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Abstract

have an interesting evolutionary history.

the gene function in a lineage-specific manner.

homologs was positively selected.

Background: PL70 homologs exist in a wide range of eukaryotes from yeast, plants to animals. They share a DEAD
motif and belong to the DEAD-box polypeptide 3 (DDX3) subfamily with a major role in RNA metabolism. The lineage-
specific expression patterns and various genomic structures and locations of PL70 homologs indicate these homologs

Results: Phylogenetic analyses revealed that, in addition to the sex chromosome-linked PL70 homologs, DDX3X and
DDX3Y, a single autosomal PLT0 putative homologous sequence is present in each genome of the studied non-rodent
eutheria. These autosomal homologous sequences originated from the retroposition of DDX3X but were
pseudogenized during the evolution. In rodents, besides Ddx3x and Ddx3y, we found not only P/70 but another
autosomal homologous region, both of which also originated from the Ddx3x retroposition. These retropositions
occurred after the divergence of eutheria and opossum. In contrast, an additional X putative homologous sequence
was detected in primates and originated from the transposition of DDX3Y. The evolution of PL10 homologs was under
positive selection and the elevated Ka/Ks ratios were observed in the eutherian lineages for DDX3Y but not PL10 and
DDX3X, suggesting relaxed selective constraints on DDX3Y. Contrary to the highly conserved domains, several sites
with relaxed selective constraints flanking the domains in the mammalian PL70 homologs may play roles in enhancing

Conclusion: The eutherian DDX3X/DDX3Y in the X/Y-added region originated from the translocation of the ancient
PL10 ortholog on the ancestral autosome, whereas the eutherian PL10 was retroposed from DDX3X. In addition to the
functional PL10/DDX3X/DDX3Y, conserved homologous regions on the autosomes and X chromosome are present.
The autosomal homologs were also derived from DDX3X, whereas the additional X-homologs were derived from
DDX3Y.These homologs were apparently pseudogenized but may still be active transcriptionally. The evolution of PLT0

Background

PL10 was first identified in mouse by using a human Y
chromosome (Chr) derived probe [1] and is present in a
wide range of eukaryotes from yeast, plants, and animals,
including humans [2]. In the mouse, P/10 has been shown
to encode a functional protein with an important DEAD
motif (Asp-Glu-Ala-Asp), which plays essential roles in
spermatogenesis [3]. In eutherian mammals, PLI0 has
two closely-related paralogs, DDX3X (DEAD box poly-
peptide 3, X-linked) and DDX3Y (DEAD box polypeptide
3, Y-linked), located on the sex Chrs. PL10, DDX3X and
DDX3Y share the DEAD motif and constitute the DDX3/
DED1 (ATP-dependent DEAD-box RNA helicase) sub-
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family under the DEAD-box helicase family [4] with a
major function related to RNA metabolism [5]. The
DDX3/DED1 subfamily is involved in diverse cellular
process including tissue differentiation at distinct devel-
opmental stages, embryogenesis, asexual reproduction,
cell regeneration, tumorigenesis and immune response
[2,6-8], which have been reviewed comprehensively by
Rosner et al. [2].

Interestingly, the biological roles of the eutherian mem-
bers in DDX3 subfamily appear to be varied and lineage-
dependent although they share domain structures and
highly similar sequences. In eutheria, the DDX3X has
been shown to elicit immunoresponse because the
DDX3X can interact with TANK-binding kinase 1 (TBK1)
to induce the type I interferon (IFN) promoter and the
downstream immune pathway [6]. In addition, DDX3X
also plays a role in HIV infection and becomes an impor-
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tant target in antiviral therapy [9]. On the other hand, the
human DDX3Y lies within the azoospermia factor a
(AZFa) region on the proximal Yq11.21 and the deletion
of human DDX3Y resulted in the oligozoospermia, azoo-
spermia and the male sertoli-cell only syndrome [10,11].
In spite of their high amino acid (aa) similarity (91%),
DDX3X cannot rescue the loss-of-function of DDX3Y in
human [2], signifying the functional diversification
between DDX3X and DDX3Y. The human DDX3Y is
believed to be one of the essential genes involved in
human spermatogenesis and male fertility [12]. In con-
trast to the human ortholog, the pivotal role of Ddx3y in
spermatogenesis has been replaced by the autosomal P/10
in mice [3]. The mouse P10 is believed to evolve from
Ddx3x through the retroposition mechanism [13]. More
interestingly, the bovine PL10 has also been proved to be
active at the transcription level even though it may lose
protein-coding potential [14]. In addition to the lineage-
dependent functionality of PL10, the tissue specificity of
DDX3X/DDX3Y homologs has also been shown to vary
in mouse and human [15,3]. The lineage-specific expres-
sion patterns and the diverse genomic structures and
locations of PLI0 homologs suggest that the PLI10
homologs regulate biological process via divergent mech-
anisms and evolved differently. However, previous studies
focused mainly on elucidating the function rather than
the evolution of PL10, which elicited our interest to inves-
tigate the evolutionary history behind PL10, DDX3X, and
DDX3Y. Here, we report the results from a phylogenetic
analysis of the PL10 homologs in 19 different species.

