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Abstract
Background: The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled 
receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome 
duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have 
been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been 
isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and 
their evolution remains enigmatic.

Results: In silico sequence comparisons failed to retrieve a non-vertebrate (porifera, cnidaria, protostome and early 
deuterostome) secretin family homologue. In contrast, secretin family members were identified in lamprey, several 
teleosts and tetrapods and comparative studies revealed that sequence and structure is in general maintained. 
Sequence comparisons and phylogenetic analysis revealed that PACAP, VIP and GCG are the most highly conserved 
members and two major peptide subfamilies exist; i) PACAP-like which includes PACAP, PRP, VIP, PH, GHRH, SCT and ii) 
GCG-like which includes GCG, GLP1, GLP2 and GIP. Conserved regions flanking secretin family members were 
established by comparative analysis of the Takifugu, Xenopus, chicken and human genomes and gene homologues 
were identified in nematode, Drosophila and Ciona genomes but no gene linkage occurred. However, in Drosophila and 
nematode genes which flank vertebrate secretin family members were identified in the same chromosome.

Conclusions: Receptors of the secretin-like family GPCRs are present in protostomes but no sequence homologues of 
the vertebrate cognate ligands have been identified. It has not been possible to determine when the ligands evolved 
but it seems likely that it was after the protostome-deuterostome divergence from an exon that was part of an existing 
gene or gene fragment by rounds of gene/genome duplication. The duplicate exon under different evolutionary 
pressures originated the chordate PACAP-like and GCG-like subfamily groups. This event occurred after the emergence 
of the metazoan secretin GPCRs and led to the establishment of novel peptide-receptor interactions that contributed 
to the generation of novel physiological functions in the chordate lineage.

Background
The evolution of the secretin family of brain-gut peptides
remains enigmatic despite being some of the first endo-
crine factors ever identified. For example, in 1902 the
ground breaking experiments of Bayliss and Starling with
dog intestinal extracts set off the search for the active
principal and, by 1961, secretin (SCT) had been isolated
and sequenced [1]. Currently, 10 peptides belonging to
the secretin family have been isolated in humans and
include; SCT, vasoactive intestinal peptide (VIP), pitu-

itary adenylate cyclase-activating polypeptide (PACAP),
peptide histidine methionine (PHM), PACAP-related
peptide (PRP), growth hormone-releasing hormone
(GHRH), glucagon (GCG), glucagon-like peptide (GLP 1
and 2) and glucose-dependent insulinotropic peptide
(GIP) [2-4]. Members of the secretin family share signifi-
cant structural and conformational homology and their
key metabolic and developmental functions in human
make them of considerable pharmacological interest.
Members of class 2 G-protein coupled receptors (a.k.a
family B GPCRs), bind and are activated by the secretin
family members (family B1 members or secretin family
GPCRs) and specific peptide-receptor pairs have been
identified in representatives of different vertebrate
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classes. Class 2 GPCRs is a larger family of receptors and
also includes members of the metazoan adhesion (B2)
and insect methuselah (B3) families and secretin family
GPCRs (B1) are proposed to descend from the adhesion
receptors prior to protostome-deuterostome divergence
[5,6].

In protostomes (nematodes, arthropods, annelids and
platyhelminthes) and early deuterostomes such as Ciona
and amphioxus, immunohistochemical (IHC) approaches
using antisera raised against various mammalian secretin
family members suggest they possess similar peptides to
vertebrates (Table 1). PACAP-like genes (pacap1 and
pacap2) have only been reported in the tunicate, Chelyo-
soma productum [7] and partial mRNAs (114bp) corre-
sponding to the highly conserved PACAP coding exon [8]
have been isolated in Hydra magnipapillata and several
protostomes and deposited in public databases [9]. The
existing data has been taken to indicate that an ancestral
secretin family gene was probably present prior to the
deuterostome-protostome divergence and most likely
resembled the vertebrate PACAP precursor [2,8,10-12].
Paradoxically, in protostomes with fully sequenced
genomes and extensive molecular resources (Figure 1,
Additional file 1), genes encoding ligands homologous to
members of the vertebrate secretin family have not been
reported. In contrast, secretin-like family GPCR encod-
ing genes which share similar sequence, structure and
conserved gene environment with the vertebrate mem-
bers have been identified, making ligand-receptor evolu-
tion an interesting enigma [13-16].

The present study focuses on secretin family ligands
and complements previous studies aimed at identifying
and characterising the evolution of family 2 GPCRs
[5,6,8,14,17]. A comparative approach which takes advan-
tage of the wealth of information currently available
(genome, ESTs, peptide) for porifera, cnidaria, protos-
tomes, early deuterostomes and vertebrates (Figure 1), is
undertaken to re-evaluate the origin of the secretin family
in metazoa. The sequence, gene structure and gene envi-
ronment of secretin family members in vertebrates with
sequenced genomes was characterised and used to search
for homologue peptides, genes or genome regions in non-
vertebrates.

Results
Vertebrate secretin family members
Sequence database searches using the nucleotide and
mature peptide sequences of human and zebrafish secre-
tin family members, readily identified homologues in
lamprey, teleost and tetrapod (Xenopus, lizard, chicken)
genomes. This is due to the high sequence conservation
of the mature peptide region between the vertebrate
members which facilitates their identification (Table 2)
(see reviews [2,4,8,18,19]).

The tetrapod members
In humans, 10 peptides encoded by six genes have been
isolated. In Aves, homologues of the mammalian mem-
bers have been identified and peptides and corresponding
transcripts were isolated in duck (Anas platyrhynchos),
chicken (Gallus gallus) and turkey (Meleagris gallopavo)
[20-27]. In silico analysis of the chicken genome identified
six genes encoding secretin family members which share
similar organisation to the human homologues and com-
parative analysis revealed they correspond to the peptides
and nucleotide precursors previously described (Table 1
and Table 2). Searches in the reptile and amphibia
genomes identified homologues for all human members
with the exception of SCT and it remains to be estab-
lished if the failure is due to the incomplete nature of
their genome assemblies or to the absence of this gene. In
reptiles, few members of this family have been reported
to date. A VIP and GCG peptides were isolated from the
Alligator mississippiensis, the nucleotide precursor of the
latter peptide reported from the Heloderma suspectum
[28-30] and a PRP/PACAP mRNA was recently charac-
terised from the Italian wall lizard Podarcis sicula [31,32].
Sequence database searches on the lizard Anolis carolin-
ensis genome identified for the first time the genes encod-
ing the reptile PHI/VIP (ENSACAG00000005619), PRP/
PACAP (ENSACAG00000008729), GHRH (ENSACA
G00000011836), GCG/GLP (ENSACAG00000014182)
and GIP (ENSACAG00000006291) (Table 2). The pre-
dicted gene organisation suggests the coding exons for
the mature peptides share identical structure with other
metazoan genes and to date the exon encoding the lizard
GLP2 remains to be identified.

Homologues of human secretin members have previ-
ously been reported in amphibians. VIP and PACAP and
were isolated in Rana ridibunda [33,34]; GCG from Rana
catesbeiana [35] and in Xenopus laevis single transcripts
for PRP/PACAP [36], PHI/VIP, GHRH [37], GCG/GLP
[38] and GIP [27] have been described. The genome of
Xenopus tropicalis contains secretin family homologues
which share high sequence conservation with the tetra-
pod genes (Table 2), but one difference was the presence
of three GLP1 exons (GLP1a, b and c) within the GCG/
GLP gene structure as a result of a species-specific exon
duplication.

