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Abstract

Background: Genes involved in immune functions, including pathogen recognition and the activation of innate
defense pathways, are among the most genetically variable known, and the proteins that they encode are often
characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation
characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity
genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef.
Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously
used as a model for studies of coral disease and bleaching.

Results: In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection,
consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural
model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe
crab (Tachypleus tridentatus), a protein with demonstrated function in microbial recognition and agglutination. We also
demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella) possess

proteins structurally similar to tachylectin-2.

future environmental change.

Conclusions: Taken together, the evidence of high amino acid diversity, positive selection and structural
correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1) part of Oculina's innate immunity
repertoire, and 2) evolving adaptively, possibly under selective pressure from coral-associated microorganisms.
Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to

Background

Host immune systems must be able to recognize a wide
range of rapidly evolving microbes; thus, functional vari-
ation is a hallmark of responses to potential pathogens
and other non-self molecules. Such variation can arise via
complex interactions leading to somatic recombination,
as in vertebrate immune systems and molluscan fibrino-
gen-related proteins [1], or more simply via genetic diver-
sity in the host immune system, either at the level of
families of genes or alleles at a single locus. Genes used by
potential hosts to distinguish self from non-self and to
recognize and defend against pathogenic microbes
include some of the most genetically variable known,
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among them those encoding the Major Histocompatibil-
ity Complex (MHC) proteins in vertebrates [2] and a his-
tocompatibility protein in tunicates [3], as well as disease
resistance (R) proteins [4] and ribonucleases of gameto-
phytic self-incompatibility (GSI) [5] in plants.

High levels of variation are generated by diversifying
selection that results from either selection favoring
heterozygotes or from frequency-dependent selection
favoring rare alleles. A molecular signature of positive
selection (that is, an excess in the nonsynonymous nucle-
otide substitution rate dN relative to the synonymous rate
dS when compared to neutral expectations) is therefore
another distinctive feature of host immunity genes.
Indeed, one of the first uses of the now-standard dN/dS
ratio approach for detecting positive selection was on
sequence data from the MHC binding cleft of mice and
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humans [6]. Subsequent work on natural populations of
vertebrates has detected positive selection at MHC many
times [7], as well as on other immunity genes from verte-
brates [8] and plants [9,10].

Because high variation at immunity genes appears to be
sustained by selection, surveys of intraspecific variation
at such loci have been employed in ways that neutral
markers cannot be. For example, the signature of positive
selection at MHC may be difficult to maintain if historical
population sizes were small enough for drift to dominate,
a situation that can be evaluated by comparing patterns at
MHC loci and highly variable, but presumably neutral,
nuclear markers such as microsatellites [11]. More gener-
ally, surveys of variation at MHC loci have taken on a spe-
cial role in a conservation context, where they have been
seen as proxies for levels of standing adaptive variation in
wild populations [12,13]. Such assessments of a popula-
tion's ability to withstand challenges from pathogens
should hold true to the extent that variation at immunity
genes relates to an organism's fitness and ability to fend
off pathogens and parasites, as has been seen for MHC in
some vertebrates [14-16].

In contrast to the many works on MHC variation in
wild vertebrate populations, findings of immunity gene
variation in invertebrate animals are only beginning to
emerge. In part, such surveys have been stymied by the
heterogeneous ways in which the immune systems of dif-
ferent phyla work [17]. Schulenburg et al. [18] also sug-
gested that invertebrate immunity genes may be limited
in their genetic variability, but recent studies suggest oth-
erwise. Exceptionally high diversity has been recorded
recently in invertebrate immunity genes, both among
paralogous members of the same gene family (e.g. in sea
urchins [19]; in nematodes: [20]) and among alleles at a
single locus (e.g. mosquitoes: [21]; in mussels: [22]). High
polymorphism has not been accompanied universally by
positive selection however [23], although most studies
have not tested for it.

Corals (Phylum Cnidaria, Class Anthozoa, Order Scler-
actinia) are among the many taxa for which we have no
information on the population-level variability of immu-
nity genes. Reef-building (hermatypic) corals are espe-
cially suitable targets for studies of immunity gene
variation for several reasons. Reef corals create habitat
that sustains large numbers of other species, yet these
corals have been in decline globally in the recent past
[24]. Coincident with this decline has been a rise in
reported coral diseases [25,26]. These have often been
associated with high water temperature anomalies (e.g.
[27]), although there are claims for mechanistic ties
between coral bleaching and bacteria [28,29]. The long
generation times of many large hermatypic corals would
seem to make them especially vulnerable to rapidly evolv-
ing microbes with generation times perhaps 107-108
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shorter. The search for polymorphic recognition genes
from corals that could effectively match the diversity of
potential pathogens is just beginning. One carbohydrate
recognition protein (Millectin) from a coral binds both
bacterial pathogens and algal symbionts [30], but of the
several similar isoforms reported, all came from a single
individual, suggesting that they constituted a recently
radiating gene family and were non-allelic. A polymor-
phic kin-recognition locus has been characterized in a
hydroid [31], but no such highly variable region has been
reported from corals, nor has any coral immunity gene
been characterized for intraspecific variation to date.

