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and paramyxovirus with their bat hosts 
in the same geographical areas
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Abstract 

Background: Bat-borne viruses are relatively host specific. We hypothesize that this host specificity is due to coevo-
lution of the viruses with their hosts. To test this hypothesis, we investigated the coevolution of coronavirus and 
paramyxovirus with their bat hosts. Published nucleotide sequences of the RNA-dependent RNA polymerase (RdRp) 
gene of 60 coronavirus strains identified from 37 bat species, the RNA polymerase large (L) gene of 36 paramyxovirus 
strains from 29 bat species, and the cytochrome B (cytB) gene of 35 bat species were analyzed for coevolution signals. 
Each coevolution signal detected was tested and verified by global-fit cophylogenic analysis using software ParaFit, 
PACo, and eMPRess.

Results: Significant coevolution signals were detected in coronaviruses and paramyxoviruses and their bat hosts, and 
closely related bat hosts were found to carry closely related viruses.

Conclusions: Our results suggest that paramyxovirus and coronavirus coevolve with their hosts.
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Background
Bats are reservoirs of many zoonotic viruses, such as 
members of Filoviridae (e.g., Ebola and Marburg viruses), 
Paramyxoviridae (e.g., Hendra and Nipah viruses), and 
Coronaviridae (e.g., severe acute respiratory syndrome 
coronavirus, Middle East respiratory syndrome corona-
virus, severe acute respiratory syndrome coronavirus-2) 
[1, 2]. Bats live in a wide variety of environments with 
various feeding habits. They are flying mammals and are 
effective vehicles for spreading viruses [3].

Coronaviruses are taxonomically placed in the sub-
family Coronavirinae under the family Coronaviridae 

(International Committee on Taxonomy of Viruses). Bats 
coronaviruses have been shown to be responsible for the 
outbreaks of severe acute respiratory syndrome (SARS) 
in 2002–2003, Middle East respiratory syndrome (MERS) 
in 2012 [4, 5], and probably the current COVID-19 [2]. 
They cause serious respiratory and instetinal symptoms 
with substantial mortality rates [6].

Some paramyxoviruses such as Hendra virus (HeV) 
and Nipah virus (NiV) are highly pathogenic zoonoses. 
Both viruses belong to the genus Henipavirus of the fam-
ily Paramyxoviridae (International Committee on Taxon-
omy of Viruses) and have been detected in flying fox bats 
(Pteropus spp.) [7, 8]. Henipavirus causes severe symp-
toms associated with high mortality rates in humans 
and livestocks. HeV was first detected in Queensland, 
Australia in 1994, causing acute respiratory disease and 
febrile illness in horses and humans who have close 
contact with sick horses [9]. NiV was first detected in 
Malaysia in 1999 during the outbreak of encephalitis and 
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respiratory illness in pig farmers. In the past few years, 
sporadic outbreaks of HeV and NiV have occurred in 
Oceania and Southeast Asia [10–12].

Both coronaviruses and paramyxoviruses have a cer-
tain degree of host specificity. Host–parasite specific-
ity has also been observed in malaria parasites [13], bat 
flies [14], and bacteria [15]. We hypothesized that the 
host specificity of coronaviruses and paramyxoviruses 
is a result of co-speciation with their hosts. To test this 
hypothesis, we compared the nucleotide sequences of the 
cytochrome B (cytB) gene of 61 bat species with those of 
the RNA dependent RNA polymerase (RdRp) gene of 60 
coronavirus strains and the RNA polymerase large (L) 
gene of 36 paramyxovirus strains.

