balkans, CSE central and southeastern Europe, APU Apuseni. Austropotamobius pallipes 
was used as an outgroup
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Further, the CSE phylogroup experienced a fast and far-
reaching range expansion during the post-glacial recolo-
nization and is currently spread over the largest area of 
A. torrentium distribution in Europe (Fig.  1), so conse-
quently this phylogroup shows numerous haplotypes 
separated by small number of mutational steps (Fig. 2c).

Ranges of pairwise patristic distances found between 
several phylogroups were equal to, or exceeded the typi-
cal crustacean species level distinction value of 0.16 sub-
stitutions per site, which point to the existence of cryptic 
species (Additional file  3). However, our COI patristic 
distances between phylogroups are much lower com-
pared to the ranges of patristic distances found for other 
cryptic crustacean species that represent deep and old 
divergent lineages [52–54]. We may conclude that the 
phylogroups within A. torrentium are highly divergent 
but “young” in evolutionary terms, and in a shifting 
phase from genetic lineages to species, where additional 
studies of meristic characteristics and their high intra-
phylogroup variation (Additional file 7) failed to provide 
distinct morphological characters that would unambigu-
ously distinguish genetic lineages into species, or that 
would, at least, further advocate specific status of those 
highly divergent genetic lineages. To avoid taxonomic 
inflation, results that indicate an incongruence between 
morphologic and genetic data should be considered care-
fully during delimitation of species, whilst leaving the 
possibility of cryptic species and/or subspecies being in 
existence [55]. Contrary to this reasoning, Pârvulescu 
[28] recently described a new species Austrobotamobius 
bihariensis. If accepted as a new species and considering 
its position in the phylogenetic tree that is not basal, A. 
torrentium would become paraphyletic.

It is difficult to find a suitable nuclear marker with 
enough resolution to delimit closely related species 
amongst others because of slower evolution rate of non-
coding nuDNA as previously observed for many dif-
ferent species [56, 57]. In the present study the nuclear 
ITS2 marker was found suitable for inferring A. tor-
rentium phylogenetic tree. Phylogenies inferred from 
single nuclear genes often have low resolution and low 
statistical support of the clades [58], but we achieved 
better resolution by including gaps through simple indel 
coding method [59] to render the indels phylogenetic 
information for these tree search methods. We identi-
fied lineages recognised also by mtDNA (GK, ZV, APU, 
LD, ŽPB, KOR, BAN), except for CSE and SB phylo-
groups that clustered together (Fig.  2b). This clustering 
was expected since CSE and SB share close evolutionary 
history [3, 4]. The relationship among phylogroups was 
unresolved probably due to the lower genetic variability 
and slower evolutionary rate of ITS2, also demonstrated 
by low intraspecific genetic distances (Additional file 3). 

The findings agree with other studies that evaluated the 
diversity of this nuclear gene in crustaceans [47, 60–62]. 
Obtained values of genetic distances within and between 
phylogroups were of intraspecific level compared to the 
interspecific distances found for other European Astaci-
dae (e.g., 1–5% between sister species Pontastacus (Asta-
cus) pachypus and Pontastacus (Astacus) leptodactylus 
vs. 0.00–0.79% between phylogroup pairs in this study) 
[47].

The accumulation of characters that contribute to high 
genetic diversity and intricate phylogeographic patterns 
are a consequence of numerous events such as vicariant 
processes and isolation. This is especially pronounced 
in organisms of limited dispersal potential such as cray-
fish [63]. Furthermore, such setups are frequently found 
in organisms distributed in the karst habitats known for 
their complex and fragmented (paleo)hydrography [54, 
64, 65]. One such region is the Dinaric Karst that pos-
sesses a high level of biodiversity, with many endemic 
species of freshwater surface and subterranean fauna 
[61, 64, 66–68]. A similar effect is observed in the karstic 
Apuseni Mountains, which represented a refugium that 
preserved some endemic and relic species of Gastropoda, 
Isopoda and Diplopoda species [69].