Results

The identification of PL10 homologous sequences

To obtain deep insight into PLI0 evolution, we collected
the PL10 related genes deposited in NCBI [16] and
detected its potential homologs by comparing the mouse
Pl10 mRNA sequence against the UCSC genome data-
base [17]. In addition to the 22 annotated sequences for
PL10, DDX3X and DDX3Y, we identified 15 PLI0 puta-
tive homologous regions (coverage > 50%) in the genomes
of mammals (Table 1). These putative homologs occupied
the genomes with two major patterns in terms of their
spanning size (2~4 and 10~14 Kb). The large-size
homologs are located in the sex Chrs containing intron-
exon structures, while the small-size ones are mostly
autosomal and intronless (Table 1).

We extracted the sequences from these putative homol-
ogous regions and conducted a gene prediction using
GENSCAN [18] to identify whether these homologous
sequences maintain protein-coding potential. Based on
gene similarity, structures and chromosomal locations,
we obtained the predicted DDX3X in chimp and orang-
utan, and PI10 on Chr 13 in rat (RNO13). The predicted
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chimp and orangutan DDX3X matched the predicted
coding proteins in ENSEMBL [19] (Table 1). Compared
to the human DDX3X protein of 662 aa, the predicted
peptide is much shorter in the chimp with only 438 aa
because of the incomplete sequence. The predicted rat
P110 matched to the entry, NP_001102328.1, in the NCBI
database, and we concluded that it is the rat P/10 based
on its intronless structure and high sequence similarity
(96%) with the mouse P/10. In opossum, the predicted
DDX3 peptide matched to ENSMODT00000026845 in
ENSEMBL [19] (Table 1). The remaining 11 homologs
either do not have an open reading frame (ORF) or have a
premature stop codon (Table 2). Thus, they are pseudo-
genes.

The analyses of PL10 phylogeny

Using the 22 PLIO related entries from NCBI together
with 15 previously-described putatively homologous
sequences, we constructed a phylogenetic tree to investi-
gate the evolutionary relationship among these
homologs. The tree clearly indicated several evolutionary
clusters (Fig. 1). The first cluster is the PL10/DDX3X
cluster, within which the putative homologous sequences
on primate Chr4 were in the same clade and clustered
with the primate DDX3X. The autosomal homologous
regions in ruminants and carnivores, including the
bovine PL10 pseudogene [14], were also in the same clus-
ter and grouped with the DDX3X counterparts as in pri-
mates (Fig. 1). No apparent insertions were detected in
these homologous regions. The mouse and rat P/10 were
in the same branch. However, an additional putative
homolog of DDX3X was detected in mouse (MMU1) and
rat (RNO19), which was grouped with its corresponding
DDX3X gene, respectively, before clustering them
together into a single group. It is noteworthy that all
homologs of DDX3X identified in mammals are intron-
less (Table 1). Since the mammalian DDX3X contains an
intron-exon structure, we reasoned that these intronless
homologs are most likely the evolutionary trace after the
DDX3X retroposition.

In addition to the functional eutherian DDX3X, we
detected another putative homologous region on primate
ChrX which was present on the same branch with the
DDX3Y instead of the DDX3X (Fig. 1). In contrast to the
autosomal homologs, these ChrX putative homologs con-
tain one or more insertions that appear to fit with the
typical GT/AG splicing rule (Table 2), raising the possi-
bility that these additional X homologs may have derived
from a transposition event before the primate divergence
(Fig. 1). Furthermore, in opossum and chicken, only a sin-
gle homologous region with the intron-exon structure
was detected on opossum Chr4d (MDO4) and chicken
Chrl (GGAL), respectively (Table 1).
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Table 1: PL10 homologs in 19 species.