Here, we characterize sequence variation at a putative
coral immunity gene, tachylectin-2, fortuitously identified
while generating markers from an EST library [32] from
Oculina, a genus that has served previously as a model for
studies of coral disease and bleaching [28]. Tachylectin-2
was originally isolated from the Japanese horseshoe crab
(Tachypleus tridentatus) and has since been demon-
strated experimentally to possess anti-microbial activity
[33]. Its crystal structure is unique and composed of a
five-bladed B-propeller [34], each blade of which poten-
tially binds N-acetyl sugars such as those associated with
lipopolysaccharide (LPS) and peptidoglycan found in the
bacterial cell wall.

Homologs of tachylectin-2 have been reported from
two cnidarians, although in both cases, functional roles
other than host immunity have been proposed. Mali et al.
[35] isolated a gene (CTRN) from the hydrozoan Hydrac-
tinia echinata that had a primary sequence with a simi-
larity of over 30% to horseshoe crab tachylectin-1 and a
typical tachylectin repeat structure. However CTRN was
expressed solely in circumoral neurons and, most impor-
tantly, expression levels were not induced when chal-
lenged with LPS. This suggests that the primary function
of CTRN is neither host immunity nor some other form
of microbial recognition. Schwarz et al. [36] identified a
homolog of horseshoe crab tachylectin-2 via BLASTX
screening of an EST library generated from the coral
Montastrea faveolata. They speculated that such a pro-
tein could mediate interactions between coral hosts and
their algal symbionts and suggested further study to
investigate this possibility.

To confirm the identity of the Oculina gene, we show
that the inferred structure of the Oculina tachylectin-2
corresponds closely to the solved crystal structure of the
horseshoe crab tachylectin-2. We also report high non-
synonymous variation for the Oculina tachylectin-2 and
demonstrate that positive selection has promoted allelic
diversity at this locus. Our results are consistent with
adaptive diversification at a host immunity gene, and thus
open the door to molecular studies of host susceptibility
and population vulnerability in corals.
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Results

Cnidarian Homologs of Tachylectin-2 from Tachypleus
tridentatus

Pairwise alignments of putative tachylectin-2 amino acid
sequences from four cnidarians (three corals and an
anemone) and the full-length tachylectin-2 from the Japa-
nese horseshoe crab reveal a high degree of similarity
among the proteins, beginning at position 54 of the
horseshoe crab tachylectin-2 (Figure 1, Table 1). The sec-
ondary structure prediction corroborates the localization
of our alignment and indicates that the Oculina sequence
corresponds to a region spanning nearly two complete
tandem repeats in the horseshoe crab tachylectin-2,
including two B-strands within p-sheet II, all four strands
of B-sheet III and the first two strands of B-sheet IV with
each B-sheet being separated by a single a-helix (Figure 1,
[34]). Furthermore, consistent with the characteristics of
a 5-bladed B-propellor, the Oculina primary structure is
comprised of highly similar (70% identity) tandem
repeats of 40 amino acids each (LYGVXXDKFYXRX-
PPTHXSDNWLGSAXXIGXGGWXXFXXL, Figure 1).
Within each of its five equivalent p-sheets, the horseshoe
crab tachylectin-2 harbors an individual N-acetyl sugar-
binding site comprised of 8 functional residues capable of
direct interaction with target ligands. The partial Oculina
sequence may thus contain 16 binding residues, including
a complete 8-residue binding pocket. Moreover, these 16
binding residues are highly conserved between the two
proteins. Ten residues are identical to the horseshoe crab
tachylectin-2 sequence, while 3 are conserved substitu-
tions (M23L, I70L and V76I), and 3 are semi-conserved
(D18A, N31T and D65G).

As an additional test of structural correspondence, we
generated three-dimensional (3-D) structural models for
the Oculina, Acropora, Montastrea and Nematostella
homologs and used a threading approach to align the
models with the known X-ray crystal structure for tachyl-
ectin-2 [PDB:1t12] from horseshoe crab. For each of the
four models, the estimated precision, or percent likeli-
hood of a correct threading match based on e-values, is
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100%. Furthermore, respective RMS deviations resulting
from the superposition of the Oculina, Acropora, Mon-
tastrea and Nematostella models onto 1t12 are 0.42 A (on
372 atoms), 0.67 A (on 352 atoms), 0.65 A (on 324 atoms)
and 0.41 A (on 896 atoms) (Figure 2). Very similar, well-
aligned structures generally have RMS deviations <1.0 A,
indicating that all four of our alignments are precise.
Divergence among these models and 1t]2 is minimal and
limited to the C-terminal extensions in the particular
cases of Oculina and Acropora. Thus, a phylogenetically
wide range of corals possesses tachylectin-2-like proteins
that are very similar to and align well with the horseshoe
crab tachylectin-2.