The fish members
Peptides, transcripts and genes of the secretin family have
also been isolated from the most diverse vertebrate clade,
the teleosts. VIP was isolated from cod (Gadus morhua)
[39,40] and goldfish (Carassius auratus) [41], PACAP
from the Japanese stargazer (Uranoscopus japonicus) [42]
and GCG from the channel catfish (Ictalurus punctatus)
[43,44] (Table 1). The identification of two transcripts for
PHI/VIP in goldfish Carassius auratus [45] and zebrafish
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Table 1: Molecular and expression data available for the secretin members in metazoa.

Species PRP/
PACAP

PH/VIP GHRH GCG/GLP GIP SCT References

DEUTEROSTOMES

VERTEBRATES

Mammal Homo sapiens N N, P N, P N, P N, P N, P [100-109]

Ave Anas platyrhynchos N N N P [9,21,22]

Gallus gallus N,P N,P N N,P N P [24-27,35,110-112],

Meleagris gallopavo N N [23,113]

Reptile Alligator mississippiensis P P [28,29]

Heloderma suspectum N [30]

Podarcis sicula N [31]

Amphibia Rana catesbeiana P [114]

Rana ridibunda N,P P [33,34]

Xenopus laevis N N N N N [9,27,36-38]

Xenopus tropicalis N N [9,27],

Teleost Carassius auratus N,P N N [37,41,45,115] ,

Clarias macrocephalus N N [9,116],

Danio rerio N N N N N [9,27,37,47,83,117,118]

Gadus morhua N P [39,40]

Ictalurus punctatus N N,P [9,43,44]

Oncorhynchus nerka N [119]

Takifugu rubripes N N [8]

Uranoscopus japonicus P [42]

Chondrichthyes Torpedo marmota N, IHC [120]

Dasyatis akajei IHC [121]

Callorhynchus milii P [122]

Agnatha Lampetra fluviatilis P [123]

Lampetra japonica N [9]

Petromyzon marinus N,P [52,124]

UROCHORDATES Chelyosoma productum N, IS [7]

Ciona intestinalis IHC IHC [125-127]

Halocynthia roretzi N* [9]

Styela plicata IHC IHC IHC [125,127-129]

CEPHALOCHORDATES Branchiostomata 
lanceolatum

IHC IHC IHC [127,130,131]

PROTOSTOMES

NEMATODES Ascaridia galli IHC [132]

Nematodirus battus IHC [132]

Nippostrongylus 
brasiliensis

IHC [132]

ARTHROPODS Aeschna cyanea IHC [133,134]

Eriocheir japonica N* [9]

Eristalis aeneus IHC IHC [135]

Manduca sexta IHC IHC IHC IHC [136]

Periplaneta americana N* IHC [9,10,131,137,138]

ANNELIDS Hirudo medicinalis IHC [131,139]
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(Danio rerio) (PHI/VIP a, EU031789 and PHI/VIP b,
EU031790) and of two PRP/PACAP (PRP/PACAP a,
NM_152885 and PRP/PACAP b, AF329633) [46,47] and
GCG/GLP precursors in zebrafish [48] suggests they are
duplicates in fish and this has been confirmed by the
identification of two PRP/PACAP and GCG/GLP genes
in Takifugu (ENSTRUG00000003782 and ENSTRU
G00000010059; ENSTRUG00000008721 and ENSTRU
G00000004633, respectively) and Tetraodon (ENSTNI
G00000017117 and ENSTNIG00000018649; ENSTNIG
00000013278 and ENSTNIG00000000614, respectively)
genomes (Table 2) [8]. The greater number of secretin
family genes identified in fish relative to tetrapods is most
likely to be a result of the proposed teleost specific
genome duplication and the absence of GIP and GHRH
gene duplicates suggests they were probably deleted [49-
51]. In common with Xenopus, no homologue of human
SCT has been identified in fish genomes.

In the sea lamprey (Petromyzon marinus), a primitive
vertebrate of the Agnatha clade, two homologues of
human proglucagon (GCG/GLP) were characterised in
the genome assembly Contig 31522 (GENSCAN
00000079364) and Contig 32128 which correspond to the
previously reported proglucagon I (AF159707) and prog-
lucagon II (AF159708) transcripts, respectively [52]. In
the present study, searches of the partially sequenced
lamprey genome retrieved putative PRP/PACAP
(GENSCAN00000120210 on Contig3575.2) and PHI/VIP
genes (shared between GENSCAN00000109335 and
GENSCAN00000056150 localised on Contig20045.2 and
Contig20045.3, respectively). However, GHRH, SCT and
GIP were not identified possibly due to the present
incomplete nature of its genome assembly.

Sequence and gene structure comparison
Sequence comparisons reveal that members of the secre-
tin family are highly conserved and this also applies to

their secondary structure which consists of a random N-
terminal structure and a C-terminal alpha-helix [53,54].
The lamprey, teleost, Xenopus, reptile and chicken mem-
bers are in general 50% identical in amino acid sequence
with the human homologues (Figure 2) and two main
peptide subfamilies, which share in general a maximum
of 60% sequence similarity between their members were
identified; i) PACAP-like subfamily which includes 6 pep-
tide groups (PACAP, PRP, VIP, PHI, GHRH and SCT) and
ii) GCG-like subfamily which contains 4 peptide groups
(GCG, GLP1, GLP2 and GIP). Highest sequence conser-
vation from lamprey to human (>70% sequence identity)
occurs within PACAP, VIP and GCG peptide groups
which contrasts with PRP and GLP2 that are the most
divergent and Takifugu PRP b and GLP2 predicted pep-
tides are only 33% and 37% identical with the human
homologues.

Consensus amino acids for peptide subfamilies were
deduced and the overall conservation characterised. With
few exceptions, 7 amino acid residues H1, D3, F6, T7, Y10,
Q16 and L23 are the most abundant across the PACAP-like
subfamily (Figure 2). The residues H1, D3 and L23 are pres-
ent in all peptide groups with occasional exceptions in
some taxa. However, the motif F6T7 is absent from the
vertebrate PRP sequences and is only present in tunicate
PRP and the residue Q16 is absent from the SCT mature
peptide and Y10 is only present in the chicken SCT homo-
logue. This suggests that specific modifications occurred
within the conserved core domain of the PACAP-like
subfamily members and their functional significance
remains to be explored. A similar comparison of the ver-
tebrate GCG-like subfamily indicates that 15 amino acid
residues H1, A2, G4, T5, F6, S8, D9, S11, L14, A19, K20, F22,
V23, W25, and L26 are generally maintained across the 4
peptide groups. Even if taxa variability is taken into con-
sideration, the residues G4, F6 and F22 and the motifs S8 D9

Lumbricus terrestris IHC IHC [131,140,141]

Nereis diversicolor IHC [131,142]

Helix pomatia IHC [143]

MOLLUSCS Mytilus 
galloprovencialis

IHC [144]

Planorbarius corneus IHC IHC IHC [145]

Sepioteuthis lessoniana N* [9]

Viviparus ater IHC IHC IHC [146]

PLATYHELMINTHES Dugesia japonica N* [9]

Schistosoma mansoni IHC [147]

CNIDARIA Hydra magnipapillata N* [9]

Nucleotide (N), Protein (P), Immunohistochemical (IHC) and in situ (IS)
N* non-vertebrate nucleotide sequences deposited in NCBI

Table 1: Molecular and expression data available for the secretin members in metazoa. (Continued)
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and W25L26 are in general maintained (Figure 2). Peptide
specific variations include for GIP, H1 which is replaced
by Y, L14 which is replaced by M or V (with exception of
lizard) and A19 which is replaced by K or Q. In the GCG
mature peptide sequence A2 is replaced by S and in GLP2
with the exception of chicken and Takifugu T5 is replaced
by S. Comparison of the metazoan PACAP-like and
GCG-like subfamily consensus sequence revealed they

overlap for the residues H1 and F6 which are key amino
acids in secretin GPCR binding affinity [19,53,55,56].
This suggests that, after exon/chromosome duplication of
their common ancestor exon, distinct evolutionary pres-
sures within each subfamily occurred.