Evolutionary history
It has been shown that southern Europe and the Balkan 
Peninsula are regions possessing high plant and animal 
genetic diversity and are recognised as European biodi-
versity hotspots [70]. Previous studies of Austropota-
mobius torrentium [3, 4, 27] revealed that its complex 
evolution was formed from Miocene, to Pleistocene. 
Distinct evolutionary phylogroups emerged through the 
intensification of Neotectonic movements and the devel-
opment of karstification that has a heavily fragmented 
palaeohydrography, along with periodic climatic shifts 
during the Pleistocene [3, 4]. Recently, a different per-
spective on the evolutionary history of A. torrentium was 
proposed [5]. Namely, a new calibration point for spe-
cies divergence time estimates was used: the separation 
of the Tisza–Dacia Mega-Unit from the Dinarides that 
was dated to ~ 16 Ma [5]. According to the authors, this 
process included “the Tisza–Dacia Mega-Unit (which 
includes the Apuseni Mountains), which broke away 
from a larger plate that included the Dinarides and trave-
led toward the northeast during the Miocene”. Appar-
ently, the process caused the split of the APU phylogroup 
ancestor, trapped on the “floating island”, from the rest of 
A. torrentium. Reconnection of the Apuseni Mountains 
freshwater system with other freshwater systems in the 
area occured ~ 5 Ma [5]. This approach yielded much ear-
lier separation dates for A. torrentium and its sister spe-
cies A. pallipes, ~ 42 Ma (HPD 32–54 Ma), as well as the 
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split between Astacus and Austropotamobius ~ 48.8  Ma 
(HPD 62.4–37.5  Ma), and among all mtDNA phylo-
groups of A. torrentium, compared to previous esti-
mations. Although Pârvulescu et  al. [5] brought a new 
perspective to the geological history of the A. torren-
tium species complex, it lacked congruence with previ-
ous research and molecular clock calibrations [3, 4, 61]. 
Furthermore, contemporary geological literature indi-
cates an ongoing debate about the geodynamic evolu-
tion of the Apuseni Mountains during the Neogene [71 
and references within]. Recent integrative studies [72 
and references within] point to Paleozoic origin of the 
Apuseni Mountains that were shaped during Mesozoic 
and strongly influenced by the contact between Tisza and 
Dacia Mega-Units during Triasic and Early Jurassic, what 
indicate the dissconection of the Apuseni and the Dinar-
ids since the Triassic period. Shifts in the region that 
occurred during the Miocene were primarily related to 
the deformation and bending of the Eastern Carpathians, 
and not to the tectonic separation of the Apuseni Moun-
tains from the Dinarides [73]. Until the beginning of the 
Pliocene, there was a continuous sea or brackish lake 
between the two areas, while continental conditions with 
the freshwater lake system began at about 4.5  Ma [74]. 
Keeping in mind this data, the present study attempted 
to reconcile both geological calibration approaches and 
bring a new plausible perspective on A. torrentium evo-
lutionary history.

The uplift of Dinarides caused the genus Austropota-
mobius to split into A. pallipes to the west of Dinarides, 
and A. torrentium on the east [3, 4, 61]. The uplift of the 
Dinaric and Carpathian Mountains [75] triggered the iso-
lation of the Pannonian basin from the rest of the Para-
tethys and the formation of the large brackish/ freshwater 
Lake Pannon [76]. The complete isolation of the Lake 
Pannon from the inflow of saline water was estimated 
to ~ 11.7 Ma [77–79] which coincides with the emergence 
of the paleo-Danube, discharging directly into the Lake 
Pannon through its large delta [76, 78]. This caused a 
change in the depth and water salinity of Lake Pannon, 
turning it into a shallow brackish/freshwater environ-
ment [80]. Together with its northern tributaries, such as 
the paleo-Tisza, the paleo-Danube formed a shelf margin 
that prograde from the northwest to the southeast [78]. 
Klobučar et al. [4] assumed that during this period (prob-
ably until ~ 6.5  Ma) the populations of A. torrentium in 
the NCD region were isolated from the east by the large, 
mostly brackish Lake Pannon and, from the north and 
west, by mountain ridges of uplifting Dinarides and Alps. 
Crayfish could survive only in the shallow parts of the 
lake due to the strong freshwater influx from surrounding 
rivers. Freshwater conditions are corroborated by find-
ings of freshwater molluscs that were widespread in the 