Species (build version) Chr Gene Homologous region Span Accession Number
Human (37.1) Y DDX3Y 15016838 15030444 14229 NM_004660.3
X DDX3X 41193484 41207386 14657 NM_001356.3
X 73340837 73351755 18744
4 104493233 104495627 3122
Chimp (2.1) Y DDX3Y 18024925 18030276 5352 NM_001008986.1
X DDX3X 41567709 41578379 10637 ENSPTRT00000048707
X 73472677 73479677 7000
4 106890486 106891981 1496
Orangutan (2.0.2) X DDX3X 41920594 41934087 13494 ENSPPYT00000023631
X 71584239 71585574 1336
4 108027398 108029797 2400
Mouse (37) Y Ddx3y 599654 615438 15785 NM_012008.1
X Ddx3x 12858220 12869030 11577 NM_010028.3
1 PIT0 188791295 188794506 3212 NM_033077.2
1 28046742 28049045 2304
Rat (RGSC 3.4) X Ddx3x 21497214 21508627 11414 XM_228701.4
13 PIT0 103083154 103086327 3174 NM_001108858.1*
19 5498280 5501578 3299
Dog (2.0) X DDX3X 35708607 35722852 14282 XM_856175.1
22 15373292 15375479 2188
Horse (EquCab2.0) X DDX3X 33503944 33514664 10721 XM_001491432.2
17 31837579 31839780 2202
Cow (Btau_4.0) Y DDX3Y 864 52794 5194 [14]
DDX3X 68833 82540 13708 [14]
15 PL10 186070 189757 3688 [14]
Opossum (MonDomb5) 4 DDX3 22331869 22343917 12049 ENSMODT0000002684
5
Chicken (2.1) 1 DDX3 115610539 115617788 7250 NM_001030800.1
X. tropicalis (4.1) DDX3 940555 947979 7425 BC063374
Zebrafish (Zv7) 6 PL10 25945 42249 16304 NM_130941
Clamworm PL10a AMO048813.1
Flatworm DjVLGA AB017002.1
Hydra CnPL10 AB047381.1
Rice DEAD-box RNA NM_001074753.1
Helicase
Arabidopsis DEAD-box RNA NM_129813.4
Helicase
Fission Yeast DED1 AJ237697.1
Yeast DBP1 X55993.1
DED1 X57278.1

* The corresponding protein entry is NP_001102328.1.
AThe position was annotated based on NW_001496707.1.
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Table 2: Pairwise comparison between mouse PI10 (mPI10) and the non-annotated homologous regions in eutheria.

Genomic Position of Non-annotated Identity with m

Alignment Cover-

Aligned Segment NumberA Putative Peptide

PL10 Homologs PI10 (%) age with m PI10 (%)* Length (aa)#
Human Chr4 (HSA4) 80.08 100.00 1 84
Human ChrX (HSAX) 78.52 98.38 2 (Ins: 8958 bp) 241(DDX3Y)
Chimp Chr4 (PTR4) 74.83 81.93 1 84
Chimp ChrX (PTRX) 78.37 98.34 2 (Ins: 1134 bp; Ns: 3010 bp) 472(DDX3X)
Orangutan Chr4 (PPY4) 79.80 74.18 2 (Ns: 463 bp) 132
Orangutan ChrX (PPYX) 80.94 67.42 1 124(DDX3Y)
Mouse Chr1 (MMU1) 79.45 95.41 1 349(DDX3X)
Rat Chr19 (RNO19) 80.27 51.08 3 (Ns: 1509 bp; Ins: 316 bp; 192(DDX3X)

Gap: 962 bp)

Dog Chr22 (CFA22) 73.00 58.00 1 N/A
Horse Chr17 (ECA17) 75.98 96.82 1 N/A
Cow Chr15 (BTA15) 81.00 72.52 1 N/A

* The alignment coverage was calculated based on the pairwise alignment between the mouse P/70 and identified homologous regions.
ANs: the homologous region contains incomplete sequences. Ins: the homologous region is interrupted by non-homologous sequences. Gap:
part of mP/10 was not alignable with the detected homologous sequences.

#The peptides were predicted via GENSCAN [18]. The protein name in parenthesis indicated the matched entries with lowest e-value in blastp

analysis. N/A: not applied.