Positive Selection
Diversity at tachylectin-2 as indicated by m (the number
of nucleotide differences per site between two randomly
chosen sequences) was high overall (it = 0.0179), and was
evident at both silent (g, = 0.0299) and replacement
sites (T[Rep = 0.0145). Waterson's theta (0y,) was 0.0215.
The maximum likelihood analysis recovered a single best
tree (Figure 3), although support for nodes was low (as
expected for intraspecific data from species lacking
strong phylogeographic structure). The neighbor joining
tree (Figure 3) supported just three nodes with bootstrap
values >50%, and thus was essentially a star phylogeny.
Likelihood ratio tests suggest that positive selection
promotes nonsynonymous substitutions among our sam-
ple of tachylectin-2 alleles from Oculina (Table 2). The
strength of this conclusion varies depending on which
allele tree the tests are based upon. Both tests (M7 vs. M8
and M1la vs. M2a) based on the collapsed neighbor join-
ing (cNJ) tree were highly significant. These tests test
indicated that while only a small proportion of residues
were under selection (about 5.5%), those residues were
under very strong selection, with the ratio of nonsynony-
mous to synonymous substitution rates (o) > 9. Based on
the single best maximum likelihood tree, the M7 (where
® can take on a range of values between 0 and 1) versus
M8 (as for M7, but with an additional positive selection

Table 1: Anthozoan tachylectin-like sequences and their similarities to tachylectin-2 from Tachypleus tridentatus

Host species Accession Number

sequence length (aa)

% identity/similarity

% identity/similarity to
to 1tl2 aa 54-140

Oculina sequence
Oculina varicosa FJ966784 92 100/100 60/68
Montastrea faveolata? FE038913 111 54/60 44/62
Acropora milleporab EZ038328 277 76/85 52/64
Nematostella vectensis¢ EDO38290 242 52/67 55/71

2 ocal alignment of M. faveolata is with 1tl2 aa 54-135.

b ocal alignment of A. millepora with 1t12 aa 54-140 is presented here, although the strongest alignment is with 1tl2 aa 7-95.

¢Local alignment of N. vectensis is with 1t|2 aa 54-145.
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Figure 1 Amino acid sequence alignment of conserved regions of the horseshoe crab tachylectin-2 (1tl2), and tachylectin-2s from the an-
thozoans Oculina, Montastrea, Acropora and Nematostella. Black boxing indicates conserved sites, relative to the Oculina sequence. Red text high-
lights those positions in 1tI2 that are functional N-acetyl-sugar-binding sites [34]. The locations of the 40-amino acid tandem repeats characteristic of
tachylectin-2 are indicated by the blue lines. Below the sequences, the predicted secondary structural elements of the Oculina tachylectin are shown
relative to elements of the experimentally derived secondary structure of 1tI2.

category where w can exceed one) test was significant.
The test comparing M1a (with just two w categories: neu-
trality (w = 1) and another between 0 and 1) to M2a (as
for Mla, but with an additional positive selection cate-
gory where » > 1) was not significant (p = 0.081). For
these tests, a higher proportion (about 24%) of codons
were inferred to fall in the class experiencing positive
selection, but the  for this class was not as high as for the
collapsed NJ analysis (w = 2.37).

Consistent with the estimated proportions of residues
under selection (Table 2), the BEB analysis for sites under
positive selection (Table 3) based on the ¢NJ tree indi-
cated fewer sites (just 5) under stronger selection than the
analysis based on the maximum likelihood tree (which
indicated 11 residues). One of the sites that was signifi-
cant for the analysis based on the cNJ tree was not signif-
icant for the analysis based on the ML tree. Thus, a total

of 12 residues were flagged as potentially evolving under
positive selection (Figure 4).

An in-frame indel occurs in the Oculina alignment. The
alternate resolution of the alignment without the indel
results in five consecutive nucleotide substitutions and
two non-synonymous replacements (data not shown).
The in-frame indel used in our alignment, by eliminating
non-synonymous substitutions, results in a more conser-
vative test for positive selection by removing two sites
from consideration in the PAML analyses.

Tajima's D (-0.680) and Fu and Li's D (-2.17) were both
negative, consistent with an excess of low frequency poly-
morphisms, but these values were not statistically signifi-
cant. Fay and Wu's H (0.631) was also not significant.

Tests for recombination generally did not reveal signifi-
cant results. The DSS test implemented in TOPALi did
not detect recombination in the tachylectin-2 alignment.
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Figure 2 Ribbon diagrams of tachylectin-2s from Oculina (A),
Acropora (B), Montastrea (C) and Nematostella (D). Each structural
model has been superimposed on the known structure of 1t12 (purple),
with the Oculina structure represented in green, Acropora in yellow,
Montastrea in red and Nematostella in blue.

Two tests for recombination were implemented using the
Datamonkey server, the first looking for a single recombi-
nation event (SBP test) and the second for multiple
recombination events (GARD test). Neither test detected
any recombination. The four-gamete test detected six
recombination events; the estimate of R per gene was
128.0.