shallow parts of the lake ~ 4.5 Ma [74, 76]. Magyar et al. 
[76] also observed that the paleo-Danube delta lobes in 
the central part of the Pannonian Basin approached the 
lower flow of the paleo-Tisza River. This was later con-
firmed as the shelf margins of the paleo-Danube and the 
paleo-Tisza were observed as coalesced, and their origi-
nal, almost perpendicular strike, can be detected until 
5.3 Ma [78]. We argue that the connection between the 
paleo-Danube and Paleo-Tisza Rivers could have allowed 
the ancestor of the current APU phylogroup to colonise 
the Apuseni Mountains around 5.3 Ma (Fig. 3).

The paleo-Tisza–paleo-Danube connection coincides 
with the end of the Messinian Salinity Crisis (MSC) that 
lasted from ~ 5.96 Ma until ~ 5.33 Ma [81, 82]. The MSC, 
besides having a strong influence on hydrology, caused 
increased temperature, aridity and evaporation in the 
Northern Hemisphere [83]. It is also speculated that the 
MSC caused a lowering of the water level of the Lake Pan-
non, at least in its northern part [84]. Thus, A. torrentium 
colonisation of the Apuseni Mountains would be possible 
at the end of the MSC (~ 5.3 Ma), throughout the north-
ern margin of Lake Pannon (Fig.  1), which is indicated 
by the lowest genetic distances between ZV/GK phylo-
groups and APU phylogroup, previously also observed 
by Pârvulescu et al. [5], and confirmed in this study. Also, 
during MSC, the sea-level dropped for 50–200 m in the 
Dacian Basin connected to the Black Sea, situated to the 
east from Lake Pannon [85]. It is assumed that during 
the MSC, paleo-Danube ran across the south Carpathi-
ans and overflowed from the freshwater Pannonian into 
the saline Dacian Basin [86]. Therefore, we consider that 
the northern dispersal route of A. torrentium towards the 
Apuseni region is equally, if not more likely than the pre-
viously proposed scenario [5]. It is possible that numer-
ous populations existed in the northern areas, and on the 
northern dispersal route, but did not survive the adverse 
climatic conditions during glaciations unlike populations 
in Apuseni that survived in refugia in karst, similar to the 
NCD populations. The remnant populations exhibited 
limited or non post-glacial range expansion and contact 
indicating the existence of multiple ‘refugia within refu-
gia’ [87], as previously suggested by Klobučar et al. [4].

Formation of the Danube River basin  and its  drain-
age  network, as we know it today, with its right-sided 
tributaries (e.g., Velika Morava and Sava), is estimated 
to Pliocene [78, 88–90]. This, along with the cold cli-
matic conditions [91–93] which are favourable for A. 
torrentium [2] could have allowed its south-eastward 
spreading. Estimated divergence times between BAN 
(the most eastern NCD phylogroup) and SB + CSE coin-
cide with this period (Fig. 3 and Additional file 4), which 
also indicates their closer genetic relatedness compared 
to other phylogroups (Figs.  1, 2). Further, our results 
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indicate that the divergence between CSE and SB coin-
cide with the beginning of glaciations that started in the 
Northern Hemisphere during the late Pliocene-early 
Pleistocene [89, 94] and continued with CSE spreading 
northward through the Danube River drainage showing 
a post-glacial leading edge effect as previously suggested 
in Klobučar et al. [4]. Similar scenarios of post-glacial (re)
colonisation of Europe from the southern refugia were 
recorded for numerous aquatic and terrestrial taxa [51, 
95, 96].