The chordate PACAP shares in general 92% of amino
acid sequence similarity with VIP and these two peptides
are the most conserved members (Figure 3). In contrast,

Figure 1 Phylogenetic position of the non-vertebrate genomes analysed. Simplified phylogeny of the metazoan evolution indicating the rela-
tive position of the early metazoa (Porifera and Cnidaria), protostome (Nematoda, Arthropoda, Platyhelminthes, Mollusca, Annelida) and early deu-
terostome (Echinodermata, Cephalochordata and Urochordata) genomes analysed (adapted from [96-98]). The tunicate Chelyosoma productum is also 
represented (*) since it is the only invertebrate in which secretin family members have been isolated [7].
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the vertebrate SCT demonstrates the lowest conservation
(less than 62% within the PACAP-like subfamily) however
this may be an artefact due to the restricted number of
species in which it has been characterised. In addition,
signature amino acid residues within or between peptide
groups were also identified and they may reflect and sup-
port common evolutionary pathways and overlapping or
specific functional roles. This includes, the PACAP Y13

and A24A25 motif, the V5, N9, F13 and N24 for VIP, the
motif N7K8A9 and residue H24 within PRP, the L5, S8, E24

and I27 for PH, and the GHRH residues N8, I17, Q24 and I26

across the tetrapod and teleost members (Figure 2). Gene
structure comparisons restricted to the mature peptide
precursors revealed that PACAP and VIP exons are
encoded in the same precursor as PRP and PH, respec-

tively [2,8] (Figure 3). Most common amino acids to the
chordate PACAP and VIP members includes R14 and
K15and the motifs M17A18V19 and V26L27 and they share a
maximum of 37% amino acid sequence identity with PRP
and PH indicating that after exon duplication consider-
able changes occurred. The latter peptides have a similar
sequence (81% similar) which is closely related to verte-
brate GHRH (88% similar) with which they partition the
residues A2, K12, L14, G15 and the motif S18A19R20 and sug-
gest a common evolutionary origin. The SCT gene has
only been identified in tetrapods and the deduced peptide
residues, E9 and Q20 are maintained in the mammalian
and chicken homologues. The evolutionary origin of SCT
is still enigmatic and it is proposed to have been lost in
the fish lineage [14,57].

Table 2: Accession numbers (ENSEMBL) of non-mammalian secretin members.

PRP/PACAP PH/VIP GHRH GCG/GLP GIP SCT

Chicken 
(Gallus gallus)

ENSGALG0000
0014858

ENSGALG0000
0013604

ENSGALG0000
0003842

ENSGALG0000
0011104

ENSGALG0000
0001299

ENSGALG0000
0005081

Lizard 
(Anolis 

carolinensis)

ENSACAG000
00008729

ENSACAG000
00005619

ENSACAG000
00011836

ENSACAG000
00014182

ENSACAG000
00006291

----

Xenopus 
(Xenopus 
tropicalis)

ENSXETG0000
0019179

ENSXETG0000
0027906

ENSXETESTG0
0000008409

ENSXETG0000
0013178

Scaffold_334 ----

Takifugu 
(Takifugu 
rubripes)

ENSTRUG0000
0003782 

ENSTRUG0000
0010059

ENSTRUG0000
0001139

---- ENSTRUG0000
0008721

ENSTRUG0000
0004633

---- ----

Tetraodon 
(Tetraodon 
nigroviridis)

ENSTNIG0000
0017117 

ENSTNIG0000
0018649

ENSTNIG0000
0007449

ENSTNIG0000
0007343

ENSTNIG0000
0013278

ENSTNIG0000
0000614

---- ----

Zebrafish 
(Danio rerio)

ENSDARG000
00004015 

ENSDARG000
00027740

ENSDARG000
00079443

ENSDARG000
00078247

ENSDARG000
00069481

ENSDARG000
00042999/

ENSDARG000
00079296 

ENSDARG000
00040907

ENSDARG000
00071306

----

Stickleback 
(Gasterosteus 

aculeatus)

ENSGACG000
00017084 

ENSGACG000
00004163

ENSGACG000
00001298

ENSGACG000
00001298

ENSGACG000
00013877 

ENSGACG000
00005606

---- ----

Medaka 
(Oryzias 
latipes)

ENSORLG0000
0017872 

ENSORLG0000
0011205

ENSORLG0000
0003905

---- ENSORLG0000
0002782 

ENSORLG0000
0016891

---- ----

Lamprey 
(Petromyzon 

marinus)

GENSCAN000
00120210

GENSCAN000
00109335/

GENSCAN000
00056150

---- GENSCAN000
00079364 

Contig 32128

---- ----

Contig/Scaffold numbers are indicated when ENSEMBL accession number are not available
Dashes indicate genes not identified
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Figure 2 Amino acid sequence conservation of vertebrate secretin family mature peptides. The mature peptide sequences were extracted by 
comparison with the human homologues and only the amino acid (aa) residues 1 to 27 are represented with the exception of the first 5 residues of 
human GLP1 (P01275). Takifugu GHRH was obtained from [93] (N000079, Assembly_4) and the lamprey GLP2 sequence for proglucagon II was not 
used since it was found to share very little similarity with other vertebrate members suggesting it has undergone species-specific evolution. Vertebrate 
peptides are grouped according to their potential origin from a PACAP-like exon or GCG-like exon. Percentage of identity (%ID) for the human homo-
logue is given and the consensus sequences for each peptide group were deduced using the GeneDoc programme [90] and used to generate a PAC-
AP-like and GCG-like subfamily peptide. The most frequent residues within the different peptide groups are annotated in bold and a prototype model 
sequence for the chordate secretin family members was derived by fusing the conserved PACAP-like and GCG-like subfamily amino acid sequence 
(overlapping residues are annotated in bold and italics). Accession numbers of the teleost and non-mammalian sequences used are indicated in Table 
2. The human precursors are PHM/VIP, P01282; PRP/PACAP, P18509; GHRH, P01286; GCG/GLPs, P01275; GIP, P09681; and SCT, P09683 and mouse (Mus 
musculus) accession numbers are PHM/VIP, P32648; PRP/PACAP, O70176; GHRH, P16043; GCG/GLPs, P55095; GIP, P48756; and SCT, Q08535.

                                          %ID    
Human       : HSDGIFTDSYSRYRKQMAVKKYLAAVL 100 
Mouse       : HSDGIFTDSYSRYRKQMAVKKYLAAVL 100 
Chicken     : HIDGIFTDSYSRYRKQMAVKKYLAAVL 96 
Lizard      : HSDGIFTDSYSRYRKQMAVKKYLAAVL 100 
Xenopus     : HSDGIFTDSYSRYRKQMAVKKYLAAVL 100 
Zebrafisha  : HSDGVFTDSYSRYRKQMAVKKYLATVL 92 
Zebrafishb  : HSDGIFTDIYSRYRKQMAVKKYLAAVL 96 
Takifugua   : HSDGIFTDSYSRYRKQMAVKKYLAAVL 100 
Takifugub   : HSDGIFTDSYSRYRKQMAVQKYLAAVL 96 
Sticklebacka: HSDGIFTDSYSRYRKQMAVKKYLAAVL 100 
Sticklebackb: HSDGIFTDSYSRYRKQMAVQKYLAAVL 96 
Lamprey     : HSDGLFTDLYSRYRKQMAVKKYLSTVL 85 
Chelyosoma1 : HSDGIFTDSYSRYRNQMAVKKYLAAVL 96 
Chelyosoma2 : HSDGIFTDSYSRYRNQMAVKKYINALL 85 
consensus     HSDGIFTDSYSRYRKQMAVKKYLAAVL 
 