Spatial and Functional Correspondence of Positively
Selected Sites in Oculina Tachylectin-2

The results of the Bayes Empirical Bayes (BEB) analysis
(Table 3, Figure 4) indicated that 12 codons in Oculina
tachylectin-2 may have been subject to positive selection.
To determine whether the spatial organization of these
sites corresponded to regions of functional importance,
positively selected sites were first mapped onto the
threaded structural model. In the space-filling represen-
tation of the modeled molecular surface (Figure 5), all 12
positively selected sites are localized on the protein's
exterior and are well exposed. This observation is inde-
pendently confirmed by calculations of solvent-accessible
surface area using the GETAREA algorithm and 10% sol-
vent accessibility as a cut-off value.

Next, we tested whether the spatial distribution of posi-
tive selection was clustered, or otherwise nonrandom, in
3-D space by comparing observed codon positions to
random permutations of an equal number of surfaces
sites along the same length of protein. No significant
trend in selected site clustering was observed. Indeed,
selected sites appear to occur along the entire length of 8-
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strands, a-helices and coiled coils present in the Oculina
tachylectin-2 (c¢f. Figure 2, Figure 4).

Finally, we examined whether the 12 positively selected
sites correspond to active N-acetyl sugar-binding resi-
dues or are otherwise directly associated with the known
functional regions of the horseshoe crab tachylectin-2.
Based on our sequence alignment and the degree of con-
servation at known functional positions in 1tl2, no posi-
tively selected site corresponded to any active site within
an N-acetyl sugar-binding pocket.

Discussion
A Recognition Function for Cnidarian Tachylectin-2
Homologs
Since the initial discovery of tachylectins in the Japanese
horseshoe crab Tachypleus tridentatus, tachylectin-like
proteins have been identified in a wide range of organ-
isms including slime molds [37], sponges [38], hydrozoan
cnidarians [35], lancelets [39] and fish [40,41]. This cov-
erage has been recently extended to anthozoan cnidarians
on the basis of genome sequence from a sea anemone
[42] and EST sequences from three corals [32,36,37].
Thus, tachylectin-2-like proteins are present in at least
two cnidarian classes (Hydrozoa and Anthozoa) as well as
in both major clades of scleractinians, the complex (e.g.
Acropora) and the robust (e.g. Montastrea, Oculina) [43].
Proteins of the tachylectin family have broad-spectrum
anti-microbial activity [44] and play a role in non-self rec-
ognition [45], two functions central to cnidarian innate
immunity [46,47]. Alignments and structural modeling of
translated amino-acid sequences show that our Oculina
gene encodes a protein homologous to tachylectin-2.
Although our characterization of the Oculina tachylectin-
2 is limited because we have yet to identify the start site
for the gene's coding region, several lines of circumstan-
tial evidence suggest that the partial Oculina gene
encodes an ortholog of tachylectin-2. First, based on pair-
wise sequence comparisons (Figure 1) and protein
threading results (Figure 2), the sequences from Oculina
and Tachypleus are highly similar. Second, partial amino-
acid sequences from Oculina reveal an internal homology
that consists of two highly similar tandem repeats, a fea-
ture characteristic of protein regions that arrange
pseudo-symmetrically to form larger structures com-
prised of multiple B-propeller folds. Lectins, and tachyl-
ectins among them, characteristically  derive
conformational rigidity, multivalency, and avidity from
these B-propeller structures [48,49]. Finally, the predicted
secondary structure (i.e. a-helices, B-strands and coiled
coils) of the Oculina protein corresponds closely to the
experimentally derived X-ray structure of 1t12 (Figure 1).
Modeling the structure of Oculina tachylectin-2
enables us to map the location of residues found to be
under positive selection on the 3-D structure of the pro-
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and geographical distribution of alleles are given in Table 4.

Figure 3 Maximum likelihood tree for tachylectin-2 alleles. Unrooted maximum likelihood tree depicting relationships between alleles used in
the analyses to detect positive selection. The three circled groups have >50% bootstrap support in an alternative Neighbor Joining tree. Abundance
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tein. Without exception, replacements have occurred at
well-exposed sites on the protein's surface. This external
localization most likely stems from surface residues hav-
ing lower structural constraints than their buried coun-
terparts (e.g. [50,51]). Thus, positive selection does not
appear to have altered the structure and stability of the
core of Oculina tachylectin-2, nor has selection targeted
residues known to be involved in carbohydrate recogni-
tion and binding. These have been conserved, suggesting
that the molecular affinity of the Oculina tachylectin-2
for N-acetyl sugars remains unchanged. However, given
that positive selection acts on residues on the surface of
the Oculina protein, especially those at the fringes of the
N-acetyl sugar-binding pockets (cf Figure 5 here and Fig-
ure 5 from [34]), these selected changes may modulate
the architecture, flexibility and specificity of the binding
pocket to accommodate a broader range of ligand sizes
and configurations from a more diverse pool of non-self

sources. Such correlations between structure and activity
have been previously described for other classes of lectin
(e.g. for galectins, [52]).