Species delimitation
Molecular species delimitation proved to be a valu-
able tool for the species identification as a stand-alone 
method or as part of an integrative taxonomic approach 
[97]. Contrary to this, a large number of papers reported 
taxa oversplitting, overlumping or the incongruence 
among implemented methods [36, 37, 55, 65, 98]. Fur-
thermore, the MOTUs delimited by the analyses of 
mtDNA represent a hypothesis that should be considered 
with caution even if well-supported [31]. Species delimi-
tation conducted on our dataset showed a high degree of 
discordance among methods, with a majority suggest-
ing an unrealistically high number of MOTUs/potential 
species (9–30) within A. torrentium (Fig.  4, Additional 
file 5). While some of these MOTUs might be the result 
of revealing previously undescribed diversity, others may 
be the result of discovering isolated populations currently 
undergoing speciation [37, 99]. However, in many cases, 
it is obvious that the analyses oversplit taxa, because the 
intra-specific genetic divergence for majority of these 
identified MOTUs is too low to currently consider them 
as distinct species (Additional file  3). Relatively high 
genetic divergence (Figs. 2, 5, Additional file 3) indicates 
that identified MOTUs are in the process of splitting and 
may evolve into different species in the future [100]. The 
single locus-based species delimitation approaches, as 
ABGD, GMYC, bPTP, are known to oversplit taxa and 
their performance is sensitive to many factors such as 
higher substitution rates, the number of species included, 
uneven sampling, varying population sizes, level of gene 
flow, the number of singletons in the input trees and 
unresolved nodes [36, 37, 42, 97, 101–105]. Further, spe-
cies delimitation results inferred on single locus data are 
known to reflect locus variability, as more variable loci 
led to a higher number of proposed MOTUs [65]. How-
ever, the majority of these delimitations are taxonomi-
cally uninformative. Furthermore, most of these methods 
have been designed for species-rich data sets [32, 106]. 
Performance of species delimitation approaches can 
also be affected by the ratio of population sizes to spe-
cies divergence times [97]. Failure to sample interme-
diate haplotypes could also be the reason causing the 

oversplit in the phylogroup CSE, BAN and especially SB 
due to incomplete geographical coverage, so further sam-
pling could help resolving this oversplitting scenario. The 
higher number of MOTUs obtained by the tree-based 
analyses could be a consequence of the fact that those 
methods tend to overestimate the number of species and 
they actually reflect genetic structure of the data showing 
the population structure within the species [107]. This 
could be the reason why BFD species delimitation recov-
ered GMYC as the most appropriate model for our data 
set (Additional file 6), reflecting prominent substructure 
within A. torrentium.

Obtained results again suggested the presence of deep 
divergence within A. torrentium, harbouring monophy-
letic and geographically isolated phylogroups with their 
own evolutionary trajectories. It is important to point 
out that strong divergence is not necessarily dependent 
on the intrinsic characteristics of a species, but could also 
represent the landscape dynamics of a species habitat 
[108]. Dinaric karst with fragmented palaeohydrography 
created important biogeographical barriers that led to 
diversification events and strong phylogeographic struc-
ture in many taxa on the Balkan Peninsula. Currently 
observed distribution patterns and diversity of freshwater 
biota are often connected with the geomorphological fea-
tures of this region and its geo-climatic history [70, 109, 
110].

Meristics
The meristics ([22], this study Additional file  7) and 
geometric morphometrics [23] could separate crayfish 
belonging to different phylogroups to some extent, but 
variation in studied characters, within groups, was evi-
dent. Obtained results demonstrated freshwater crayfish 
plasticity and high intraspecific morphological variation 
which reflects both the environmental influence and 
genetic background. Our research on the morphology of 
A. torrentium has not indicated sufficiently stable diag-
nostic characters that would be helpful in distinguish-
ing crayfish from different phylogroups. Hence we may 
conclude that morphological traits are not conserved 
among phylogenetic lineages. The lack of denticulation 
on the lower edge of antennal scale (antennal exopo-
dite) was pointed out by Pârvulescu [28] as among the 
most important distinguishing morphological feature to 
separate newly described A. bihariensis from A. torren-
tium belonging to CSE phylogroup and analysed in his 
study. Contrary to this, in our study of the largest data 
set analysed so far and including crayfish from all phylo-
groups but APU, we found this character variable; as the 
absence of denticulation was observed in all phylogroups 
(Additional file  7). Accordingly, neither can we use this 
character, nor any other tested characters reliably in the 



