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Abstract
Background: Hemorrhagic diseases from Ebolavirus and Marburgvirus (Filoviridae) infections can be dangerous to 
humans because of high fatality rates and a lack of effective treatments or vaccine. Although there is evidence that wild 
mammals are infected by filoviruses, the biology of host-filovirus systems is notoriously poorly understood. Specifically, 
identifying potential reservoir species with the expected long-term coevolutionary history of filovirus infections has 
been intractable. Integrated elements of filoviruses could indicate a coevolutionary history with a mammalian 
reservoir, but integration of nonretroviral RNA viruses is thought to be nonexistent or rare for mammalian viruses (such 
as filoviruses) that lack reverse transcriptase and replication inside the nucleus. Here, we provide direct evidence of 
integrated filovirus-like elements in mammalian genomes by sequencing across host-virus gene boundaries and 
carrying out phylogenetic analyses. Further we test for an association between candidate reservoir status and the 
integration of filoviral elements and assess the previous age estimate for filoviruses of less than 10,000 years.

Results: Phylogenetic and sequencing evidence from gene boundaries was consistent with integration of filoviruses in 
mammalian genomes. We detected integrated filovirus-like elements in the genomes of bats, rodents, shrews, tenrecs 
and marsupials. Moreover, some filovirus-like elements were transcribed and the detected mammalian elements were 
homologous to a fragment of the filovirus genome whose expression is known to interfere with the assembly of 
Ebolavirus. The phylogenetic evidence strongly indicated that the direction of transfer was from virus to mammal. 
Eutherians other than bats, rodents, and insectivores (i.e., the candidate reservoir taxa for filoviruses) were significantly 
underrepresented in the taxa with detected integrated filovirus-like elements. The existence of orthologous filovirus-
like elements shared among mammalian genera whose divergence dates have been estimated suggests that 
filoviruses are at least tens of millions of years old.

Conclusions: Our findings indicate that filovirus infections have been recorded as paleoviral elements in the genomes 
of small mammals despite extranuclear replication and a requirement for cooption of reverse transcriptase. Our results 
show that the mammal-filovirus association is ancient and has resulted in candidates for functional gene products 
(RNA or protein).

Background
The ongoing threat of emerging hemorrhagic diseases
has made the search for reservoir species with a history of
coevolution with filoviruses a priority [1,2]. Outbreaks of
filovirus infections are known from Africa and the Phil-
lipines [3-5] and, in some cases, the mortality of primates
is so severe as to raise concerns of extinction [5]. Bats are
considered a candidate for a reservoir based on the detec-
tion of filovirus-specific RNA, antibodies, and viral parti-

cles [1,6-10]. Still, the average seroprevalence in tested
bats is much smaller than expected (usually < 5%) for
large colonies of a main reservoir [6], and the ability of
bats to maintain a persistent hypovirulent infection is
unknown. Rodents and insectivores (shrews) have further
been proposed as the leading candidates for filovirus res-
ervoirs by modeling, the detection of filovirus RNA, and
in one specimen, the potential detection of a DNA copy
[2,11]. Rodents (mice and guinea pigs) share one
expected feature of coevolution -- asymptomatic infec-
tions from wild-type filoviruses [12]. However, a reser-
voir role for rodents and shrews has been questioned
because only one study has detected filovirus RNA frag-
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ments in these small mammals, and many more out-
breaks than observed are expected from a rodent
reservoir that is commensal with humans [7]. Moreover,
no live viruses, filovirus particles or antibodies to filovi-
ruses have been found in rodents or shrews. Distinguish-
ing principal reservoir species from "spillover" infections
remains a challenge.

Filoviruses are a family of non-segmented negative
sense RNA viruses with filamentous virions (Fig. 1). The
protein-coding genes in the filovirus genomes (3'-NP,
VP35, VP40, GP, VP30, VP24, and L protein-5') have a
transcriptional gradient from NP to L protein [13]. The
two major evolutionary groups of filoviruses have been
assigned to the genera Ebolavirus and Marburgvirus.
Filoviruses are estimated to have diverged for less than
10,000 YA [14]--about the same timescale as the rise of
agriculture. Although high mutation rates in RNA viruses
have shrouded nearly every interfamilial relationship, the
Order Mononegavirales, which contains Filoviridae, is an
exception [13]. Here, filoviruses show significant
sequence similarity to some of the Paramyxoviridae such
as Morbillivirus (e.g. measles and Rinderpest viruses)
[15]. Notably, the N-terminal 450 amino acid residues of
NP, which is examined in the present study, shows signifi-
cant conservation among the Mononegavirales and is
needed for self-assembly of the nucleoprotein [16].