Positive Selection on Oculina Tachylectin-2

In our survey of Oculina tachylectin-2 alleles, we found
high nonsynonymous variation (25 alleles differing by
amino replacements in a survey of 244 alleles) promoted
by positive selection (Table 3, Figure 4). Because high
variation and positive selection are disproportionately
observed in immunity genes relative to other functional
gene classes [53], the presence of these signatures is con-
sistent with Oculina tachylectin-2 performing some
aspect of coral immunity (even though some immunity
genes do not reveal such a signal, e.g. [54]). Experimental
assessments of proposed immune functions are critical
both to confirming the involvement of this protein in
non-self recognition or some other form of coral-microbe



Hayes et al. BMC Evolutionary Biology 2010, 10:150
http://www.biomedcentral.com/1471-2148/10/150

Page 7 of 15

Table 2: Tests for positive selection on putative tachylectin-2 from Oculina based on maximum likelihood (ML) and

collapsed Neighbor Joining (cNJ) allele trees

Models compared (allele 2AL P1 w
tree)

M1a vs. M2a (ML) 5.02 239 237
M7 vs. M8 (ML) 6.18* 239 237
M1a vs. M2a (cNJ) 95.2%* 5.6 9.38
M7 vs. M8 (cNJ) 96.8** 5.7 9.36

* - significant at p = 0.05

** _significant at p < 0.001

p1 - percentage of sites under positive selection (under model M8)
w - ratio of dN/dS for those sites under positive selection (model M8)

interaction based on N-acetyl sugar specificity, and to
identifying the selective forces driving the evolution of
tachylectin-2.

An alternate explanation to a purely immune explana-
tion for positive selection on tachylectin-2 is that the pro-
tein may mediate a more general process of non-self
recognition, limited not only to pathogen detection but
also including symbiont identification. Indeed, in the
best-characterized host-symbiont interactions (that
between legumes and rhizobia), De Mita et al. [55,56]
found positive selection in the legume Medicago truncu-
lata at the NODULATION RECEPTOR KINASE (NORK)
gene, which functions during the early stages of root
infection by symbiotic nitrogen-fixing bacteria and
endomycorrhizal fungi. While the authors propose that
Medicago-rhizobium interactions may co-evolve in a
manner reminiscent of host-pathogen co-evolution, this
interpretation is a matter of current debate [57]. The sig-
nature of positive selection has also appeared in a study
trying to elucidate the molecular underpinnings of speci-
ficity among corals and their dinoflagellate symbionts in
terms of lectin-mediated interactions. Voolstra et al. [58]
presented preliminary evidence of positive selection at a
dinoflagellate gene encoding a novel protein of unknown
function although, unlike our study, this conclusion of
positive selection was not based on allelic variation. Until
more studies conclude that adaptive evolution acts to
diversify alleles at host symbiont recognition genes, the
positive selection seen among alleles at Oculina tachylec-
tin-2 should be considered more consistent with a role in
immunity than symbiosis.

In our earlier work on several nominal Oculina species
[32], we employed three nuclear loci (tachylectin-2, as
well as two others tentatively identified using BLASTP as
fatty acid elongase and elongation factor 1a) as markers

to reveal subdivision among 10 different sampling popu-
lations spanning a 2370 km range and also to establish the
genetic isolation of a threatened deep-water population
(Jeff's Reef on the Oculina Banks off central Florida). In
the latter case, the tachylectin-2 locus was unusual both
in being fixed for a single allele and in being putatively
associated with host immunity. This observation adds to
the ongoing debate over the adaptive potential of reef
building corals in the face of global climatic change
[59,60]. On the one hand, most Oculina populations seg-
regate ample genetic variation and show the signature of
positive, diversifying selection at the tachylectin-2 gene,
demonstrating that genotypic diversity and adaptive vari-
ation are present. On the other, the deep-water popula-
tion, presently threatened by illegal trawling [61], is fixed
for a single tachylectin-2 allele, which may indicate its
future prospects are even bleaker than demography sug-
gests.

That functional genetic variation for host resistance
exists within coral populations has been shown recently
for another Atlantic species, Acropora cervicornis.
Vollmer and Kline [62] showed that there are differences
in resistance to white-band disease resulting from in-situ
transmission assays among different A. cervicornis geno-
types. Genotypes immune to white-band disease
occurred at low frequency (6%). This may indicate diver-
sifying selection, as strong directional selection acting on
genes involved in the immune response might have been
expected to sweep a disease resistant genotype to fixation
during the mass die-off of A. cervicornis due to white-
band disease. Such diversifying selection would be con-
sistent with our observations in the tachylectin-2 gene in
Oculina.