Page 13 of 20Lovrenčić et al. BMC Evol Biol          (2020) 20:146  

description of a new species. At the moment, based on 
the obtained results, we may conclude that observed 
mtDNA/nuDNA phylogroups present cryptic subspe-
cies [111–114] that should be treated as separate ESUs 
and, especially ones belonging to the NCD region, should 
have conservation priority.

Conservation
Our multigene phylogenetic analyses as well as species 
delimitation methods revealed that the genetic diversity 
and evolutionary history of A. torrentium is complex 
and intricate with an everlasting need for further study-
ing (Figs.  1, 2, 3). The geoclimatic processes have left 
distinguishing signatures in the current distribution and 
genetics of A. torrentium giving rise to highly divergent 
phylogroups with their own independent evolution. Dis-
covered phylogroups play a fundamental role in the long-
term survival and evolution dynamics of A. torrentium. 
Considering that A. torrentium shows a decreasing popu-
lation trend and is listed as vulnerable species in Croa-
tia [13], one of the most important aims of our study was 
to provide a baseline for the conservation and manage-
ment of unique genetic variability found within this spe-
cies through the identification of evolutionary significant 
units (ESUs). Recognition of ESUs facilitates conserva-
tion planning and management without the necessity of 
formally naming new species or elevating taxa to species 
level [63]. Taxonomic revision with the description of 
new species must be a thoughtful process, which consid-
ers the whole genus Austropotamobius and not only the 
taxons/groups within A. torrentium species-complex, so 
the number of species would not be over- or underesti-
mated. Due to the incongruence between implemented 
approaches, including lack of morphological characters 
associated with phylogroups that would be conserved 
among them (Additional file  7), we were conservative 
in the inferences drawn from the analyses, and declared 
phylogroups recovered both on mitochondrial and 
nuclear DNA as cryptic subspecies and distinct ESUs 
(ESU1 = BAN, ESU2 = CSE, ESU3 = GK, ESU4 = KOR, 
ESU5 = LD, ESU6 = SB, ESU7 = ZV, ESU8 = ŽPB, 
ESU9 = APU) (Additional file 8).

Geographically and genetically isolated phylogroups 
represent the evolutionary legacy of A. torrentium which 
is highly relevant for conservation due to their mostly 
small distribution ranges and evolutionary distinctness. 
Since human mediated translocation and restocking of 
crayfish for repopulation are encouraged with the aim 
of increasing the genetic diversity of endangered popu-
lations [115], future conservation programs should con-
sider conducting translocations and repopulations only 
within the same ESU [46, 116–118].

Furthermore, one of the fundamental issues in the 
conservation of freshwater species is in maintaining 
genetic diversity by defining the degree of connectiv-
ity between populations [119] and finding a balance 
between outbreeding and inbreeding depression that 
represent potential threat while restocking/repopulat-
ing, so future research should be focused on the study of 
the genetic structure of phylogroups. Population genetic 
analyses based on microsatellites can contribute to the 
understanding of the degree of genetic variation within 
and among populations, potentially identify management 
units (MUs) and source populations for future introduc-
tions, as well as to reveal recent evolutionary changes and 
possible population-level hybridisation events through 
secondary contacts [46, 50, 117, 118, 120]. In addition, 
cytogenetic research, next generation sequencing and 
genomic approaches may advance understanding of phy-
logenetic relationships and taxonomic status of mt and 
nuDNA phylogroups which, without doubt, play a pivotal 
role in long term future evolution of A. torrentium.

Conclusions
Results corroborate high genetic diversity within A. tor-
rentium preserved in divergent phylogenetic groups.