Positive selection test for the PL10 related genes

We compared the one-ratio model with the free-ratio
model to test the lineage-specific positive selection for
the PLIO related functional homologs in our dataset
using PAML4 package [20]. The one-ratio model assumes
the same K, /K (w) ratio for all the lineages. The log-like-
lihood value under this model was /, = -22217.097 with 58
parameters where the transition/transversion rate ratio
was k = 1.685 and w = 0.041. The w was computed as the
average of all codon sites and lineages. The free-ratio
model assumes an independent w ratio for each branch
and the number of parameters was increased to 104 for
our dataset in this model. The likelihood value under this
model was [; = -22105.980. The comparison of the likeli-
hood value, 2Al = 2(I;-1,), was 222.234 as determined by

the X2 distribution with degree of freedom (df) of 46 (p <
0.001), allowing us to reject the one-ratio model and con-
clude that the w ratios are varied among lineages (Fig. 2).
In mammals, the estimates of w ratios were all lower than
0.1 on the branches leading to the lineages for PL10 and
DDX3X, whereas the w ratios were higher on average
(0.5) among the lineages for DDX3Y (Fig. 2). Further-
more, the primate lineages for DDX3Y in human and
chimp were detected to be subject to positive selection
(Fig. 2). The branches leading to the mammalian PL10
homologs clade (Fig. 2) also showed w ratios larger than
1, suggesting that the evolution of PL10/DDX3X/DDX3Y
was under positive selection.

Since some lineages were positively selected, especially
in the case of DDX3Y, we further used a small dataset
containing only the mammalian homologous coding
sequences to examine the positively selected sites. The
test statistic of likelihood ratio test (LRT) between the
one-ratio model (MO) and the discrete model (M3) was

128.182 that is greater than the critical value yf, = 13.28
when df = 4 [Additional File 1 and File 2]. This suggested
that the selective pressure is diverse among the codons.
Three site classes calculated under model M3 have prior
probability of p, = 0.887, p; = 0.108, and p; = 0.005 with
the Ka/Ks ratios of w, = 0.025, w; = 0.316 and w, = 2.549
[Additional File 1]. The posterior probabilities of site
classes calculated in model M3 are shown in Fig. 3. How-
ever, the LRT of the other two pairs of models, Mla
(Nearly Neutral)/M2a (Selection) and M7 (beta)/M8
(beta & w), generated an incongruent result. The test sta-
tistic of the M1a/M2a is insignificant (p > 1), whereas the
M7/M8 generated a significant result with a LRT value of

16.97 greater than the critical value at df = 2, y7, = 9.1
(p < 0.01) [Additional File 1 and File 2], which together
gave rise to the marginal prediction of the codon sites
with relaxed selective constraints. Four (9A, 10L, 24S,
425S) and six (9A, 10L, 24S, 425S, 608A, 609S) sites were
inferred to contain increased w ratios under models M2a
and MBS, respectively. Four of the six inferred sites in
model M8 coincided with the result of model M2a,
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Figure 1 The bootstrap consensus tree of PL10 homologous sequences. The evolutionary tree was built based on the Neighbor-Joining method
implemented in MEGA4 [55,62]. The bootstrap consensus tree is inferred from 1000 replicates and the branches corresponding to partitions repro-
duced in less than 65% bootstrap replicates are collapsed. The bootstrap values are shown as percentages next to the branches. The evolutionary
distances were computed using the Maximum Composite Likelihood method [63] and in the units of the number of base substitutions per site. The
rate variation among sites was modeled with a gamma distribution (shape parameter = 0.91). All positions containing alignment gaps and missing
data were eliminated by pairwise deletion. A total of 3944 positions were in the final dataset [Additional File 6]. The branches leading to the non-an-
notated autosomal homologous clusters of PL10are highlighted in blue; the branches leading to the rodent PlT0are highlighted in green; the branch-
es leading to the non-annotated X-homologs are highlighted in red. The PL10/DDX3X cluster and the DDX3Y cluster are marked by vertical lines on
the right.
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Figure 2 The tree of the DDX3 family established for the positive selection test based on Maximum Likelihood approach. The branch length
was estimated in the unit of the number of nucleotide substitutions per nucleotide. Values larger than 0.1 are denoted in bold. The numbers in the
parenthesis represent the estimated numbers of nonsynonymous substitutions against synonymous substitutions of the specific branch. Scale bar =
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Figure 3 Posterior probabilities of three site classes with different selective pressures (measured by the w ratio) for codon sites along the
mammalian PL10 homologs under the site model M3. The X-axis represents the codon positions which were labeled based on the human DDX3X
amino acids. The probabilities of the site classes are indicated in the Y-axis. The DEAD/DEAH-box helicase domain and helicase conserved C-terminal

including Ala9, Leul0, Ser24, Ser425, in which the Ser24
and Ser425 have posterior probability higher than 0.9
under model M8 [Additional File 1]. All of the inferred
sites are located in the non-domain regions.