 
Human       : HSDAVFTDNYTRLRKQMAVKKYLNSIL 100 
Mouse       : HSDAVFTDNYTRLRKQMAVKKYLNSIL 88 
Chicken     : HSDAVFTDNYSRFRKQMAVKKYLNSVL 88 
Lizard      : HSDAVFTDNYSRFRKQMAVKKYLNSVL 88 
Xenopus     : HSDAVFTDNYSRFRKQMAVKKYLNSVL 88 
Zebrafisha  : HSDAVFTDNYSRYRKQMAAKKYLNSVL 85 
Zebrafishb  : HSDAIFTDNYSRFRKQMAVKKYLNSVL 85 
Takifugub   : HSDAIFTDNYSRFRKQMAVKKYLNSVL 85 
Sticklebackb: HSDAIFTDNYSRFRKQMAVKKYLNSVL 85 
Lamprey     : HSDAVFTDLFSRLRKQQAAEKYAKSIL 70 
consensus     HSDAVFTDNYSRFRKQMAVKKYLNSVL 
 
 
Human       : VAHGILNEAYRKVLDQLSAGKHLQSLV 100 
Mouse       : VAHEILNEAYRKVLDQLSARKYLQSVV 85 
Chicken     : HADGIFSKAYRKLLGQLSARNYLHSLM 55 
Lizard      : HADGIFNKAYRKVLGQLSARKYLHSLM 66 
Xenopus     : HADELLNKVYRNVLGHLSARKYLHTLM 48 
Zebrafisha  : HADGMFNKAYRKALGQLSARKYLHTLM 55 
Zebrafishb  : HADGLLDRALRDILVQLSARKYLHSLM 51 
Takifugua   : HADGMFNKAYRKALGQLSARKYLHSLM 59 
Takifugub   : HAEEELDRALREILGQLTARHYRHFLM  33 
Sticklebacka: HADGMFNKAYRKALGQLSARKYLHSLM 59 
Sticklebackb: HADEEELDRALREIGQLSARKYLHSLM 33 
Chelyosoma1 : HSDGIFTKDYRKYLGQLRAQKFLQWLM 48 
Chelyosoma2 : HSDGIFTSDYRRYLGQLSAQKFLQWLM 48 
consensus     HADGIFNKAYRKVLGQLSARKYLHSLM 
 
 
Human       : HADGVFTSDFSKLLGQLSAKKYLESLM 100 
Mouse       : HADGVFTSDYSRLLGQISAKKYLESLI 85 
Chicken     : HADGIFTSVHSHLLAKLSVKRYLHSLI 62 
Lizard      : HADGLFTSGYSKLLGQLSARRYLESLI 77 
Xenopus     : HADGLFTSGYSKLLGQLSARRYLESLI 77 
Zebrafisha  : HADGLFTSGYSKLLGQLSARRYLESLI 77 
Zebrafishb  : HADGLFTSGYSKLLGQLSAKEYLESLL 81 
Takifugub   : HADGLFTSGYSKLLGQLSARRYLESLI 77 Takifugub   : HADGLFTSGYSKLLGQLSARRYLESLI 77 
Sticklebackb: HADGLFTSGYSKLLGQLSARRYLESLI 77 
Lamprey     : HADALFHNNYKKLLGQMSARRYFESLL 55 
consensus     HADGLFTSGYSKLLGQLSARRYLESLI 
 
 
Human       : YADAIFTNSYRKVLGQLSARKLLQDIM 100 
Mouse       : HVDAIFTTNYRKLLSQLYARKVIQDIM 66 
Chicken     : HADAIFTDNYRKFLGQISARKFLQTII 70 
Lizard      : HADAIFTDSYRKVRGKLSAQKLLQGIV 74 
Xenopus     : HVDAIFTNTYRKFLGQISARRYLQNMI 62 
Zebrafish   : HADAIFTNSYRKVLGQISARKFLQTVM 81 
Takifugu    : HADAIFTNSYRKVLGQISARKILQTIM 85 
Stickleback : HADAIFTNSYRKVLGQISARKFLQTIM 85 
consensus     HADAIFTNSYRKVLGQISARKFLQTIM 
 
 
Human       : HSDGTFTSELSRLREGARLQRLLQGLV 100 
Mouse       : HSDGMFTSELSRLQDSARLQRLLQGLV 85 
Chicken     : HSDGLFTSEYSKMRGNAQVQKFIQNLM 51 
consensus     HSDGMFTSELSRLRDSARLQRLLQGLV 

                                          %ID 
Human       : HSQGTFTSDYSKYLDSRRAQDFVQWLM 100 
Mouse       : HSQGTFTSDYSKYLDSRRAQDFVQWLM 100 
Chicken     : HSQGTFTSDYSKYLDSRRAQDFVQWLM 100 
Lizard      : HSQGTFTSDYSKYLDTRRAQDFVQWLM 96 
Xenopus     : HSQGTFTSDYSKYLDSRRAQDFIQWLM 96 
Zebrafisha  : HSEGTFSNDYSKYLETRRAQDFVQWLM 81 
Zebrafishb  : HSEGTFSNDYSKYLETRRAQDFVQWLM 81 
Takifugua   : HSEGTFSNDYSKYLEDRKAQDFVRWLM 74 
Takifugub   : HSEGTFSNDYSKYLETRRAQDFVQWLK 77 
Sticklebacka: HSEGTFSNDYSKFLEEKKAQDFVQWLM 77 
Sticklebackb: HSEGTFSNDYSKYLETRRAQDFVQWLK 70 
LampreyI    : HSEGTFTSDYSKYLENKQAKDFVRWLM 74 
LampreyII   : HSQGSFTSDYSKHLDVKQAKDFVTWLL 70 
consensus     HSEGTFSNDYSKYLETRRAQDFVQWLM 
 
 
Human       : HAEGTFTSDVSSYLEGQAAKEFIAWLV 100 
Mouse       : HAEGTFTSDVSSYLEGQAAKEFIAWLV 100 
Chicken     : HAEGTYTSDITSYLEGQAAKEFIAWLV 88 
Lizard      : HADGTYTSDISSYLEGQAAKEFIAWLV 88 
Xenopusa    : HAEGTFTSDVTQQLDEKAAKEFIDWLI 70 
Xenopusb    : HAEGTYTNDVTEYLEEKAAKEFIEWLI 70 
Xenopusc    : HAEGTFTNDMTNYLEEKAAKEFVGWLI 66 
Zebrafisha  : HADGTYTSDVSSYLQDQAAKEFVSWLK 74 
Zebrafishb  : HAEGTYTSDVSSYLQDQAAQSFVAWLK 74 
Takifugua   : HADGTFTSDVSSYLKDQAIKDFVARLK 70 
Takifugub   : HADGTYTSDVSTYLQDQAAKEFVSWLK 70 
Sticklebacka: HADGTFTSDVSSYLKEQAIKDFVDKLK 70 
Sticklebackb: HADGTYTSDVSSYLQDQAVKEFVSWLK 66 
LampreyI    : HADGTFTNDMTSYLDAKAARDFVSWLA 55 
consensus     HADGTFTSDVSSYLEDQAAKEFVAWLK 
 