The geographic variation in allelic diversity and posi-
tive selection in our data are also intriguing in light of
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Table 2: Tests for positive selection on putative tachylectin-2 from Oculina based on maximum likelihood (ML) and

collapsed Neighbor Joining (cNJ) allele trees

Models compared (allele 2AL P1 w
tree)

M1a vs. M2a (ML) 5.02 239 237
M7 vs. M8 (ML) 6.18* 239 237
M1a vs. M2a (cNJ) 95.2%* 5.6 9.38
M7 vs. M8 (cNJ) 96.8** 5.7 9.36

* - significant at p = 0.05

** _significant at p < 0.001

p1 - percentage of sites under positive selection (under model M8)
w - ratio of dN/dS for those sites under positive selection (model M8)

recent studies demonstrating that allelic fixation may
provide a signature of geographically variable selection in
isolated populations [63]. For example, in a geographical
survey of variation at 16 immunity genes in six natural
populations of teosinte, Moeller and Tiffin [64] found a
marked difference in allelic variation at a single locus, the
wound-inducible serine protease inhibitor (wipI), in a
single population. Taken along with other observations
(for example, this population was fixed for a replacement
at an active site), wipI appeared to have undergone a pop-
ulation-specific selective sweep. The results of Moeller
and Tiffin also suggest that such signatures are relatively
rare, even among immunity genes. Considering the spe-
cial import in variation at immunity genes in evaluating
population viability for conservation purposes [13], it
would be interesting to explore patterns of interpopula-
tion variation in Oculina or other scleractinians using a
more comprehensive set of candidate loci including both
immunity and non-immunity genes.

Given that our inference of positive selection was based
on allelic sequences, the possible role of recombination in
creating this signal deserves consideration. Tests for
recombination were equivocal. On one hand, the results
of the four-gamete test [32] and values for R indicate mul-
tiple recombination events and a high per-locus recombi-
nation rate. This rate (128) is high enough to cause false
positives in site-based tests of selection, especially the M7
vs. M8 test [65]. On the other hand, values for R have
been shown to be biased upwards [65,66] and are sensi-
tive to infinite-site violations, which are present in our
dataset. Further, neither the DSS test nor the GARD test
detected multiple recombination events, even though
both are designed to do so. Even if we allow for the pres-
ence of one recombination event, this does not appear to
be a high enough rate of recombination to cause false
positives in the site-based tests of selection [67,68]. The
four-gamete test determines whether all four combina-

tions of a pair of variable sites are present in a sample
[69]. If so, then recombination is inferred. However,
incompatible sites can arise through recurrent mutations
as well as recombination. For data sets where the muta-
tional process is best described by any time-reversible
mutation model (as ours is), incompatible sites will arise,
causing the four-gamete test to be overly conservative (in
that it may flag recombination even when it is not pres-
ent). Indeed, one tachylectin-2 site was dropped from the
four-gamete test because it segregates for more than two
nucleotides, reinforcing the argument that an infinite
sites model is not appropriate for our data.

Conclusion

The combination of two lines of evidence suggests the
gene region examined here is involved in coral innate
immunity. First, both primary amino acid sequence and
inferred protein structure are similar to those of tachylec-
tin-2, a protein from horseshoe crabs associated with an
innate immune response to bacterial pathogens. Second,
the divergence of alleles at tachylectin-2 has been pro-
moted by positive selection, a hallmark of immunity
genes. This proposed immunity function should be con-
firmed experimentally. Nonetheless, given the conserva-
tion threats faced by many corals and the special role of
genetic variation at immunity genes such as the verte-
brate MHC in assessing population viability, the gene
encoding tachylectin-2 in corals may serve as a candidate
locus to screen anthozoan populations for their potential
to respond adaptively to future challenges. Neither wide-
spread assessments of immunity loci nor comparisons of
immunity to non-immunity genes have been conducted
for corals as they have for other hosts (e.g. [63,70-72]).
Combining the identification of additional coral immu-
nity genes with geographic surveys and detailed studies of
the functional consequences of naturally occurring varia-
tion should provide insights into both how corals defend
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Table 3: Oculina tachylectin-2 codons under positive

selection
Probability (w > 1)

Residue # ML cNJ
8 0.91 1.0
10 0.92
11 0.54
13 0.84
14 0.55
21 0.69
27 1.0
48 0.52
51 0.90 0.97
53 0.90 1.0
54 0.98 1.0
71 0.53

The p-values for the M7 vs. M8 likelihood ratio tests are shown, as
are the sites determined to be under positive selection by Bayes
Empirical Bayes analysis based on two allele trees (maximum
likelihood, ML, and collapsed neighbor joining, cNJ) and their
probabilities of belonging to the group of residues undergoing
positive selection.

themselves against natural enemies and how better we
can preserve these key components of marine biodiver-

sity.

Methods

Protein Alignments, Threading, and Structural Analysis of
Positively Selected Sites

A tachylectin-2-like sequence was first identified during
random sequencing of an Oculina varicosa cDNA library
[32]. A BLASTX survey of GenBank, using the Oculina
sequence as a query, identified a putative tachylectin
from the larval transcriptome of the reef-building coral,
Acropora millepora [GenBank:EZ038328][73]. A Montas-
trea faveolata homolog [FE038913], previously described
by Schwarz et al. [36] in an EST screen, was retrieved
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from GenBank. Finally, a Nematostella vectensis homolog
[EDO38290] was located in the JGI genome database
http://genome.jgi-psf.org/Nemvel/Nemvel.home.html
using conserved motifs from the Oculina sequence as a
BLASTX query. Protein sequences were aligned using
MegAlign (DNASTAR) for multiple alignments and
EMBOSS http://www.ebi.ac.uk/Tools/emboss/align/
index.html for pairwise alignments.