Because there was no congruence between imple-
mented species delimitation approaches, and we lack 
establishing morphological characters conserved within 
lineages, we conclude that established phylogroups, 
recovered both on mitochondrial and nuclear DNA, 
are cryptic subspecies and distinct evolutionary sig-
nificant units that present evolutionary legacy of A. tor-
rentium and are highly relevant for conservation due to 
their mostly small distribution ranges and evolutionary 
distinctness.

Methods
To accomplish our aims, we applied a multi-gene molec-
ular approach in the phylogenetic reconstructions and 
several methods of species delimitation analyses, as well 
as divergence time estimates using both molecular evolu-
tionary rates and geological/hydrological calibration.

Sampling, DNA extraction, gene amplification 
and sequencing
Total of 279 crayfish from 63 locations from Croatia, 
Slovenia and Republic of North Macedonia were sam-
pled and analysed (Fig.  1, Additional file  1). One perei-
opod from each individual was sampled and stored in 
96% ethanol at 4  °C until DNA isolation. Sampling was 
conducted in accordance with ethical standards and all 
required permissions were obtained from Ministry of 
Environmental Protection and Energy of the Repub-
lic of Croatia. The specimen collections in Slovenia and 
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Republic of North Macedonia were conducted with per-
missions of local authorities.

Genomic DNA was extracted from muscle tissue using 
GenElute Mammalian Genomic DNA Miniprep kit 
(Sigma-Aldrich, St. Louis, MO) following the manufac-
turer’s protocol, and stored in a freezer until PCR. Mito-
chondrial COI and 16S rRNA, and nuclear ITS2 genes 
were amplified and sequenced, with details provided in 
the Additional file 9.

Sequence data and phylogenetic analyses
Sequences were edited using SEQUENCHER 5.4.6 (Gene 
Codes Corporation, Ann Arbor, MI USA) and aligned 
using MAFFT [121]. The chromatograms were checked 
manually for base pair ambiguities and indications for 
nuclear–mitochondrial pseudogenes (numts) as rec-
ommended by Buhay [122]. The COI alignment did not 
contain any length variants or ambiguous sites, while 
the sequences of the 16S rRNA cointained length vari-
ation. The ITS2 region contained length variations and 
nine ambiguous sites. The final alignments were 582 and 
476  bp long for COI and 16S rRNA, respectively, while 
ITS2 region was 1102  bp long. Number of haplotypes, 
number of polymorphic sites, and number of parsimony 
informative sites for each gene alignment was calculated 
using MEGA X [123] and DnaSP 6.12.03 [124].

The phylogenetic analyses encompassed a total of 
1114 16S rRNA and COI genes sequences of which 642 
mtDNA sequences (431 COI and 211 16S rRNA) were 
downloaded from GenBank, and 472 sequences (198 
COI and 274 16S) were obtained in this study (Addi-
tional file  1). The sequences were collapsed to unique 
haplotypes with DnaSP 6.12.03 [124]. New haplotypes 
from this study were deposited in the GenBank and will 
be publicly available after manuscript acceptance. Phy-
logenetic analyses were performed on two data sets: 
the first data set consisted of concatenated COI and 
16S rRNA sequences, and the second data set included 
only ITS2 sequences. Prior to concatenation, the incon-
gruence length difference test [125] as implemented in 
PAUP* 4.0a164 [126] was applied to assess congruence 
between two mitochondrial genes. There was no sig-
nificant heterogeneity amongst the partitions (P = 0.78), 
and the final alignment for concatenated mitochondrial 
sequences was 1058 bp long. Austropotamobius pallipes 
was chosen as an outgroup (GenBank accession num-
bers for COI: KX369673, KX369674; and 16S rRNA: 
KX370093, KX370094). Phylogenetic relationships were 
reconstructed using three different optimality criteria: 
maximum parsimony (MP), maximum likelihood (ML) 
and Bayesian analysis (BA), with settings provided in the 
Additional file  9. Nodes in the phylogenetic trees with 
bootstrap values P ≥ 75 in ML and MP, and posterior 

probabilities (pp) values ≥ 0.95 in BA were considered 
supported.