Results
Phylogenetic relationship of bat coronaviruses with their 
bat hosts
Phylogenetic analyses revealed that the bat coronavirus 
RaTG13/CN/MN996532 from Rhinolophus affinis found 
in Yunnan Province, China is on the same branch of 
the phylogenetic tree as the 18 human severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) strains 
examined, suggesting that it is a relative of SARS-CoV-2 
(Fig. 1). The following 18 bat coronavirus strains are clus-
tered on the same branch of the phylogenetic tree as the 
six human severe acute respiratory syndrome coronavi-
rus (SARS-CoV) analyzed, suggesting that they are phylo-
genetic relatives: Rf1/CHN/DQ412042, JTMC15/CHN/
KU182964, JL2012/CHN/KJ473811, 16BO133/ROK/
KY938558, HeB2013/CHN/KJ473812, SX2013/CHN/
KJ473813, Shaanxi2011/CHN/JX993987, Rm1/CHN/
DQ412043, HuB2013/CHN/KJ473814, HKU3-1/CHN/
DQ022305, Yunnan2011/CHN/JX993988, As6526/CHN/
KY417142, YN2013/CHN/KJ473816, Rs3367/CHN/
KC881006, GX2013/CHN/KJ473815, Anlong-103/CHN/
KY770858, Rp3/CHN/DQ071615, and LYRa11/CHN/
KF569996. The strain BM48-31/BGR/GU190215 from 
Rhinolophus blasii living in Bulgaria is found to be dis-
tantly related to the six human SARS-CoVs as it is located 
alone on a branch of the phylogenetic tree (Fig.  1). The 
following 13 bat coronavirus strains are clustered on the 
same branch of phylogenetic tree as the six human Mid-
dle East respiratory syndrome coronavirus (MERS-CoV) 
strains examined, suggesting that they are evolutionarily 
close to each other: JPDB144/CHN/KU182965, HKU4-1/
CHN/EF065505, GX2012/CHN/KJ473822, HKU5-1/
CHN/EF065509, GD2013/CHN/KJ473820, PDF-2180/
UGA/KX574227, 5038/RSA/MF593268, PML-PHE1/
RSA/KC869678, SC2013/CHN/KJ473821, HKU25/CHN/
KX442565, NL13845/CHN/MG021451, 206645-40/ITA/
MG596802, and 206645-63/ITA/MG596803 (Fig. 1).

Coevolution of bat coronaviruses with their bat hosts
Analyses of all bat cytB gene sequences and all bat coro-
navirus RdRp gene sequences as a whole by the Global 
test function of software ParaFit and PACo showed evi-
dence of coevolution between bat coronaviruses and 
their bat hosts (ParaFitGlobal = 390.8896, P = 0.001;  m2 
global value = 57.136, P ≤ 0.001). When each individual 
sequence was analyzed by the Individual host–para-
site (H–P) link test function of ParaFit, 51 of the 60 bat 
coronavirus strains were found to have a significant coev-
olution relationship (link) with their bat hosts with a Par-
aFit1 or ParaFit2 P value ≤ 0.05.

Bat coronavirus strains examined in this study are 
divided into alpha and beta groups (Fig.  1). In the 
alphacoronavirus group, 1B/CHN/EU420137, AH2011/
CHN/KJ473795, 1A/CHN/EU420138, HKU7-1/CHN/
DQ249226, and HKU8/CHN/EU420139 are related 
and are all derived from Miniopterus bats. Strains 
SAX2011/CHN/KJ473806, Anlong-57/CHN/KY770851, 
and Anlong-43/CHN/KY770850 are also related and 
are all from Myotis bats. Similarly, KW2E-F151/GHA/
KT253269 and AT1A-F1/GHA/KT253272 are related 
and are all from Hipposideros bats. These observations 
suggest host specificity of these bat coroanviruses. The 
following coroanviruses are closely related but are from 
different species of bats of the same family (Vespertilio-
nidae): Lushi-212/CHN/KF294373 (from Murina leu-
cogaster), 16715 23/VIE/MH687934 (from Scotophilus 
kuhlii), HKU6-1/CHN/DQ249224 (from Myotis ricketti), 
and CDPHE15/USA/KF430219 (from Myotis lucifugus) 
(Fig.  2). This result suggests that some coronaviruses 
have a less stringent host specificity than others.

In this study, bat coroanviruses that are related to 
human SARS-CoVs are referred to as SARSr-CoVs, and 
those that are related to human MERS-CoVs are referred 
to as MERSr-CoVs. These viruses are clustered on the 
betacoronavirus branch of the phylogenetic tree (Fig. 1). 
Most bat SARSr-CoVs are found in members of the Rhi-
nolophidae bat family, and most bat MERSr-CoVs are 
derived from members of the Vespertilionidae bat fam-
ily. Strains CMR66/CMR/MG693170, HKU9-1/CHN/
EF065513, and GCCDC1-356/CHN/KU762338 with 
78.03–96.24% RdRp gene sequence identity are clustered 
together on the same branch of the phylogenetic tree 
and are all from members of the Pteropodidae bat family 
(Fig. 2).