Three-dimensional (3-D) structures of tachylectin-2
based on amino acid sequences from Oculina, Acropora,
Montastrea and Nematostella were modeled using com-
putational tools for structure prediction available in the
PHYRE Protein Homology/analogY Recognition Engine
version 0.2 ([74]; http://www.sbg.bio.ic.ac.uk/phyre/).
The PHYRE protocol incorporates four discrete process-
ing steps into one program interface: 1) generation of a
protein profile from the user-provided sequence using
iterative PSI-Blast to identify both close and remote
sequence homologs, 2) prediction of secondary structure
by three independent programs (Psi-Pred, SSPro and
JNet), 3) prediction of ordered and disordered regions
using Disopred, and 4) fold recognition via the applica-
tion of a profile-profile alignment algorithm to a refer-
ence fold library [75]. The resulting product is a
downloadable model with associated confidence esti-
mates relating the model to existing structures in the
Structural Classification of Proteins (SCOP) and Protein
Data Bank (PDB) databases.

Models for tachylectin-2s from Oculina, Acropora,
Montastrea and Nematostella were visualized and further
manipulated using DEEPVIEW version 4.0.1 ([76]; http://
spdbv.vital-it.ch/). The PDB file of the T tridentatus
tachylectin-2 [PDB:1tl2] was downloaded from the RCSB
Protein Data Bank and similarly viewed in DEEPVIEW.
Tachylectin-2 sequences from Oculina, Acropora, Mon-
tastrea and Nematostella were structurally superposed
on 1t12 using DEEPVIEW's Iterative Magic Fit function,
and the resulting quality of fit was computed as a Root
Mean Squared (RMS) deviation in angstroms. To deter-
mine the degree to which positively selection sites were
either buried or on the protein's surface, solvent accessi-
ble surface area for individual residues of Oculina tachyl-
ectin-2 mapped onto 1tl2 was calculated using
GETAREA version 1.0 beta ([77]; http://curie.utmb.edu/
getarea.html). Finally, statistical significance of the spatial
clustering of positively selected amino acids and corre-
spondence with functional binding sites was assessed
using programs from Clark and Swanson [78].

Tests for Positive Selection

To test for positive selection acting on Oculina tachylec-
tin-2, we assembled a dataset consisting of a subset of our
population genetic data (Table 4) from Eytan et al. [32].
The 3' UTR was cut from the original alignment, yielding


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EZ038328
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FE038913
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EDO38290
http://genome.jgi-psf.org/Nemve1/Nemve1.home.html
http://www.ebi.ac.uk/Tools/emboss/align/index.html
http://www.ebi.ac.uk/Tools/emboss/align/index.html
http://www.sbg.bio.ic.ac.uk/phyre/
http://spdbv.vital-it.ch/
http://spdbv.vital-it.ch/
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Figure 4 Amino acid alignment of tachylectin-2 alleles from Oculina varicosa. Values in parentheses are the number of times that an allele was
found in a geographic survey of variation; populations where each allele was found are in Table 4. Four boxed residues are under positive selection

based on Bayesian posterior probabilities of > 90% using model M8 based on two alternative allele trees. Additional variable positions are under pos-
itive selection based on BEB posterior probabilities of >50% using the best ML tree (residues 10, 11, 13, 14, 21,48 and 71) and a collapsed NJ tree (res-
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40 non-identical alleles (each 276-bp in length), 25 of
which differed by non-synonymous substitutions.
CODEML, implemented in PAML v4.2 [79] was used
to conduct tests for selection using the site models, which
allow the omega ratio to vary among codon sites. Two
pairs of null and alternate models were used that provide
two likelihood ratio tests (LRTs) for positive selection.
The first compares the null model of nearly neutral
molecular evolution (the Mla model) to the alternate
model of positive selection (M2a) [80]. The second com-
pares a model of beta-distributed variable selection pres-
sure (M7) to an alternate model of beta-distributed

Figure 5 Molecular surface diagrams of the Oculina tachylectin-2.
Top (A), side (B) and bottom (C) views of the structural model of the Oc-
ulina tachylectin-2 (green and red shading) reveal the spatial coverage
of the partial Oculina sequence when superimposed on the known
structure of 1t12 (purple). Successive views are achieved by rotating the
molecule downward 90° on a horizontal plane. Residues shaded in red
are those Oculina sites that have been identified as being under posi-
tive selection, as determined by BEB posterior probabilities of >50%.

variable selection pressure plus positive selection (M8)
[81]. The LRT employing two degrees of freedom was
used to determine if positive selection was present.
Codon sites under positive selection were determined
using the Bayes Empirical Bayes analysis [82], which has
been shown to be both powerful and not excessively
prone to false positives [80,82].