Conservation of PL10 homologs

We conducted a multiple alignment for all the analyzed
sequences to investigate the domain conservation in
PL10, DDX3X and DDX3Y, and found that the DEAD/
DEAH box helicase domain (Pfam: PF00270) and helicase
conserved C-terminal domain (Pfam: PF00271) of the
DDX3 genes are highly conserved [Additional File 3]. We
evaluated the degree of conservation by ConSurf (Fig.
4A) [21], which assigned the conservation score to each
site of the provided DDX3X structures (PDB: 2I4I) [22]
based on the empirical Bayesian method [21]. After map-
ping the conservation score to the structure, we found
that the highly conserved codons concentrated in the
cleft where the adenosine monophosphate (AMP) and
RNA substrates interact with the DDX3 proteins (Fig. 4).

Discussion

In the non-eutherian lineages, PL10 is the sole member of
the DDX3 subfamily, whereas in eutheria, the ancient
PL10 gene is located on the ancestral sex Chrs, resulting
in the sex Chr-linked orthologs, DDX3X and DDX3Y (Fig.
1). Molecular evolutionary studies in recent years have
established that the mammalian sex Chrs originated from
a pair of ordinary autosomes, and most ancestral genes
on that pair were still maintained on the X Chr but
degenerated on the Y Chr due to the lack of recombina-
tion [23-25]. However, the Y Chr intends to maintain the
functional genes that are beneficial to the male, such as
those genes involved in spermatogenesis including
DDX3Y [26]. Like the non-eutherian PL10, DDX3X and
DDX3Y comprise the intron-exon structures, supporting
the concept that DDX3Y and DDX3X are the evolutionary

relics of the ancestral autosomal PLI0. In opossum, the
PL10 homologous sequence was detected only on MDO4
but not on the sex Chrs. The opossum Chr4 homolog also
contains the intron-exon structure with predicted pep-
tide close to DDX3X. Similarly, the single homologous
sequence detected in chicken was located on the auto-
somes and it contains introns. A recent study for the gene
cluster in the X/Y-added region of mammalian sex Chrs,
XAR and YAR, revealed that the gene cluster and the
gene order of this region are the same on chicken GGA1
but separated on opossum MDO4 and MDO?7 [15], sug-
gesting a single translocation event gave rise to the differ-
ent chromosomal locations of the gene cluster among
chicken and opossum. The DDX3X/DDX3Y also reside

DEAD-h

Helicase C AMP

Variable Conserved

I I EIENER R EA

Figure 4 The conserved domain and ATP binding site of the hu-
man DDX3X. A. The conservation score distribution on the human
DDX3X (PDB: 2141) was assigned based on the empirical Bayesian meth-
od by ConSurf [21]. The domain regions are highlighted in dot-yellow
halos. B. The ATP binding cleft depicted in PDBsum [64] corresponds
to the conserved region in A.
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within the XAR/YAR, which allowed us to reach the par-
allel conclusion that the translocation generated the PL10
homologs on the chicken Chrl and opossum Chr4, and
DDX3X/DDX3Y on the eutherian sex Chrs (Table 1, Fig.
1).

Of particular interest is the occurrence of the mouse
Pl10, an intronless gene and the only demonstrated func-
tional autosomal ortholog in mammals to date. Consis-
tent with a previous deduction [13], our result supported
that the rodent P/10 was derived from the retroposition
of the DDX3X genes [27]. Retroposition is a crucial
mechanism of gene duplication [28] and generates many
new genes in new genomic positions through the reverse
transcription of a parental gene [27,29,30]. The parental
gene usually contains introns, whereas the processed ret-
rocopy is intronless [27]. Thus, the other detected puta-
tive autosomal PLIO homologous sequences without
apparent intron-exon structure in cattle, horse, dog and
primates may have also evolved through the retroposition
mechanism. These intronless homologous sequences on
autosomes were consistently detected in eutherians but
not in opossum, suggesting that the retroposition
occurred after the divergence of eutherian and other
mammals around 150 to 170 million years ago [31]. This
raised an interesting question, why does the autosomal
retroposition of the PL10 occur specifically in eutheria? It
may be partially explained by the important functional
role of mouse P/10 and the recently discovered bovine
PL10. The mouse P/10 has been evidenced to be a central
gene regulating the spermatogenesis and replace the role
of DDX3Y [3]. The bovine PL10, albeit pseudogenized
during the evolution, has also been proven to be active
transcriptionally and may be involved in the regulatory
coordination of bovine spermatogenesis [14]. Although
the coding potential of the autosomal PLI10 homologous
sequences in eutheria, except in mouse, is diminished, we
cannot exclude the possibility that these homologous
sequences may be involved in regulating some biological
process at the transcriptional level. Indeed, previous
studies suggested that the pseudogenes may regulate the
expression of the functional paralogous genes by produc-
ing antisense RNA [32,33]. Therefore, it is valuable to
investigate whether these homologous sequences are
transcriptable and their potential function in the future.