 
Human       : HADGSFSDEMNTILDNLAARDFINWLI 100 
Mouse       : HADGSFSDEMSTILDNLATRDFINWLI 92 
Chicken     : HADGTFTSDINKILDDMAAKEFLKWLI 55 
Zebrafish   : HVDGSFTSDVNKVLDSIAAKEYLQWVM 40 
Takifugu    : HVDGTFISDVNKVLDSMAAKEYLLWVM 37 
Stickleback : HVDGSFTSDVNKVLDSLAAKEYLLWVM 44 
LampreyII   : HSDGSFTNDMNVMLDRMSAKNFLEWLK 48 
consensus     HADGSFTSDMNKILDSMAAKEFLNWLI 
 
 
Human       : YAEGTFISDYSIAMDKIHQQDFVNWLL 100 
Mouse       : YAEGTFISDYSIAMDKIRQQDFVNWLL 96 
Chicken     : YSEATLASDYSRTMDNMLKKNFVEWLL 51 
Lizard      : YSEGTLASDYSRTLDNMLKKNFVEWLL 51 
Xenopus     : YSEAILASDYSRSVDNMLKKNFVDWLL 44 
Zebrafish   : YAESTIASDISKIVDSMVQKNFVNFLL 51 
consensus     YAEGTLASDYSRTMDNMLKKNFVNWLL 
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Members of the GCG-like subfamily share at least 62%
amino acid similarity and GLP1 and GLP2 have the high-
est identity (59%, Figure 3). In addition to the general
sequence conservation of the GCG-like subfamily mem-
bers, conserved amino acid positions within the verte-
brate peptide groups were also identified (Figure 2). This
includes S2, Q24, M27 and the motifs R17R18 and Q20D21 for
GCG; V10, S12 and Q17 for GLP1; S5, N11 and L23 for GLP2;
and Y1 and L27 in GIP. The GLP1 and GLP2 peptides are
encoded in the same precursor (proglucagon precursor)
as GCG with which they share 77% and 81% amino acid
sequence similarity, respectively and the mature peptide
coding exons are proposed to be a consequence of exon
duplication events. Vertebrate GIP shares 37% and 40%
sequence identity with GCG and GLPs, respectively and
studies based upon gene structure comparisons suggest
the latter emerged from the same exon as GCG, however

the results of sequence analysis are inconclusive and
more data is required [2,27].

The secretin members in non-vertebrates
Database searches using the vertebrate nucleotide and
peptide sequences of secretin family members and the
duplicate urochordate Chelyosoma productum PRP/
PACAP transcripts failed to identify conserved sequence
and structure homologues in genome or EST databases
from porifera, cnidaria, protostome and early deuteros-
tomes (Ciona, amphioxus and sea urchin). Instead, short
sequence matches were identified in unrelated genes or
non-annotated genome segments. In depth analysis of
the best matches, revealed homologies for the central
region and C-terminal ends (outside the bioactive core)
of the chordate mature peptides and, when the inverte-
brate fragments were used to interrogate vertebrate data-

Figure 3 Proposed evolutionary model of chordate PACAP-like (A) and GCG-like (B) members. Percentage of amino acid sequence identity/
similarity of the different peptide groups is indicated and gene organisation of the coding region (excluding occasional species-specific gene organ-
isation) is represented. Secretin family members are proposed to have evolved via exon and gene/chromosome duplication events from a common 
ancestor exon in the chordate radiation. Similarity between the deduced consensus sequences of the peptide groups in the same subfamily is higher 
than 62% within the vertebrate GCG-like members and 66% for the PACAP-like subfamily with the exception of SCT in which only the mammalian 
and chicken members have been identified. Boxes represent exons and lines introns and coding exons are indicated by the peptide abbreviation. 
Dashed lines indicate undefined evolutionary pathways. (A) Chordate PACAP and PRP and vertebrate VIP and PH share the same gene precursor and 
GHRH and SCT are encoded by a single exon. PACAP and VIP share the highest amino acid conservation and SCT is the most divergent and to date 
has only been identified in tetrapods. (B) Vertebrate GCG, GLP1 and GLP2 are encoded in the same gene precursor which arose by exon duplication 
events. GIP is encoded by a single exon in a different precursor which has a similar gene organisation with GCG/GLP precursor.
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bases, they failed to retrieve a secretin family homologue
suggesting that members of this family are absent from
non-vertebrate genomes.

The exception is PACAP for which a highly conserved
partial sequence corresponding to the exon encoding the
mature peptide (>89% amino acid identity, [8]) has been
isolated in Hydra magnipapillata (AB083650), in the
tunicate, Halocynthia roretzi (AB121759) and in several
protostomes such as planarian (Dugesia japonica,
AB083649), crab (Eriocheir japonica, AB121765), squid
(Sepioteuthis lessoniana, AB083651) and cockroach
(Periplaneta americana, AB083652) [9]. Database
searches using the non-vertebrate PACAP nucleotide or
deduced peptide sequences failed to retrieve homologues
from protostomes with available genome data (Helob-
della robusta, Capitella sp. I, Lottia gigantea, Daphnia
pulex, Drosophila melanogaster, Aedes aegypti, Anopheles
gambiae, Caenorhabditis elegans and Caenorhabditis
briggsae). Moreover, searches performed in Hydra magni-
papillata and related species Nematostella vectensis
genome assemblies with the Hydra PACAP nucleotide or
deduced peptide sequence also failed to confirm the exis-
tence of a gene encoding PACAP. In early deuterostomes,
searches using the Chelyosoma productum PRP/PACAP
nucleotide or deduced peptide sequences in Ciona intes-
tinalis and Ciona savignyi genomes or available tunicate
ESTs failed to identify possible sequence homologues in
urochordate. Taken together these results raise questions
about the authenticity of the previously reported
sequences.

An alternative strategy utilized a secretin family proto-
type sequence model based on the assumption that the
chordate members arose from a common precursor gene
which duplicated to give PACAP-like and GCG-like sub-
family exons (Figure 2 and 3). The prototype sequence
deduced in silico was H1A2D3G4T5F6T7S8D9

Y10S11xxL14xQ16xxA19K20xF22xxW25L26 (x represents vari-
able position) and contains 18 conserved amino acid
positions and high conservation was found for the N-ter-
minal region. Structural characterisation using Pfam
analysis classified the generated prototype sequence as a
Hormone_2 member (PF00123, which includes the verte-
brate secretin family members) [58] and sequence simi-
larity searches performed retrieved secretin family
members in vertebrates but failed to identify potential
members in non-vertebrates. A second approach using
HMM models and searching the general NCBI non-
redundant (nr) peptide and an invertebrate subset of the
NCBI nucleotide and EST (est_others) databases corrob-
orated the preceding results.

Phylogenetic analysis
The optimal maximum likelihood (ML) tree with boot-
strap support values higher than 50% is presented in Fig-

ure 4. Despite the high level of sequence identity and
short sequences utilized, phylogenetic analyses of the
chordate mature peptides (1-27 aa) and their correspond-
ing nucleotide sequences resulted in similar tree topolo-
gies and suggests that members of the secretin family
share a common ancestry. In the optimal ML tree pre-
sented in Figure 4 two clades PACAP-like and GCG-like
were obtained suggesting that after ancestral exon dupli-
cation two main peptide subgroups emerged and under-
went distinct evolutionary trajectories. Similar tree
topologies were obtained using Bayesian approaches
(Supplementary table 2) and a PACAP-like derived clade
includes the peptides PACAP, PRP, PH, VIP, GHRH and
SCT and a GCG-like clade the peptides GCG, GLP1,
GLP2 and GIP. The Chelyosoma PACAP deduced peptide
sequences always grouped with the vertebrate peptide
sequence homologues and the tunicate PRPs did not clus-
ter with any particular peptide clade and in all the analy-
sis performed tended to be more closely related to the
tetrapod SCT.