There are now several cases in eukaryotes where non-
retroviral integrated RNA viruses (NIRVs) have been
detected [17,18]. Still, this type of transfer is believed to
be extremely rare in mammals [17,19] because the pro-
cess requires the cooption of reverse transcriptase and
perhaps replication within the nucleus. The sole mamma-
lian example is bornavirus, which is unique among RNA
viruses of animals in developing persistent infections
within the nucleus. The study of NIRVs requires an evo-
lutionary approach where the direction of transfer is
tested. Evolutionary comparisons among NIRVs have
been carried out for the Totiviridae in yeast [20], and the
Bornaviridae in mammals [17]. In the Totivirus system

there strong support for the direction of transfer from
virus to fungus, and a role for the expression of NIRVs in
viral interference has been proposed [20]. We proposed
that NIRVs are more common than presently known and
might be detected in other systems with persistent infec-
tions of non-retroviral RNA viruses. As part of a search
for NIRVs in NCBI databases we found strong BLAST
matches of NP sequences from filoviruses to translated
genomic sequences from small mammals. We aimed to
test if these sequence similarities might indicate NIRVs of
filoviruses.

Results and Discussion
tBLASTn with Marburgvirus NP amino acid sequence
yielded matches with low expect values (as low as 10-49),
indicating that similarity is unlikely to be a chance result.
We found twenty matches with expect values less than
the standard "significance" value of 10-5 (see Fig. 2). The
tammar wallaby, (Macropus eugenii) showed the stron-
gest similarity (49.4% identity) and also had at least 12
different strong sequence matches. The little brown bat
(Myotis lucifugus) had four significant matches, while the
guinea pig (Cavia porcellus), Ord's kangaroo rat (Dipod-
mys ordii), the common shrew (Sorex araneus), and the
gray short-tailed opossum (Monodelphis domestica;
Chromosome 2) each had single matching sequences
with expect values <10-5. Another marsupial, the com-
mon brushtail possum (Trichosurus vulpecula) had six
strong matches from the Expressed Sequence Tags (EST)
database. All but three of these sequences (including the
EST matches) had at least one apparent disruption of the
open reading frame (ORF). tBLASTn with the L protein
yielded one value with a low expect value (10-74), the gray
short-tailed opossum (Monodelphis domestica; Chromo-
some 3). A tBLASTn search using the best matching pla-
cental mammal match from the original NP search as a
query sequence also yielded strong matches in mammals:
the pygmy hedgehog tenrec (Echinops telfairi), the mouse
(Mus musculus) and the brown rat (Rattus norvegicus).

Figure 1 Genome map of a filovirus showing the gene order and regions of homology with proposed filovirus-like elements in mammals. 
Dashed lines indicate the boundaries of the non-retroviral integrated RNA virus elements (NIRVs) and depict a bias for the N-terminal region of the NP 
gene. Mammalian genera that show homology with a gene of filovirus are listed above the genome map. Solid colors within the coding region arrows 
indicate the size of the product. Red shading indicates proteins associated with the viral RNA in the ribonucleoprotein complex.
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The filovirus-like EST nucleotide sequences from the
common brushtail possum had a BLAST match to a sin-
gle region of the wallaby genome with longest match
(DY609334) having a 78% identity (9% of mismatches are
gaps) for 662 bases.