Strains 206645-40/IT/MG596802 and 206645-63/
IT/MG596803 are related with 99.46% identity in RdRp 
gene sequence and are found in Hypsugo savii and Pipis-
trelle kuhli, respectively, in Italy (Fig. 2). The SARSr-CoV 
16BO133/ROK/KY938558 found in Rhinolophus ferrum-
equinum in South Korea is evolutionarily close to JL2012/
KJ473811 (99.71% RdRp sequence identity) and JTMC15/
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Fig. 1 Phylogenetic analysis of the 2734-bp RNA-dependent RNA polymerase (RdRp) gene of coronaviruses from humans and various species of 
bats
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KU182964 (99.68% RdRp sequence identity) found in 
the same species (Rhinolophus ferrumequinum) of bats 
in Jilin Province, China [16] (Fig. 2). The strain As6526/
CHN/KY417142 is found in Aselliscus stoliczkanus (fam-
ily Hipposideridae) that are evolutionarily close to Rhi-
nolophidae bats (Fig.  2). The strain Yunnan2011/CHN/
JX993988 found in Yunnan Province, China is from 
Chaerephon plicatus (family Molossidae) bats that are 
distantly related to Rhinolophidae bats (Fig. 2).

Coevolution of bat paramyxoviruses with their bat hosts
Analyses of all bat cytB gene sequences and all para-
myxovirus RNA polymerase large (L) gene sequences as 
a whole by the Global test function of ParaFit and PACo 
showed evidence of coevolution between bat paramyxo-
viruses and their bat hosts (ParaFitGlobal = 874.11, 
P = 0.049;  m2 global value = 15.49537, P = 0.015). When 
each individual sequence was analyzed by the Individual 
H–P link test function of ParaFit, 7 of the 36 bat para-
myxovirus strains were found to have a significant host–
parasite coevolution relationship (link) with a ParaFit1 or 
Parafit2 P value ≤ 0.05.

In this study, we classified unidentified bat paramyxovi-
ruses into four groups PG1–PG4 according to their host 
speficity. PG1 paramyxovirus strains GB59-59/GHA/
HQ660162, GB09670/GAB/HQ660156, GB59-30/GHA/
HQ660161, GH19-140/GHA/HQ660153, GD2012/
CHN/KJ64165, and GB09682/GAB/HQ660157 are 
closely related and are all derived from Hipposideros bats 
(family: Hipposideridae) (Fig. 3). The following PG2 para-
myxovirus strains are form Pteropodidae bats and are 
closely related: RCA-P18/RCA/HQ660152, CD273/DRC/
HQ660122, GB1386/GAB/HQ660137, GB1237/GAB/
HQ660140, and GH6/GHA/FJ971938 (Fig. 3). KCR245H/
CRC/JF828297, BR21/BRA/HQ660187, BR310/BRA/
HQ660194, BR310/BRA/HQ660194, and BR190/BRA/
HQ660190 that belong to paramyxovirus group 3 (PG3) 
are closely related (Fig. 3). The host of KCR245H/CRC/
JF828297 is Pteronotus parnellii bat (family: Mormoopi-
dae), and the hosts of the other four strains are bats of the 
Pteropodidae family, including Desmodus rotundus, Car-
ollia perspicillata, Carollia brevicauda, and Glossophaga 
soricina (Fig.  3). Seven closely related strains, including 
GH36/GHA/FJ609192, 3-320/BGR/HQ660163, N78-14/
GER/HQ660166, 6-43/BGR/HQ660164, NMS09-48/
GER/HQ660165, Md-LN2012/CHN/KJ641656, and 

NM98-46/GER/HQ660170 (paramyxovirus group 4, 
PG4), are found in members of the Vespertilionidae bat 
family (Fig. 3). Identified bat paramyxoviruses including 
Teviot virus (TeV), Tioman virus (TiV), and Menangle 
virus (MENV) are members of the genus Pararubula-
virus; their bat hosts are members of the Pteropodidae 
family. The bat hosts of Henipavirus, NiV, and HeV also 
belong to the Pteropodidae family (Fig. 3).