The maximum likelihood ratio test (LRT) for different
lineages indicated that the Ka/Ks ratios in the PLIO
homologs are varied among the evolutionary lineages.
The Ka/Ks ratio along the branches among the mamma-
lian lineages showed that the evolution of the mammalian
PL10 homologs were not subject to positive selection,
except for the human and chimp DDX3Y that are posi-
tively selected (w > 1). In addition to the chimp and
human DDX3Y, we found that the ratios for the other
eutherian lineages for DDX3Y appear to be higher when

Page 8 of 12

compared to those for mammalian PLI0 and DDX3X,
which is in line with a finding by Wilson and Makova
[15]. These elevated w ratios can be explained by either
the effect of relaxed selective constraints for the lineages
containing DDX3Y due to the absent recombination of
the ChrY or a weak positive selection operating on the Y-
homologs [20]. The latter may still continue to refine the
male-specific function for the Y-homologs [34]. In con-
trast, the mammalian lineages for DDX3X and PL10 with
extremely low w ratios suggested that purifying selection
may act strongly on the mammalian PLI0 and X-
homologs. Furthermore, the w ratios of the branches
leading to the avian and mammalian lineages were larger
than 1, indicating that the emergence of eutherian PL10
homologs was selected positively to acquire species-spe-
cific gene function and purifying selection acted on the
DDX3X and PL10 homologs to preserve their crucial bio-
logical function and avoid their divergence.

A DDX3X/DDX3Y-specific multi-residue insertion
(EALRAMKENG) has been observed to form an impor-
tant positively charged cavity with the neighboring posi-
tive residues to increase the RNA binding surface in
humans [35]. After incorporating PLI10 and the homolo-
gous regions, we found that the insertion was highly con-
served in the PL10 homologs of fish, frog, chicken, and
other mammals, suggesting that the functional con-
straints occurred along the cavity region in the related
homologs. Conversely, this insertion was not well-con-
served in plants and invertebrates. Furthermore, the
DDX3X displayed no activity with the RNA substrate
when different flanking regions surrounding the domains
were removed [35]. A similar effect was proven in other
DEAD-box helicase related genes, such as the UAP56
[36] and DP103 [37], where the deletion of either the N-
terminal or C-terminal flanking sequences outside the
domain core regions impacts their helicase and ATPase
activity, signifying the regulatory roles of the flanking
regions. As shown from the analysis of positively selected
amino acids, all the marginally inferred selected sites
were located in the non-domain regions (Fig. 3) and may
have served as the targets for improving the gene func-
tion during the evolution. One of the inferred sites,
Ser425, occurred in the hinge region between two
domains, suggesting its potential role in the adaption of
the PL10 protein conformations and ligand-binding spec-
ificity. The slightly elevated w ratios were observed
mostly in the non-domain regions as depicted in Fig. 3,
indicating the purifying selection may attenuate in these
regions to allow the functional accommodations of the
PL10 homologs. Moreover, several sites in the flanking
regions of the human DDX3X have been shown to
undergo epigenetic modifications, including Ser2[38],
Tyr69[39,40], Ser74[41], Ser76[41], Ser78[41],
Tyr104(39], Ser125[41], Ser590[42], Ser594[43,42] and
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Ser612[43]. Meanwhile, two sites in the flanking
sequences of the human DDX3Y, Tyr69 [39,44] and
Ser592 [45], have been shown to be phosphorylated, and
they are conserved with the modified sites at Tyr69 and
Ser594 in the human DDX3X. The mouse P110 also has
two phosphorylated sites at Tyr282 and Tyr465, but both
of them were located in the domains [46,47]. The
sequence comparison showed that the selection force has
limited the divergence in the regions flanking the
domains of PL10 related genes in fish, frog, bird and
mammals, and most of the epigenetically modified sites
were highly conserved among these species. Interestingly,
despite the high degree of conservation, Ser76 exists spe-
cifically in the PL10 and DDX3X homologs but not in the
DDX3Y orthologs. This distinction and different epige-
netic modification pattern may partly contribute to the
functional divergence between the eutherian DDX3Y,
DDX3X and PLI0. The functional specificity of PL10
homologs appear to be determined multifactorially,
including the sequence elements located in the non-con-
served regions, the factors controlling the diverse tempo-
ral and spatial expression patterns [14], and the distinct
epigenetic modification patterns [35].