We tested for integrated DNA based copies of the filo-
virus-like sequences in the two mammals with the most
copies, the tammar wallaby and the little brown bat. We
designed PCR primers from mammalian genomic
sequence flanking the longer BLAST matches and carried
out PCR amplification of DNA extractions from different
specimens than used for existing genome projects. Our
sequence of the tammar wallaby had only a single transi-
tion difference from the genome project sequence. The
sequence of the little brown bat from Minnesota (FMNH
172384) had a similarity of 96% with four indels com-
pared to contig (AAPE01196249) from the existing
genome. To test for the presence of a filovirus-like DNA
sequence in an additional insectivorous bat, we extracted

DNA from a specimen of big brown bat (Eptesicus fus-
cus). Using primers designed from the little brown bat,
we again obtained PCR product and sequence. In this
case, the identity between the sequences of the two gen-
era of bats was 87% with 11 indels. In each case the simi-
larity of the new sequences obtained from DNA to
genomic sequence is consistent with an integrated filovi-
rus-like DNA copy in these mammalian genomes.

We next carried out a phylogenetic analysis of the NP
and L protein amino acid sequence alignments with
Mononegavirales (paramyxovirids and filovirids) to
assess the direction of the transfer. Because the L protein
gene is known to be the most conserved gene in the
Mononegavirales, a large number of BLAST matches
with expect values <10-5 was found between the families
of Mononegavirales in L protein compared to the NP. The
midpoint rooted maximum likelihood (ML) phylogram
placed the potential mammalian NIRVs within the
Mononegavirales, and revealed that the mammalian

Figure 2 Midpoint rooted maximum likelihood phylogram of nucleoprotein (NP) amino acid sequences from filoviruses, morbilliviruses 
and related mammalian genomic and EST sequences. Branches with more than two sequences and strong support (at least 90 for bootstrap or 
95 for Bayesian posterior probability) have values shown above the branch (in the order of approximate likelihood ratio tests, Bayesian Posterior Prob-
abilities, and non-parametric bootstrap values). Parentheses contain GenBank Accession numbers and are followed by the range of the sequence for 
nucleotide submissions. Red filled branches indicate clades of viruses (Mononegavirales), black filled branches indicate mammalian sequences, and 
blue filled lines indicate expressed sequence tags. Geographic origins are given in parentheses adjacent to species names. Shaded cartoons indicate 
outlines of species represented in the analysis.
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sequences are more closely related to filoviruses than to
Paramyxoviruses (Figs. 2, 3). Indeed the L protein-like
sequence from Monodelphis was more closely related on
the best ML tree to Marburgvirus than to other known
filoviruses (i.e., Ebolavirus) (Fig. 3). This result suggests
that the most recent integration of filoviruses from our
data involves South American marsupials. The NP analy-
sis also revealed that the South American Monodelphis is
more closely related to known filoviruses than to other
mammalian sequences (Fig. 3 and Additional file 1: Fig.
S1). Although many of the sequences are of different
lengths in the NP alignment (Additional file 2: Fig. S2), it
is now well known that sequences of very different
lengths can be accurately placed on phylogenies [21].
However, there could be long-branch effects or alignment
effects for the NP phylogeny as the exclusion of the dis-
tantly related Morbillivirus sequences yielded the same
mammalian paraphyly, but increased the support values
(Fig. 4). For both genes, the placement of the mammalian
NIRVs with the filoviruses (i.e. within Mononegavirales)
had maximum support for each measure of reliability.
The placement and the strong support values for this
node are consistent with the direction of transfer from
viruses (Mononegavirales) to mammalian genomes.
Endogenous reverse transcriptase activity has been
shown experimentally to integrate non-retroviral RNA

viruses in mammals [17,22] and may have played a role in
filovirus integration. Interestingly, the closest flanking
coding regions of integrated filovirus-like elements to at
least five of the NIRV's of Macropus, and the separate NP
and L-like NIRVs of Monodelphis, are truncated or dis-
rupted non-LTR retrotransposons of the LINE-1 family.
Our results represent the first case of NIRV formation in
mammals with a virus that has extranuclear replication
[17].