The bat hosts of PG1 paramyxoviruses are distributed 
mainly in Africa and Asia, and those of PG2 paramyxo-
viruses are mostly living in Africa. PG3 paramyxoviruses 
are mostly found in bats in South and North America. 
The bat hosts of PG4 paramyxoviruses are distributed in 
Asia, Africa, and Europe. The bat hosts of Pararubulavi-
rus and Hennipahvirus are found in areas from Asia to 
Oceania (Fig. 3).

Event‑based cophylogeny
To confirm the coevolution of coronaviruses and para-
myxoviruses with their bat hosts, analyses with the soft-
ware eMPRess were performed. Results of such analyses 
refuted the null hypothesis that the host and virus trees 
and tip associations are formed due to chance at 0.01 
level in both host–coronavirus and host–paramyxovi-
rus relationships (P-value = 0.0099). Therefore, we, con-
cluded that these host–virus pairs have coevolved (Fig. 4).

Disccusion
In this study, we investigated the coevolution relationship 
between bats and their viral parasites: coronaviruses and 
paramyxoviruses. These two groups of viruses were cho-
sen because they have been shown to be zoonotic [17]. 
The sequences of the RNA-dependent RNA polymerase 
(RdRp) gene of 60 bat coronavirus strains, the RNA poly-
merase large (L) gene of 36 paramyxovirus strains, and 
the cytochrome B (cytB) gene of 61 bat species were used 
to build phylogenetic trees. Cophylo analyses were then 
performed to determine the relationship between bat 
genetic trees and those of coronaviruses and paramyxo-
viruses. Event-based eMPRess test and ParaFit and PACo 
Global and ParaFit Individual H–P tests were also per-
formed. In eMPRess and Global ParaFit and PACo tests, 
both groups of the viruses were found to have a signifi-
cant coevolution relationship with their bat hosts. In Par-
aFit Individual H–P test, 51 (85%) of the 60 coronavirus 

(See figure on next page.)
Fig. 2 Tanglegram of cophylogenetic relationship between bat hosts and coronaviruses. Black lines denote significant coevolution links between 
coronaviruses and their hosts (ParaFit tests P ≤ 0.05), and gray lines denote non-significant links. Different groups of coronaviruses and bat species 
with significant coevolution links are marked with boxes in different colors. Information on host geographical distribution was derived from 
Simmons (2005)
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strains and 7 (19%) of the 36 paramyxovirus strains had a 
significant coevolution relationship with their bat hosts.

The construction of cophylogenetic trees revealed that 
closely related bat coronaviruses are found in closely 
related bat species (Fig. 2). One example of such obser-
vation is that closely related coronavirus strains 1B/
CHN/EU420137, AH2011/CHN/KJ473795, 1A/CHN/
EU420138, and HKU8/CHN/EU420139 are found in 
Miniopterus pusillus, Miniopterus fuliginosus, and 
Miniopterus magnater that are very close to each other. 
Another example is the coevolution relationship between 
closely related bats including Tylonycteris pachypus, Hyp-
sugo savii, Vespertilio sinensis, Neoromicia capensis, and 
Ia io and the following coronavirus strains: GX2012/
CHN/KJ473822, 206645-40/ITA/MG596802, SC2013/
CHN/KJ473821, NL13845/CHN/MG021451, 5038/
RSA/MF593268, and PML-PHE1/RSA/KC869678. Simi-
lar coevolution relationships are found in closely related 
bat species Rhinolophus ferrumequinum, Rhinolophus 
blasii, Rhinolophus pusillus, Rhinolophus macrotis, Rhi-
nolophus sinicus, Rhinolophus pearsonii, and Rhinolo-
phus affinis and the following coronavirus strains: RF1/
CHN/DQ412042, JTMC15/CHN/KU182964, JL2012/
CHN/KJ473811, 16BO133/ROK/KY938558, HeB2013/
CHN/KJ473812, SX2013/CHN/KJ473813, Shaanxi2011/
CHN/JX993987, HuB2013/CHK/KJ473814, HKU3-1/
CHN/DQ022305, YN2013/CHK/KJ473816, Rs3367/
CHN/KC881006, GX2013/CHN/KJ473815, Anlong-103/
CHN/KY770858, Rp3/CHN/DQ071615, LYRa11/CHN/
KF569996, and RaTG13/CHN/MN996532 (Fig.  2). For 
paramyxoviruses, closely related bat species Neoromicia 
nanus, Myotis alcathoe, Myotis myotis, Myotis capaccinii, 
Myotis daubentoniid, and Myotis bechsteinii are found 
to carry the following closely related strains: GH36/
GHA/FJ609192, 3-320/BGR/HQ660163, N78-14/GER/
HQ660166, 6-43/BGR/HQ660164, NMS09-48/GER/
HQ660165, LN2012/CHN/KJ641656, and NM98-46/
GER/HQ660170 (Fig. 3).