Haplotype networks and genetic diversity
Median-joining (MJ) network approach [127] was used 
to visualise intraspecific evolutionary relationships and 
haplotype relatedness within A. torrentium on concat-
enated mitochondrial data set using the PopArt [128]. 
Phylogenetic network using statistical parsimony was 
constructed for the COI gene using the TCS 1.21 soft-
ware [129] and visualised using tcsBU [130].

Pairwise comparison of uncorrected sequence diver-
gences (p-distances) and corrected Kimura’s two-param-
eter distances (K2P) between and within phylogroups 
for COI, 16S rRNA and ITS2 was performed in MEGA 
X [123]. The pairwise patristic distances were computed 
from the ML tree using the program PATRISTIC v1.0 
[131] with the aim of comparing obtained values with the 
proposed crustacean species delimitation threshold of 
0.16 substitutions per site in the mitochondrial COI gene 
[39].

Time of divergence
In order to estimate divergence times among mtDNA 
phylogroups, concatenated data set (COI and 16S rRNA) 
was used in the Bayesian statistical framework imple-
mented in BEAST 2.5.2 [132]. The analyses were run 
on the Cipres Science Gateway [133]. For this purpose, 
seven different calibration approaches were employed 
(three molecular and four geological). Molecular clock 
calibrations were based on the arthropod substitution 
rate of 2.3% pairwise sequence divergence (0.0115 subs/s/
Ma/l) [134, 135], and the decapod substitution rate of 
1.4% pairwise sequence divergence (0.007 subs/s/Ma/l) 
[136] for COI partition along with an estimated molecu-
lar clock for the 16S rRNA partition of mtDNA data set. 
In the third approch, we implemented substitution rates 
according to Schubart et al. [137] with setting the mean-
Rate prior as a uniform distribution between 0.0083–
0.01165 subs/s/Ma/l for COI and 0.00325–0.0044 subs/s/
Ma/l for 16S rRNA. Following Klobučar et al. [4] we used 
mid-points of these intervals (0.0099 for COI and 0.0038 
for 16S rRNA) as an ucld.mean prior. For the geological 
calibrations of the molecular clock, we used three previ-
ously described approaches. Firstly, we used the episode 
of intense uplifting of the Dinarids [138] that caused the 
split between A. pallipes and A. torrentium estimated 
to ~ 12.5  Ma and ~ 16  Ma [for details see [4] and [61]]. 
TreeModel prior distribution was set to normal, with a 
mean of 12.5  Ma or 16  Ma and a standard deviation of 
0.5. The second approach was based on the tectonic sepa-
ration of the Apuseni Mountains (Tisza–Dacia micro-
plate) from Dinarides that, according to Pârvulescu et al. 
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[5], took place 16  Ma and it was used as a calibration 
point for splitting between APU and other NCD phylo-
groups. TreeModel prior distribution was set to normal, 
with a mean of 16  Ma and standard deviation of 0.5. 
For the fourth geological calibration point, we used the 
occurence of the fluvial connection between the paleo-
Danube River and paleo-Tisza River systems that took 
place around 5.3 Ma [78]. That event could have enabled 
the colonisation of nowadays north-eastern areal of A. 
torrentium distribution. TreeModel prior distribution 
was set to normal, with a mean of 5.3 Ma and standard 
deviation of 0.5. Divergence time estimates were cal-
culated using relaxed molecular clock with log normal 
distribution, birth–death model of speciation, independ-
ent substitution models assigned to mtDNA genes, and 
run for 150,000,000 generations with details provided in 
Additional file 9.