The observation that most of the mammalian
sequences have ORF disruptions and possess only trun-
cated NP-like genes (Fig. 1) is also inconsistent with a
transfer from mammals to virus. Only Monodelphis has
more than one different filovirus-like gene (Additional
file 3: Fig. S3) and these (the NP and L protein-like
sequences) are on separate chromosomes. The apparent
genic bias of NIRVs for the NP gene could have a biologi-
cal explanation. Because of the transcription gradient in
the Mononegavirales, the most common primary tran-
script is NP [13]. We also note that experimental expres-
sion of an N-terminal portion of the Ebolavirus NP gene
(from residue 1-450 in wildtype NP) that is positionally
homologous to the region of NP spanned by mammalian
NIRVs (from residue 18-405 in wildtype NP, NP_066243)
is sufficient to inhibit the formation of Ebolavirus minige-
nomes in a dosage specific fashion [23]. A background

Figure 3 Midpoint rooted maximum likelihood phylogram of L protein amino acid sequences from filoviruses, Paramyxoviridae, and a 
South American marsupial genomic sequence. Labeling and shading details are as in Fig. 2 except that the species name and continent for the 
mammalian sequence are provided in the caption: Monodelphis domestica (South America).
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transcription bias could account for overrepresentation
in NIRVs of NP, but such a bias fails to explain the N-ter-
minal bias within the NIRVs of NP. The bias is consistent
with the experimental filoviral interference mechanism
involving the N-terminal of NP.

Despite ORF disruptions, it is clear that at least some
mammalian filovirus-like NIRVs of NP are expressed. In
the marsupial Trichosurus, we detected six different NP-
like ESTs (EC302609, DY609334, EC300968, EC310159,
DY613238, EC352436) from three tissue-specific cDNA
libraries: liver, spleen/lymphatic system and gonads.
These tissues play an important role in the pathology and
replication of filoviruses [24]. We did not detect the
NIRV in the cDNA libraries made from brain, whole
embryo, kidney, uterus/reproductive tract, or gut tissues.
Still, non-functional pseudogenes can be transcribed by
interactions with neighboring functioning loci [25]. We
tested for selective maintenance of codon structure in the
filovirus-like NIRVs as a further indication of function.
Comparisons of rates of amino-acid changing substitu-
tions (dN or Ka) to rates of silent substitutions (dS or Ks) do

bear the signature of selective codon maintenance or
purifying selection. Non-functional regions should con-
form to neutral expectations where dN = dS and dN/dS = 1
[26]. For regions undergoing purifying selection, the
silent substitution rate should prevail whereby dN-dS << 0
and dN/dS << 1. The codon-based test of neutrality using
the model of Kumar (which accommodates transition/
transversion rate bias) indicates that silent mutations are
significantly overrepresented in an alignment of filovirus-
like NIRVs (dN-dS = -9.427, P < 0.001) [27]. Likewise,
Bayesian calculations of site-specific Ka/Ks using evolu-
tionary models that accommodate codon usage differ-
ences [28], reveal a prevailing pattern of values
significantly less than 1 (Fig. 5). Under a model that
allows purifying, neutral and positive selection (Model
M8), the distribution of Ka/Ks peaks at about 0.4. For the
M8 model, 67 percent of these alignment sites (and all of
the M7 sites) have upper 95 percent confidence limits for
<1. While these Ka/Ks values are larger than is typical of
strong purifying selection, they are markedly less than

Figure 4 Midpoint rooted maximum likelihood phylogram of nucleoprotein (NP) amino acid sequences from filoviruses and related mam-
malian genomic and EST sequences showing the paraphyly of mammals. Branches with more than two sequences and strong support (at least 
90 for bootstrap or 95 for Bayesian posterior probability) have values shown above the branch (in the order of approximate likelihood ratio tests, Bayes-
ian Posterior Probabilities, and non-parametric bootstrap values). Parentheses contain GenBank Accession numbers and are followed by the range of 
the sequence for nucleotide submissions. Red filled branches indicate clades of viruses (Mononegavirales), black filled branches indicate mammalian 
sequences, and blue filled lines indicate expressed sequence tags. Geographic origins are given in parentheses adjacent to species names. Shaded 
cartoons indicate outlines of species represented in the analysis.
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neutral expectations or even the range of Ka/Ks = 0.6 to
1.0 that is reported for disrupted transcribed pseudo-
genes in mammals [29]. Even though there appears to be
selection for preserving codons, the tests cannot differen-
tiate between past and present function. Moreover, the

products need not be protein-based -- RNA interference
products can elicit codon-like selection to interact with
protein-coding genes [29]. The functionality and poten-
tial role of NIRVs in the well-known resistance to filovi-
ruses of some NIRV-containing mammals (mice and
guinea pigs) will have to be addressed with experiments.