This study was limited to the availability of complete
genomes and the accuracy of the genome assembly. Even
though the number of finished genome projects in
diverse species is growing, incomplete sequences of PL10
homologs still exist in the published genomes, especially
for the challenges in sequencing and assembly of the Y
Chr due to its highly repetitive nature. Further under-
standing of the evolution of sex Chr linked genes largely
relies on the clarification of the diverse genomes in spe-
cies other than primates.

Conclusion

Our analyses revealed that several conserved putative
PL10 homologous regions, in addition to the functional
PL10/DDX3X/DDX3Y, are present on the autosome and
mammalian X Chr. These homologs share high similarity
(> 70%) and coverage (> 50%) with mouse P/10 but con-
tain premature stop codons or indels, resulting in shorter
putative peptides and/or frameshifts, suggesting their
pseudogenization during the course of evolution [27,48].
The eutherian DDX3X/DDX3Y located in XAR/YAR
were derived from the translocation of the orthologs on
the ancestral autosome [15]. The identified putative auto-
somal homologs in mammals in the present study were
retroposed from the DDX3X while the additional X-
homologs in primates were transposed from the DDX3Y.
These translocation events are lineage-specific. Like the
bovine PL10, these homologs may still be active tran-
scriptionally. Positive selection appears to operate on the
PL10 homologs during the evolution. In addition to the
highly conserved domain regions, several sites in the
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non-domain regions of functional PLI10 homologs may
play roles in enhancing the gene function in a lineage-
specific manner.

The results reported in this study not only increase our
knowledge regarding the molecular evolution of PL10
homologs, which will facilitate the future functional char-
acterization of PL10 homologs, but also provide a valu-
able model to investigate the origin and evolution of the
mammalian sex Chrs and the mechanisms behind lin-
eage-specific gene duplication and functionality.

Methods

Sequence retrieval

By blating [49] the mouse P/10 mRNA sequence against
the genomes in UCSC genome database [17], we detected
several putative homologous regions in mammals, birds
and amphibians. We retrieved the homologous sequences
from UCSC and conducted the pairwise alignment by the
Bl2seq (NCBI Blast package) program using the mouse
Pl10 mRNA sequence as the subject to filter out the
sequences which cover < 50% of the mouse P/10. We
excluded the homologous sequences for the species with-
out clear chromosomal annotations from our study. In
addition, we downloaded the PLIO homologous
sequences for other species from the NCBI nucleotide
database based on the literature and database mining [2].
Afterwards, we used blastx [50] to confirm the identity of
each sequence and retrieved the corresponding entries
from the NCBI when the query sequences matched these
entries perfectly. Alternatively, for sequences without a
perfect hit in the database, we used the collected genomic
sequences for gene prediction using the GENSCAN [18].
The predicted peptides were used for blastp [50] analysis
to clarify their identities. Whenever the predicted pro-
teins can match to the entries in the database, we used
the deposited sequences in our analyses. The results were
summarized in Tables 1 and 2. Several purpose-designed
scripts were coded in C++ to facilitate the analysis.

Phylogenetic analysis

We performed multiple sequence alignments to investi-
gate the conservation of the domain regions by Clustal W
[51]. In order to ensure alignment quality, we first pre-
aligned the annotated homologous sequences using their
translated amino acid sequences in the coding regions.
The parameters of the ClustalW for multiple alignment
stage were modified to 3.0 for the gap opening penalty
and 1.8 for the gap extension penalty to improve the
alignment. Following that, we aligned the non-annotated
homologous sequences based on the nucleotide
sequences, which was further refined by manual adjust-
ment. The positions of DEAD and the helicase domain
were defined based on the annotation of Pfam [52] for the
human DDX3X. The alignment was visualized through
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Jalview [53]. The degree of conservation was calculated
by the empirical Bayesian method implemented in Con-
Surf [21] to investigate the highly conserved sites in the
published human DDX3X structures (PDB: 2141) covering
the important interacting domains involved in the RNA
metabolism of the PL10 related homologs [35]. The con-
served degree was represented through different colors
using Jmol [54] as shown in Fig. 4A. In addition, we used
the alignment to establish the Neighbor-Joining (NJ) phy-
logenic tree to study the relationship between PLIO0,
DDX3X, and DDX3Y by MEGA4 [55] with the Maximum
Composition Likelihood approach and 1000 bootstrap
replicates (Fig. 1). The rate variation among sites was
modeled with a gamma distribution (shape parameter =
0.91, estimated by the Model Selection of TOPALI (ver-
sion 2.5 [56]). In Fig. 1, the branches corresponding to
partitions reproduced in less than 65% bootstrap repli-
cates are collapsed. The reason for using the NJ method is
that the average pairwise Jukes-Cantor (JC) distance of
the dataset is 0.362 smaller than 1.0, which is suitable for
making the NJ trees [57]. We applied the pairwise dele-
tion to remove gaps as our sequence lengths are varied,
and a complete removal of the gaps is not a good choice
as it eliminates a large portion of phylogenetically mean-
ingful sites from consideration. Further, we used the
Maximum Composite Likelihood model, recommended
by the author of MEGA4 as a better evolutionary model.
We also used the PHYML [58] and MrBayes [59] imple-
mented in TOPALi to generate the phylogenetic trees
[Additional File 4 and File 5]. The models used in
PHYML and MrBayes are general-time-reversible
(GTR+Gamma) selected via the TOPALI.