Species delimitation and validation
Application of multiple species delimitation approaches 
is generally preferable comparing to reliance on a single 
method [55]. Several methods of single-locus species 
delimitation were conducted using: the Automatic Bar-
code Gap Discovery (ABGD) method of Puillandre et al. 
[101], the General Mixed Yule Coalescent (GMYC, sin-
gle threshold algorithm) method of Pons et al. [139], the 
Bayesian implementation of the Poisson Tree Processes 
(bPTP) method of Zhang et al. [140] and multi-rate Pois-
son Tree Process (mPTP) method of Kapli et  al. [141]. 
Molecular species delimitation methods generate a cer-
tain number of MOTUs and were applied only to the COI 
dataset due to the largest number of available sequences 
and higher variation levels compering to other markers 
(e.g. 16S rRNA and ITS2).

The ABGD, genetic pairwise distances based method, 
was performed using the online version of the program 
[101] with default parameters and Kimura 2 param-
eter (K2P) model. Tree-based methods, such as GMYC, 
bPTP and mPTP, employ a phylogenetic tree as input 
for the analysis. The GMYC method was performed 
using the time-calibrated ultrametric tree based on COI 
gene obtained using BEAST 2.5.2, and was run using the 
SPLITS package [142] in R. The same input tree was used 
for both bPTP and mPTP methods [140, 141]. The details 
regarding reconstruction of input tree for species delimi-
tation analyses are reported in the supplementary data 
(Additional file  9). Boundaries of potential species were 
also inferred by using the statistical parsimony network 
reconstruction software TCS [129].

We estimated A. torrentium single-locus species trees 
using *BEAST v.2.5.2 [143] with the same parameters 
as for species delimitation. The COI haplotypes were 
assigned into different species trees topologies according 

to the results of phylogeny and species delimitation anal-
yses (ABGD lumper and splitter partitions strategy—in 
the further text ABGD lumper and splitter [144], TCS, 
GMYC, bPTP, mPTP), as well as the assumption that all 
crayfish belong to the same species. Bayes factor delimi-
tation (BFD) approach was applied to compare candi-
date *BEAST species tree models based on Bayes factors 
(BF) [145]. Nested sampling analysis [146] was used for 
the marginal likelihood estimation (MLE) of each spe-
cies tree [147] in order to calculate the BFs between two 
models, with details in Additional file 9. The multi-locus 
species tree was estimated using *BEAST on data set 
comprising three loci (COI, 16S rRNA, ITS2) sampled 
from 38 individuals representing nine phylogroups of the 
stone crayfish. We imported three aligments along with 
additional file with recoded gaps as matrix of binary char-
acters. *BEAST co-estimated three gene trees embed-
ded in a shared species tree and the analysis was run for 
150,000,000 generations using the birth–death tree prior 
and a relaxed molecular clock with an uncorrelated log-
normal distribution. Previously established substitution 
models were assigned to each datasets, with A. pallipes 
as outgroup. The substitution rate for COI and 16S rRNA 
were set according to Schubart et al. [138] and estimated 
rate for ITS2. Gene trees for mitochondrial genes were 
linked, while nuclear unlinked. Species tree was visual-
ised in DensiTree v.2.2.6 [199].

Meristics
Meristic characteristics were examined under a magni-
fying glass by the same researcher. In total, 749 crayfish 
collected during the period of the last 20 years, were exa-
minded and 735 were included into analyses, covering all 
phylogroups except APU that was previously analysed by 
Pârvulescu [28] (Additional file 1, Additional file 9).

We recorded: number of spines on the ventral side of 
the merus of the third maxilliped, presence and pronun-
ciation of rostral crista, and absence/presence and type of 
denticulation (spines or tubercles) on the lower surface of 
the antennal exopod. Additionaly, in males, shape of the 
tip of the endopodit of the first and the second gonopod, 
and the length of the exopodit of the second gonopod 
were noted. All bilateral characters were recorded for the 
right side of the body, because previous studies showed 
that there are no significant differences in their distribu-
tion on the two body sides [22]. All details on studied 
meristic characteristics are given in, Additional file  7, 
Additional file 9.

Differences in the recorded meristic characters (ordinal 
variables) between phylogroups were tested by nonpara-
metric Kruskal–Wallis ANOVA and chi-square test in 
STATISTICA 13.5.
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