A phylogenetic tree is required for the site-based tests
of selection implemented in PAML. Before constructing
the tree, a model of sequence evolution was determined
with jModelTest v0.1.1 [83] using the AIC to choose
between models. The TPM2+I model was selected as the
appropriate model. A heuristic tree search using maxi-
mum likelihood was implemented in GARLI [84]. Start-
ing trees were obtained via stepwise addition. 100
random-addition sequence replications were performed
with TBR branch-swapping. Optimal trees from each
repetition were saved. The best tree from all the repli-
cates was then used for tests of selection in PAML.
Although the ML tests for positive selection implemented
by PAML are generally robust to tree topology [85], we
also ran the analysis for an alternative Neighbor Joining
allele tree (implemented in PAUP* v4b10 [86]) to insure
any inference of positive selection were not overly depen-
dent on a single topology.

We also tested for selection using summary statistic-
based methods. Tajima's D, Fu and Li's D, and Fay and
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Table 4: Sequences used in this study
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GenBank Acc. # Frequency Populations where present

FJ966794 3 NC

FJ966795 99 NC(21), GA(24), JAX(16), DAY(13), FtP(7),

HSH(2), CFL(5), SAR(7), PAN(4)

FJ966802 16 NC(2), GA(2), DAY(4), SAR(8)
GQ917185 2 GA

FJ966742 2 GA

FJ966864 17 GA, FtP, HSH(2), SAR(2), PAN(11)
FJ966775 3 JAX

FJ966781 1 JAX

FJ966731 3 JAX, DAY, SAR

FJ966715 8 JAX, FtP(2), HSH(3), CFL, PAN
GQ917186 1 DAY

GQ917187 3 DAY(2), PAN

GU827980 1 DAY

FJ966724 1 DAY

FJ966729 2 DAY

FJ966733 2 DAY

FJ966730 7 DAY(2), FtP, HSH. SAR, PAN(2)
FJ966734 2 DAY, HSH

FJ966812 25 FtP(10), HSH(5), CFL(7), PAN(3)
GU827979 3 FtP, CFL, PAN

FJ966816 1 FtP

FJ966809 1 FtP
GQ917188 3 FtP, HSH, PAN



http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966794
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966795
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966802
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ917185
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966742
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966864
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966775
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966781
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966731
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966715
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ917186
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ917187
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU827980
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966724
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966729
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966733
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966730
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966734
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966812
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU827979
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966816
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966809
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ917188
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Table 4: Sequences used in this study (Continued)
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FJ966814 1 FtP
FJ966824 1 FtP
FJ966825 1 FtP
FJ966826 1 FtP
FJ966827 1 FtP
FJ966763 1 HSH
FJ966709 1 CFL
FJ966714 2 CFL
FJ966717 2 CFL
FJ966843 1 SAR
FJ966845 1 SAR
FJ966846 1 SAR
FJ966850 1 SAR
FJ966862 1 SAR
FJ966833 1 PAN
GU827978 1 PAN
*FJ966784 20 JR80
Total 244

Frequency indicates the number of allele copies encountered over a geographic survey of 244 alleles from 10 different populations [32]. *
indicates the fixed allele from the deep water (80 m) population at Jeff's Reef (JR80). Locality abbreviations: NC (North Carolina), GA (Georgia),
JAX (Jacksonville, Florida), DAY (Daytona Beach, Florida), FtP (Fort Pierce, Florida), HSH (Horseshoe Reef, Florida), CFL (Cape Florida), SAR

(Sarasota, Florida), PAN (Panama City, Florida)

Wu's H were all implemented in DNAsp v5.0 [87]. To
conduct Fay and Wu's H test, a single tachylectin-2
sequence from the coral Solenastrea hyades (GenBank:
FJ966866) was used as an outgroup, and significance was
tested using coalescent simulations (without recombina-
tion) as implemented in DNAsp. Summary statistics for
levels of variation (1t and 0y,) were also calculated using

DNAsp.

Recombination events can cause the failure of tree-
based tests for detecting non-neutral evolution of codons
[65], with high rates of false-positives being particularly
problematic [67]. We tested for the presence of recombi-
nation in the tachlylectin-2 alignment using several dif-
ferent methods. The tests that we used were: the DSS
method [88] implemented in TOPALi v2.5 [89], the SBP
and GARD methods of Kosakovsky-Pond et al. [68]
implemented online via the Datamonkey webserver [90],


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966814
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966824
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966825
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966826
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966827
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966763
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966709
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966714
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966717
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966843
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966845
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966846
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966850
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966862
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966833
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU827978
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966784
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and the four-gamete test [91] implemented in DNAsp
v5.0. The preferred [68] corrected AIC criterion was used
to evaluate the significance of these tests. In addition, we
calculated Hudson's R, the per-locus population scaled
recombination rate [91], also implemented in DNAsp
v5.0.
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