Results of ParaFit Individual H–P test showed that 
85% (51/60) of coronavirus strains but only 19% (7/36) of 
paramyxovirus strains have a significant coevolution rela-
tionship with their bat hosts. Since significant coevolu-
tion was found in both groups of the viruses by eMPRess 
and ParaFit and PACo Global tests, this low positive indi-
vidual H–P link rate in paramyxoviruses may be due to 
small sample size.

We postulate that that evolutionary relationship and 
close habitat of bat species contribute to inter-species 
transmission of viruses. One observation supporting 
this hypothesis is that coronavirus strains 206645-40/IT/
MG596802 (bat host: Hypsugo savii) and 206645-63/IT/
MG596803 (bat host: Pipistrellus kuhlii) share 99.46% 
nucleotide sequence identity in their RdRp gene and 
are found in bats living in the same geographical area, 
Italy. In addition, coronavirus strains 16BO133/ROK/
KY938558, JL2012/KJ473811, and JTMC15/KU182964 
are highly related with > 99.6% nucleotide sequence iden-
tity in the RdRp gene and are found in bats distributing in 
areas near each other, including Jilin Province, China (for 
isolates JL2012/KJ473811 and JTMC15/KU182964) and 
South Korea (for isolate 16BO133/ROK/KY938558) that 
is close to China.

Most bat SARSr-CoVs are from Rhinolophus bats, but 
strains As6526/CHN/KY417142 and Yunnan2011/CHN/
JX993988 are found in Aselliscus stoliczkanu and Chaere-
phon plicatus, respectively. Although these two bat spe-
cies are phylogenetically far apart, they live in the same 
geographical area, Yunnan Province, China. This obser-
vation suggests that distantly related bats in the same 
geographical location may harbor the same viruses, lead-
ing to inter-species transmission of the viruses.

Horseshoe bats are widely distributed in Europe, Asia, 
Australia, and Africa [18–21] and are potential reser-
voirs of epidemic coronaviruses [22]. The strain BM48-
31/BGR/GU190215 was found in Rhinolophus blasii 
and clustered with other SARSr-CoVs in the coronavirus 
coevolution tree (Fig. 2). Its relationship with human and 
civet SARS-CoVs is farther than that of other SARSr-
CoVs (Fig.  1), suggesting that they diverged from the 
same ancestor. Results of previous studies suggest that 
Rhinolophus bats are the natural hosts of human SARS-
CoVs [23–25]. Many bat SARSr-CoVs are detected in Rhi-
nolophus sinicus and Rhinolophus ferrumequinum that 
distributed in Asia, Africa, and Europe. However, SARSr-
CoVs that are highly related to human SARS-CoVs have 
not been found in Rhinolophus ferrumequinum that live 
in Africa and Europe, probably due to geopgraphical iso-
lation from SARSr-CoVs that are mainly found in Yunnan 
Province, China [26].

For paramyxoviruses, Pteropid bats have been shown 
to be the natural reservoir of Henipavirus [27, 28] and 
are speculated to be responsible for the outbreaks in 

Fig. 3 Tanglegram of cophylogenetic relationships between bat hosts and paramyxoviruses. Black lines denote significant coevolution links 
between paramyxoviruses and their hosts (ParaFit tests P ≤ 0.05), and gray lines denote non-significant links. Different groups of paramyxoviruses 
and bat species with significant coevolution links are marked with boxes in different colors. Information on host geographical distribution was 
derived from Simmons (2005)

(See figure on next page.)
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Malaysia, Australia, Singapore, Philippine, India, and 
Bangladesh during the period of 1995–2015 [29–35]. 
Several species of Pteropid bats, including Pteropus 
alecto, Pteropus conspicillatus, Pteropus giganteus, and 
Pteropus vampyrus, have been found to carry Henipavi-
urs. These bats live in Southeast Asia and Oceania [36], 
where Henipavirus pandemic occurred.