Potential pseudogenes were excluded from the positive
selection test since the selective constraint may not act on
them anymore. We prepared an amino acid alignment
and the corresponding cDNA alignment for the complete
set of 25 sequences for the lineage test and a small dataset
(14) containing only the functional mammalian PL10
homologs for the site-specific test. The Codeml [20] in
PAMLA4 was applied for the following analyses. The sites
and lineages subject to positive selection were detected
based on the maximum likelihood approach [60]. We
compared the log likelihood values (/) derived from pairs
of models to testify if there was a significant difference
between model pairs by LRT. Each pair of the models
contains a simple model, where the Ka/Ks ratios of the
sites are limited, and a complex model, where the Ka/Ks
ratios can be varied. We can infer the occurrence of lin-
eage-specific and site-specific positive selection when the
estimated Ka/Ks ratio in the complex model is larger than
1.0 and the calculated test statistic (2A/) is significantly
larger than the critical values of the X2 distribution at the
corresponding degrees of freedom. We used MO (one-
ratio) and M1 (free-ratio) to test whether the lineage-spe-
cific positive selection occurred. The pairs of models
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used for the site-specific test were MO (One Ratio)/M3
(Discrete), Mla (Nearly Neutral)/M2a (Positive Selec-
tion), M7 (beta)/M8 (beta & w) [20]. Each test was
repeated to ensure the reproducible statistical results.
The detailed assumptions and descriptions of each model
were illustrated by Yang et al. [61,20].

Additional material

Additional file 1 Selection test result for functional mammalian PL10
homologs. Log-likelihood and parametric estimates of the site-specific
positive selection for functional mammalian PL70 homologs.

Additional file 2 Test statistics of site-specific positive selection test.
Likelihood ratio statistics (2A/) of the site-specific positive selection test.

Additional file 3 The multiple alignment and conserved regions of
the PL10 related sequences. Only the domain regions are shown in this
figure. The newly identified homologs are shaded in grey while the DEADc
and Helicase C-terminal conserved domain are boxed in red. The blue color
residues indicate the sites with conserved identity over 85%. The DDX3X/Y
and PL10 specific insertion and the extended DDX3 unique positive resi-
dues are highlighted in green.

Additional file 4 The Maximume-likelihood tree built for the PL10
related homologous sequences. The evolutionary tree was built based
on the Maximum-likelihood method implemented in TOPALI [56]. The
bootstrap values (1000 replicates) are shown next to the branches. The evo-
lutionary model used was GTR+G. The tree has a similar topology to Fig. 1.
Compared to Fig. 1, a swap occurred between the branches leading to the
hydra, clamworm and flatworm homologs, and another swap observed
between the branches leading to the putative rat Chr19 homologous
region and other rodent homologous regions. The branches leading to the
non-annotated autosomal homologous clusters of PL10in primate are
highlighted in blue; the branches leading to the rodent P/70are highlighted
in green; the branches leading to the non-annotated X-homologs are high-
lighted in red. The PL10/DDX3X cluster and the DDX3Y cluster are marked by
vertical lines on the right.

Additional file 5 The Bayesian inference tree built for the PL710related
homologous sequences. The evolutionary tree was built based on the
Bayesian inference method implemented in TOPALI [56]. The bootstrap val-
ues (1000 replicates) are shown next to the branches. The evolutionary
model used was GTR+G. This tree is very much similar to the Supplemen-
tary Fig. 2.

Additional file 6 The multiple sequence alignment of the putative
PL10 homologs. A total of 37 sequences from 19 species were included in
the alignment. The alignment length is 3944 bp. The number of phyloge-
netic informative sites is 2954 (79.4%).
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