Gene environment comparisons
The immediate gene environment of vertebrate secretin
members was compared and indicates that PRP/PACAP,
GCG/GLP, and GHRH genome regions are syntenic and
gene order is in general maintained (Figure 5). The GCG/
GLP gene environment shares at least 3 genes (KCNH7,
IFIH1 and SLC4A10), PRP/PACAP, 2 genes (YES1 and
METTL4) and GHRH, 1 gene (RPN2) when equivalent
genome regions are compared between Takifugu, Xeno-
pus, chicken and human. The VIP and GIP genomic
regions are poorly conserved and no gene synteny or gene
order was identified (data not shown). Moreover,
searches also failed to identify conservation of gene link-
age between the different vertebrate secretin family
members.

In Takifugu, the neighbouring genes of the paralogue
GCG/GLP (SLC4A10 and KCNH7, N000046 and
N000036) and PACAP (YES1, N000223 and N000080)
genes were also duplicates supporting the teleost gene or
genome duplication event. Searches were extended to the
lamprey and lizard genomes but contiguous sequences
were too small to confirm the existence of gene environ-
ment conservation. Comparison of the SCT genome
region between chicken (chromosome 5) and human
(chromosome 11) revealed they are highly conserved and
the order of 5 genes (MUCDHL, DRD4, DEAF1, EPS8L2
and PDDC1) is maintained. In Xenopus genome, the
chicken and human SCT flanking genes are localised in
the amphibian scaffold_296 and in Takifugu, where a
gene homologue is proposed to be absent, they are dis-
tributed in two distinct genome regions: MUCDHL and
DRD4 are localised in scaffold N000002 and the remain-
ing genes in scaffold N000328 suggesting the existence of
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Figure 4 Evolutionary analysis of the chordate secretin family members. The maximum likelihood (ML) optimal tree topology is presented and 
was constructed with Phyml 3.0 [99]. ML bootstrap values higher than 50% are indicated at nodes and to facilitate interpretation a hypothetical root 
was added to the tree between the PACAP-like and GCG-like clades based upon gene structure evidence and proposed models for secretin family 
evolution. The different peptide groups are indicated and teleost duplicate genes are marked by a and b; Xenopus GLP1 exons by a, b and c. Accession 
numbers of the sequences used are described in Table 2 and for human and mouse members are: PHM/VIP (P01282 and P32648); PRP/PACAP (P18509 
and O70176); GHRH (P01286 and P16043); GCG/GLPs (P01275 and P55095); GIP (P09681 and P48756); and SCT (P09683 and Q08535), respectively.
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Figure 5 Gene environment comparisons of the GCG/GLPs, PRP/PACAP, GHRH and SCT genes in Takifugu, Xenopus, chicken and human. 
Homologue genes were identified using sequence similarity approaches with the Takifugu genes. Takifugu scaffolds are named according to the As-
sembly 4 available at [93] and have a direct correspondence with ENSEMBL (eg: N000046 corresponds to Takifugu Ensembl scaffolds_46). Genes were 
named based on HUGO annotation and the size of the genome regions analysed indicated within brackets. Genes are represented by boxes and ge-
nomic regions are indicated by lines. The figure is not drawn to scale and genes are positioned according to their relative distance in the genome 
assembly. For simplicity, only homologue genes are represented and GCG/GLP, PRP/PACAP, GHRH and SCT genes are edited in bold and underlined.
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a conserved gene block prior to the emergence of the tet-
rapod gene (data not shown).

In order to identify a potential secretin family genome
region in non-vertebrates, the conserved vertebrate gene
environment was used to retrieve homologues in the C.
elegans, Drosophila and Ciona genomes. Genes sharing
similarity in sequence to those flanking the vertebrate
GCG/GLP, PRP/PACAP and GHRH loci were identified
although the genes encoding secretin family members
were absent (Figure 6). In C. elegans the genes drh-3,
abts-1, src-1 and M01A10.3 map to chromosome I and
are respectively homologues of the human IFIH1 and
SLC4A10 on chromosome 2, YES1 on chromosome 18
and RPN2 on chromosome 20. In Drosophila, sei and
CG6370 are localised in chromosome 2R and are the
homologues of human KCNH7 and RPN2 and the fruit-
fly Dcr-2 and CG14906 genes in chromosome 3R the cor-
respondent in sequence of the human IFIH1 and
METTL4, respectively.

In the tunicate genome, homologues of the vertebrate
secretin family flanking genes were identified scattered in
the Ciona genome assembly. Homologues of human
KCNH7 (ENSCING00000000802, scaffold_167), IFIH1
(ENSCING00000009744, scaffold_44) and SLC4A10
(ENSCING00000006669, chromosome 9p) genes which
flank GCG/GLP in vertebrates were identified. The con-
served gene environment of the vertebrate PRP/PACAP
genes: YES1 (ENSCING00000008550 on scaffold_65) and
METTL4 (ENSCING00000013236 on chromosome 8q)
genes are also present as well the putative urochordate
homologue of the RPN2 gene (ENSCING00000009122)
conserved in the vertebrate GHRH genome region.

In the C. elegans genome chromosome 1 contained
homologues of the genes which flank PRP/PACAP, GCG/
GLP and GHRH in vertebrates. This suggests that this
chromosome may be the protostome genome fragment
that most resembles the potential metazoan ancestral
secretin genome region from which the vertebrate mem-
bers emerged. However, detailed analysis of chromosome
positions (src-1, 1566932 to 1580204bp; M01A10.3,
5550508 to 5549145 bp; drh-3, 7820837 to 7826373 bp;
and abst-1, 8307558 to 8296909 bp) revealed they are not
mapped in close proximity and do not forms a gene clus-
ter. Moreover, no conserved linkage between the putative
Drosophila and the C. elegans gene homologues exists.

Discussion
Comparative analysis of data from phylogenetically dis-
tant organisms is a major contributor for understanding
gene and gene family evolution and the role of function
and regulation in this process. The identification of gene
homologues in vertebrates and early metazoan genomes
provides a unique opportunity to perform comparative
studies and to investigate gene family ancestries. The

secretin family is a well-studied group of peptides which
activate specific receptors of family 2 GPCRs to bring
about their pleotropic actions in vertebrates. Secretin-
like family GPCRs have been identified and cloned from
non-vertebrate genomes [6,14,59,60] and their putative
peptide ligands identified by immunohistochemistry
(IHC) using antisera raised against the mammalian pep-
tide homologues (Table 1). Both peptides and their corre-
sponding receptors are proposed to have arisen by gene
duplication events prior to the vertebrate radiation
[2,6,8,10,11,18] and they represent an interesting model
for studies of receptor-ligand evolution.

In the present study, despite extensive in silico database
searches it was not possible to identify members of the
secretin peptide family in non-vertebrates regardless of
the report of a full-length PACAP cDNA in the tunicate,
Chelyosoma productum [7] and cDNA of the PACAP
coding exon in crab, cockroach, squid, planarian and
Hydra magnipapillata [7,9]. Moreover, using the partial
PACAP cDNA previously identified in Hydra magni-
papillata (a cnidaria) to interrogate its sequenced
genome [61] failed to identify the gene homologue.

It seems unlikely that the failure to identify PACAP in
non-vertebrates was related to the methodology used as a
similar approach has been successfully utilized to identify
the gene encoding the active nonapeptide hormone,
vasotocin/vasopressin in the amphioxus genome assem-
bly and also the gene loci in several chordates including
teleosts [62]. In fact, the existence of neurohypophysial
hormones (eg. vasopressin and oxytocin) in deuteros-
tomes and protostomes has been amply confirmed by the
isolation of both genes and peptides from representatives
of a number of different phyla (reviewed in [62]). Simi-
larly, conserved sequence homologues of vertebrate neu-
ropeptide Y family members have been isolated from
molluscs and also from fruit-fly and mosquito and GPCR
ligand-receptor pairs similar to the vertebrate NPY sys-
tem have been characterised [63-65].