As Rhinolophus sinicus bats are found only in China, 
Nepal, Vietnam, and North India [36] and SARSr-CoVs 
are mainly found in Yunnan Province, China, SARS-
CoV outbreaks have not occurred in other places such 
as Europe, Africa, Oceania, and America. SARS-CoV-2 
is responsible for the COVID-19 pandemic (Interna-
tional Committee on Taxonomy of Viruses). In this 
study, the strain RaTG13/CHN/MN996532 is found 
to be very close to SARS-CoV-2 with > 97% nucleotide 
sequence identity in the RdRp gene and 96% identity 
at the whole genome level. There are approximately 
1100 bases that are different between the genomes 
of RaTG13/MN996532 and various strains of SARS-
CoV-2 suggesting that RaTG13/MN996532 requires 
at least one intermediate host to transmit to humans 
[2]. As the host of RaTG13/MN996532 is Rhinolophus 
affinis residing in Yunnan Province, China, it has been 
speculated that SARS-CoV-2 is derived from Rhinolo-
phus bats roosting in areas near Yunnan Province, 
China, such as Southwest China, Myanmar, Laos, Viet-
nam, and other Southeast Asian countries [37].

Divergence of bats can be traced back to tens of mil-
lion years ago [38, 39]. It has been estimated that coro-
naviruses diverged tens of thousand years ago [40]. This 
difference may be due to the fact that the genome of cor-
onaviruses is RNA that is more prone to mutations than 
DNA. It has also been estimated that coronaviruses have 
been infecting birds and bats for tens of million years, 
thus providing the opportunity for coevolution with their 
hosts [41].

Conclusion
We have found evidence suggesting that both corona-
virus and paramyxovirus coevolve with their bat hosts. 
Understanding the coevolutionary patterns of these 
viruses with their hosts will allow a better prediction of 
transmission between bats and humans.

Methods
Phylogenetic analysis
The database of  Bat-associated  Viruses (DBatVir, http:// 
www. mgc. ac. cn/ DBatV ir/)  [42] contains information 
on various bat-associated viruses, including genome 
size, lengths of identified genes, date and place (city and 
country) of isolation, names of the viruses, and Gen-
Bank accession numbers of nucleotide sequences of the 
entire genome or individual genes. With the “browse by 
virus” function, 60 coronavirus and 36 paramyxovirus 
strains with all aforementioned information available 
were found. As this database does not contain actual 

Fig. 4 P-value histogram of (A) host–coronavirus and (B) host–paramyxovirus relationships. The optimal reconciliation cost of the coevolution trees 
is indicated with a red line, and the optimal cost of the same trees constructed with tip associations permuted at random is shown in blue columns

http://www.mgc.ac.cn/DBatVir/
http://www.mgc.ac.cn/DBatVir/
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sequences, nucleotide sequences of selected viral strains 
were downloaded from the GenBank. These sequences 
included those of the RNA dependent RNA polymerase 
(RdRp) gene (2734 bp) of the 60 coronaviruse strains and 
the RNA polymerase large (L) gene (559 bp) of the 36 par-
amyxovirus strains. The 60 coronaviruses were derived 
from 37 different bat species, and the 36 paramyxovi-
ruses were derived from 29 different bat species. Among 
them, 5 bat species including Myotis daubentoniid, Eido-
lon helvum, Hipposideros abae, Hipposideros ruber, and 
Hipposideros pomona were found to harbor both corona-
virus and paramyxovirus. Altogether, 61 different species 
of bats were identified to be the hosts of the coronavirus 
and paramyxovirus strains examined in this study. As the 
cytochrome B (cytB) gene is one of the most conserved 
gene in bats, its sequence was used for coevolution 
analyses. The cytB sequences of 59 of the 61 bat species 
were downloaded from the GenBank. Since the cytB 
gene sequences of Miniopterus pusillus and Tylonycteris 
robustula, that were the hosts of coronavirus strains 1B/
CHN/EU420137 and HKU33/CHN/MK720944, respec-
tively, were not available, they were determined in this 
study. These two bat species were captured from Meng-
hai, Yunnan and Kau O Bat Cave, Macau, respectively. 
Anal swabs of Miniopterus pusillus and a small portion 
of the patagiums of Tylonycteris robustula were obtained. 
The captured bats were released back to their roosts after 
sampling. DNA was isolated from these samples and 
used as the template for amplication by polymerase chain 
reaction (PCR) of a portion (1140  bp) of the cytB gene 
with primers L14727ag (5′-ATG ATA TGA AAA ACC ATC 
GTTG) and H15915ag (5′-TTTCCNTTT CTG GTT TAC 
AAGAC) [43]. PCR conditions were as follows: 94 °C for 
3 min, followed by 20 cycles of 94  °C for 20  s, 46  °C to 
52 °C (+ 0.3 °C/cycle) for 30 s, and 72 °C for 90 s and 30 
cycles of 94 °C for 20 s, 60 °C for 30 s, 72 °C for 90 s and 
then maintained at 72 °C for 10 min. The PCR products 
were sequenced, and the sequences thus obtained have 
been deposited in the Genbank with accessing numbers 
MN366287 and MN366288.