A comprehensive in silico analysis of the fully
sequenced Drosophila genome identified and classified
GPCRs and compared their number to putative neuro-
peptide ligands. Although 5 secretin family GPCR mem-
bers were identified in the arthropod genome, only two
potential ligands, corticotrophin releasing factor (CRF)-
related peptides and amnesiac genes, unrelated to chor-
date secretin peptide family members were predicted
[66]. In contrast, recent studies performed in molluscs
(Helix pomatia) using IHC and MALDI-TOF/TOF iden-
tified partial peptides with a similar mass to vertebrate
PACAP in the snail whole hemolymph and CNS extracts
[67]. Should the identity of the peptide be confirmed by
sequencing taking in consideration the results of the
present study a new paradigm will be required to explain
secretin family evolution.
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There is evidence that genes for amnesiac in Drosophila
and maxadilan in sand-fly might encode functional
homologues of the vertebrate PACAP despite their lack of
sequence similarity [2,68-70] and the maxadilan peptide
is able to activate mammalian PAC1 receptors in vitro
[71,72]. The activation of family 2 GPCRs members by
the secretin family of ligands has been linked to their well
conserved structure [53,54] which comprises an alpha
helix in the mid and C-terminal region and an N-terminal
loop. The region of maxadilan implicated in PAC1 recep-
tor activation has an identical structure to the N-terminal
region of secretin family ligands and contains key amino
acids involved in receptor activation (reviewed by [69]).
In fact, mutation analysis with maxadilan demonstrated

that despite its greater size compared to vertebrate secre-
tin family peptides, the disruption of four conserved
cysteine residues (1 - 5 and 14 - 51) responsible for the
formation of two disulfide bonds led to loss of activity
[69]. Taking into consideration the degree of conserva-
tion of the N-terminal ligand binding domain of the
secretin family GPCRs [14] and their relative promiscuity
[73] it is unsurprising that protostome peptides activate
vertebrate receptors. In nematode and Drosophila, PDF
(Pigment Dispersing Factor) stimulated the homologues
of vertebrate secretin GPCRs but they were not stimu-
lated by secretin family members [14,59,60]. These obser-
vations suggest that specificity of the receptor members
has changed during evolution and may explain the failure
to identify conserved ligands.

Figure 6 Comparisons of conserved flanking genes of human PRP/PACAP, GHRH and GCG/GLP with the putative homologue regions in 
Ciona, Drosophila and C. elegans. Non-vertebrate genomes were accessed using the ENSEMBL annotation. Accession numbers of the human neigh-
bouring genes: KCNH7 (EAX11346); interferon induced with helicase C domain 1 (IFIH1, EAX11352); Solute carrier family 4, sodium bicarbonate trans-
porter, member 10 (SLC4A10, AAI36270), viral oncogene yes-1 homolog 1 (YES1, NP_005424), Methyltransferase like 4 (METTL4, AAI36768), ribophorin 
II, (RPN2, NP_002942).
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A general model to explain peptide ligand binding and
receptor activation has emerged recently for class B
GPCRs (secretin family) [74]. The proposed mechanism,
known as the "two-domain model" suggests that initial
ligand-receptor interactions are mediated by the central
and C-terminal peptide segments with the extracellular
N-terminal receptor region and that activation occurs
subsequently when the bioactive N-terminus of the
ligand binds the receptor juxtamembrane domain [75]. In
this context, the identification in the present study of
putative "signature" amino acids conserved across taxa
for each peptide groups may explain differences in selec-
tion and affinity for receptors. For example, mutation of
conserved residues within the C-terminal region of VIP
revealed that substitution of L23 (common to PACAP-like
subfamily members) decreased peptide biological activity
without altering the predicted structure [76]. D3 is con-
served across the PACAP-like peptides and this residue
has a role in adenyl cyclase (AC) stimulation and interacts
with basic residues (R188and K195) in the second trans-
membrane helix of VPAC [77]. Similarly, D9 which is con-
served across the GCG-like members is essential in the
activation of mammalian GCGR [78]. It will be of interest
in the future to study the role of unique amino acid resi-
dues/motifs identified in the present study within the N-
terminal and C-terminal regions of each peptide group.

Recently, a Darwinian evolutionary model was pro-
posed to explain the origin of steroid hormones and their
receptors and may also explain the emergence of meta-
zoan secretin peptide-receptor pairs. The steroid hor-
mones and receptors were proposed to have evolved
through a molecular exploitation process in which struc-
turally adapted receptors evolved prior to ligand emer-
gence [79,80]. By reconstructing the sequence of the
ancestral steroid receptors (eg. corticoid receptor) the
authors verified that they are activated by hormones (eg.
aldosterone) that only emerged in the tetrapod lineage. At
present, evolutionary comparisons of the metazoan
receptor members and secretin peptide family suggests
that, receptors emerged prior to the ligands which were
subsequently acquired as a consequence of genome evo-
lution in the chordate radiation. Generally, two major
gene or genome duplication events are proposed to have
occurred at the origin of vertebrates and have accompa-
nied increased organismal complexity and emergence of
gene novelties [81,82]. Whilst the majority of gene dupli-
cates were probably lost as a consequence of their func-
tional redundancy, some were fixed in the genome by the
gain of new biological functions or partitioning the func-
tion of the ancestral counterpart and this may be the case
for the secretin family GPCRs and their ligands [8,17,83].

The origin of the chordate secretin peptide family has
been previously associated with the insect adipokinetic
hormone (AKH) and AKH-Precursor Related Peptides

(APRP) precursor evolution [84]. Despite their low
sequence similarity, the arthropod AKH and APRP pre-
cursor was found to share a similar gene organisation and
comparable functions with vertebrate GCG and GHRH
and they were proposed to have shared common origin
prior to protostome-deuterostome divergence (approxi-
mately 600 million years ago). However, against this
hypothesis is the recent demonstration that insect ADK
signals through a gonadotropin-releasing hormone
(GnRH) like receptor (members of family 1 GPCRs) and
also the isolation of putative nematode AKH-GnRH
related precursors suggesting that the invertebrate ADK
members may share common evolution with the meta-
zoan GnRH system [85,86].

Conclusions
The present study does not confirm the results of IHC
studies in the early 70's and 80's which identified putative
invertebrate secretin family members using antisera
against mammalian peptides. It was not possible to iden-
tify sequence homologues of the Chelyosoma productum
PRP/PACAP peptides in the sequenced Ciona genomes,
although at least 8 putative secretin-like family GPCRs
have been reported [14]. The previous facts taken with i)
the identification in snail of a putative PACAP peptide;
and ii) the activation of a secretin-like family GPCRs in
nematode and Drosophila by PDF but not by vertebrate
secretin family members makes it difficult to establish
when the peptide members emerged in the deuterostome
lineage. It is hypothesised that the emergence of the full
suite of receptors and their ligands accompanied the
rapid genome changes during chordate evolution. The
ancestral secretin family gene probably arose as part of an
existing gene or gene fragment and via exon and gene
duplication events generated the existing suite of family
members (Figure 3). This occurred after the emergence of
the secretin family GPCRs and led to the establishment of
novel and specific receptor ligand interactions that con-
tributed to the generation of novel physiological func-
tions. In contrast, to other peptide families, such as NPY/
PYY and Oxytocin/vasopressin which stimulate receptors
of family 1 GPCRs and are highly conserved from protos-
tomes to deuterostomes, members of the secretin family
GPCRs appear to have adopted new ligands during evolu-
tion.

Methods
Data mining
Using comparative sequence approaches the existence of
putative non-vertebrate secretin family members were
investigated in publicly available protostome and early
deuterostome genome, EST and protein databases. The
complete nucleotide and amino acid sequences of human
secretin family members (PHM/VIP, P01282; PRP/
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PACAP, P18509; SCT, P09683; GHRH, P01286; GIP,
P09681; and GCG/GLP, P01275) mature peptides and
their homologues in zebrafish and tunicate Chelyosoma
productum PRP/PACAP precursors were used to interro-
gate databases (Figure 1, Additional file 1). Searches were
performed in the metazoan genomes of porifera
(Amphimedon queenslandica), cnidarians (Nematostella
vectensis and Hydra magnipapilata), planarian
(Schmidtea mediterranea), annelids (Helobdella robusta
and Capitella capitata), mollusc (Lottia gigantea), crus-
tacean (Daphnia pulex), insects (Drosophila melano-
gaster, Aedes aegypti and Anopheles gambiae); nematodes
(Caenorhabditis elegans and Caenorhabditis briggsae);
and in the early deuterostomes, sea urchin (Strongylocen-
trotus purpuratus Build 2), cephalochordate (Branchios-
toma floridae) and urochordates (Ciona savignyi and
Ciona intestinalis); and also in the vertebrate sea lamprey
(Petromyzon marinus), teleosts (zebrafish, Danio rerio;
Takifugu rubripes; Tetraodon nigroviridis; medaka, Ory-
zias latipes; stickleback, Gasterosteus aculeatus) and tet-
rapods, frog (Xenopus tropicalis), lizard (Anolis
carolinensis) and chicken (Gallus gallus). Searches of the
Takifugu genome were also performed in http://
fugu.nimr.mrc.ac.uk/blast. To substantiate the results,
further searches for secretin family members were also
carried out in the NCBI EST data sets for porifera
(Porifera (taxid:6040), cnidaria (Cnidaria (taxid:6073),
protostomes (Protostomia (taxid:33317)) and early deu-
terostome (Echinoderms (taxid:7586); Cephalochordata
(taxid:7735); Urochordata (taxid:7712) and also in species
specific EST databases for the planarian (Schmidtea med-
iterranea), crab (Celuca pugilator), pacific oyster (Cras-
sostrea gigas) and mussel (Mytilus edulis) (Additional file
1). In addition, the complete nucleotide precursor or the
sequence corresponding to the deduced mature peptide
of secretin family members in deuterostome were used to
interrogate the general nucleotide (nr/nt) and protein
databases (nr) available at NCBI [9] and UniProt [87]
using the BLAST programme.

For small mature peptide sequences the BLAST algo-
rithm was adjusted (scoring matrix PAM30, word size 2,
highest expected value parameters, low complexity filter
off, no adjustment) to permit identification of short pep-
tide hits with strong similarities. Searches using short
nucleotide sequences were also performed with word size
7; expected value 1000 and low complexity filter off. Best
matches with significant scores or low E values <0.01
were retrieved and analysed.

Searches using a hidden Markov model were per-
formed with the HMMER3 (3.03b) [88] suite of software
on the NCBI non-redundant (nr) peptide, and custom-
made invertebrate nucleotide (nt) (1614126 records) and
est_others (ests minus human and mouse) (11209486
records) databases using hmmsearch. Subset databases

were constructed to reduce the computational burden of
performing a HMMER3 search against the complete
NCBI nucleotide and EST databases. The invertebrate
subset databases were constructed by querying the NCBI
databases using Entrez for all invertebrate GI numbers
(Metazoa NOT Vertebrata) for both nt and est_others
and filtered using fastacmd (part of the NCBI BLAST
package). Peptide searches were performed with the Pfam
model for the secretin peptide family members
(Hormone_2 member, PF00123) and nucleotide queries
with a model constructed in HMMER3 (3.03b) using the
nucleotide aligned sequences of the 1-27 aa mature pep-
tide regions of the secretin family members represented
in Figure 2.

Sequence comparisons
The potential secretin family members identified were
compared with existing vertebrate members. The non-
vertebrate sequences that shared similarity with previ-
ously annotated genes or gene intron regions were dis-
carded and the remaining candidates used to interrogate
the NCBI database to confirm identity and failed to
retrieve a homologue of the vertebrate secretin family. In
contrast, homologues in vertebrate datasets were identi-
fied and the deduced amino acid sequences of the
retrieved transcripts or predicted exon coding regions
were compared using ClustalX 2.0 [89] with the con-
served mature peptide region 1-27 aa of representatives
of the secretin family with the exception of human GLP1
in which 5-32 aa were used that correspond to a unique
coding exon. Peptide similarities/identities were deter-
mined using the GeneDoc programme [90] and amino
acid consensus sequences within each peptide group
were deduced and compared to demonstrate general lev-
els of conservation for each subfamily. A prototype pep-
tide representative of the chordate secretin family was
constructed by fusing the most abundant amino acid resi-
dues within the PACAP-like and GCG-like peptides
members. The in silico deduced sequence was submitted
to Pfam [58] analysis to confirm identity as a secretin
member and used to search the vertebrate and non-verte-
brate NCBI databases with BLAST and adjusted parame-
ters to identify homologues.

Phylogenetic analysis
Phylogenetic analyses were performed using the ClustalX
2.0 alignment of the 1-27 aa mature peptide region of
secretin members. The amino acid sequence alignment
produced was analysed with PROTTEST to select the
model of protein evolution that best fits dataset [83] and
phylogenetic analyses were conducted using 95 taxa with
the maximum likelihood and Bayesian estimation meth-
ods (MrBayes and PhyloBayes, Additional file 2). The
maximum likelihood analysis was carried out using
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Phyml 3.0 [85] with 100 bootstrap replicates with a JTT
substitution model with a discrete gamma distribution of
rates among sites with 4 categories (Г). A search for the
optimal ML tree was also performed. Bayesian estimation
using MrBayes [91] was performed with the Dayhoff
model with Г and PhyloBayes [92] with the CAT model
plus Г. The MrBayes analysis was conducted with two
MCMC runs (each with 4 chains) for 200,000 generations
with 20,000 samples. The PhyloBayes CAT analysis was
performed using 2 independent run replicates (40727 and
40382 generations, respectively). Likelihoods were plot-
ted against generation time and the MCMC chains were
assumed to have reached stationarity when the curve pla-
teaued. Phylogenetic sequence analysis was also per-
formed using the nucleotide sequences of the 1-27
mature peptide domains with the ML method as previ-
ously described and the GTR model plus Г and the indi-
vidual peptide clades present in both nucleotide and
amino acid trees obtained were similar (data not shown).

Gene environment comparisons
The gene environment of vertebrate secretin family
members was determined to identify potentially con-
served gene blocks; these were then used to search for
putative ancestral secretin genome-like regions in C. ele-
gans, Drosophila and Ciona assemblies. The Takifugu
NIX annotated scaffolds [93] were used as a guide to
characterise the Xenopus (Xenopus tropicalis) [94], the
chicken and human homologue regions [95]. The NIX
annotated scaffolds from Takifugu were used as they had
greater information content than the homologue data
deposited in ENSEMBL. The conserved vertebrate gene
environment identified the genes YES1 and METTL4 for
PRP/PACAP; the gene RPN2 for GHRH; and the KCNH7,
IFIH1 and SLC4A10 genes within the vertebrate GCG/
GLP genomic region. The, C. elegans, Drosophila and
Ciona genomes were assessed using the ENSEMBL
assembly annotation and homologues identified and
compared with the vertebrate homologue region.

Additional material
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