To analyze the nucleotide sequences, they were aligned 
with Clustal Omega (https:// www. ebi. ac. uk/ Tools/ 
msa/ clust alo) [44]. The outgroup sequences included in 
sequence alignments were those of coronavirus Turkey 
COV/NC_01080, paramyxovirus Sosugavirus/KF774436, 
and bat Megaderma lyra/DQ888678. Maximum-like-
lihood phylogenetic trees were constructed using 1000 
bootstraps with the raxmlGUI program [45] using the 
substitution model GTR + I + G, which compares likeli-
hood scores calculated with the jmodeltest 2.1.7 software 
[46].

Comparison of host and virus phylogenies
To determine the degree of congruence between bat and 
virus topologies on phylogenetic trees and identify indi-
vidual associations contributing to the cophylogenetic 
relationship the software ParaFit was used [47]. ParaFit 
tests the null hypothesis that the evolutions of a clade of 
hosts and a clade of parasites are independent. ParaFit 
has two types of tests: a global test of coevolution and a 
test on each host–parasite (H–P) link. The matrices of 
patristic distances used in global-fit analysis were cal-
culated from the maximum likelihood trees of host and 
virus phylogenies using the “cophenetic” function of the 
software package ape in R 3.6.0 [48, 49]. ParaFit analy-
ses were also performed in R with 999 permutations for 
both global and individual H–P link tests. Each individ-
ual host–virus link was considered as significant when its 
ParaFit 1 or Parafit 2 P-value was ≤ 0.05 [15].

To obtain comparable global goodness-of-fit statistics 
with Parafit global values, the software package Procru-
stean Approach to Cophylogeny (PACo) [50] in R was 
used in conjunction with packages ape and vegan [51]. 
PACo determines the dependence of one phylogeny upon 
the other and produces a Procrustes superimposition 
plot for a graphical assessment of the fit of the parasite 
phylogeny onto the host phylogeny and a goodness-of-fit 
statistic. As ParaFit values may be variable, virus matrix 
in PACo was rotated and scaled to fit the host matrix in 
order to evaluate the dependence of parasite phylogeny 
upon host phylogeny. A goodness-of-fit test based on 
1000 randomizations was used to assess the significance 
of such dependence. The associated squared residu-
als were used to assess the significance of coevolution 
of each host–virus link [52]. Cophylogenetic trees were 
generated using the “cophylo” function of the R package 
phytools [53].

Even‑based cophylogeny
The event-based program eMPRess [54] was used to 
determine whether the pairs of coronavirus, para-
myxovirus, and their hosts coevolve with each other. 
eMPRess is a tool for reconciling pairs of phylogenetic 
trees based on the Duplication-Transfer-Loss (DTL) 
model [55], which is performed using a maximum par-
simony formulation to determine the associated cost 
of each coevolution event. eMPRess computes and dis-
plays the distances between every pair of maximum 
parsimony reconciliation (MPR). The distance between 
two MPRs is the number of events in one MPR. The 
maximum likelihood (ML) trees of hosts and viruses 
were used as inputs, and the analysis was conducted 
using the following eMPRess parameters: duplication 
cost = 1, transfer cost = 2, and loss cost = 1. The optimal 

https://www.ebi.ac.uk/Tools/msa/clustalo
https://www.ebi.ac.uk/Tools/msa/clustalo
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reconciliation cost for each dataset was compared with 
that of the same tree with tip associations permuted at 
random.
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