More than one endogenization is required to account
for the paraphyly of mammals and the paraphyly of mar-
supials with filoviruses. The finding of a monophyletic
clade for placental mammals with samples from several
continents requires a single ancient integration with sev-
eral losses of NIRV signal or multiple integrations of a
related virus in unrelated mammal groups (Fig. 6). A sin-
gle origin for eutherian NIRVs is supported by the rarity
of the process -- endogenization of non-retroviral RNA
viruses with extranuclear replication is previously
unknown in mammals. Ancient transcribed pseudogenes
>100 million years old are known from mammals [29]
and the primate bornavirus integration is believed to be
older than 40 million years [17]. Although much of the
deeper groupings have weak support and there has been
gene duplication, there are some well-supported group-
ings that agree with mammalian phylogeny. The strongly
supported groups are the two bat genera, the genera of
mouse-like rodents, and the Australian marsupials,
Trichosurus and Macropus. These genera of marsupials
are believed to have shared a common ancestor from 39
to 52 million years ago [30]. A clear indicator of antiquity
is the syntenous genomic location of a rat and mouse filo-
virus-like NIRV (Fig. 7A, B). These are the same copies
that have a sister group relationship (Fig. 2). It is unlikely
that integration of filovirus NP genes at the same
genomic position occurred independently in rats and
mice. The rat-mouse orthology provides a minimum date
of NIRV formation at 12 to 24 MY [31,32]. Of the species
with filovirus-like elements only the rat, mouse and
Monodelphis have detailed chromosomal maps, but fur-
ther mapping and taxonomic sampling will permit a more
robust assessment of the age of eutherian NIRVs. Still, we
conclude that the association between filoviruses and
mammals is likely to be 10's of millions of years older
than the previous estimate. Filoviruses join bornaviruses
as the only demonstrated prehistoric non-retroviral RNA
viruses.

The eutherian orders with NIRVs of filoviruses closely
match the proposed candidate reservoir groups of bats,
rodents, and insectivores [1,2] (Fig. 6). This pattern is not
a sampling artifact that we can attribute to the available
genome assemblies. Seven of the ten genomes (including
the Big Brown bat) sampled from predicted reservoir
orders had integrated filoviruses, while only 1 of 27 from
non-candidate eutherian orders had detected integrated
filovirus-like elements (Fisher's exact test, two-tailed p
value = 0.00003). The sole eutherian species from a non-

Figure 5 Histograms of Ka/Ks values calculated from alignment 
sites of the filovirus-like elements in eleven species of mammals. 
Values are calculated using Bayesian methods and a model that ac-
commodates neutral, positive and negative selection (M8 below), and 
a model that accommodates largely negative or purifying selection 
(M7 above). Note the better fit of the purifying selection model. Red 
dashed lines indicate the expected values under neutral evolution for 
non-functional pseudogenes, while values <<1 are consistent with pu-
rifying selection.
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candidate group to have a potential NIRV was the pygmy
hedgehog tenrec, which is the Afrotherian small insecti-
vore analog on the island of Madagascar. The three
assemblies of genomes from candidate orders that lacked
apparent NIRVs were the ground squirrel (Spermophilus
tridecemlineatus), the European hedgehog (Erinaceus
europaeus) and the fruit bat (Pteropus vampyrus). At
present it is unclear why some small mammal groups
(bats, rodents, insectivores and marsupials) appear to
have an association with filoviruses. Still, the study of
filovirus-like NIRVs could have predictive value for iden-
tifying filovirus reservoirs, ancestral proteins, outbreak
modeling, undetected lineages of filoviruses and viru-
lence in mammalian species. For example, the close rela-
tionship of South American and expressed Australian
marsupial filovirus-like NIRVs with rapidly evolving Afri-
can filoviruses now makes it more likely that the New
World harbors undetected filoviruses or has acted as a
source region for extant filoviruses.

Conclusions
Our findings indicate that filovirus infections are
recorded as paleoviral elements in the genomes of small
mammals. These elements are candidates for functional
gene products (RNA or protein). The integration is unex-

pected because filoviruses lack reverse transcriptase and
the ability to replicate within the nucleus. Our results
indicate that the association of mammals with filoviruses
is likely tens of millions of years older than previously
thought.

Methods
Nucleic Acid Extractions
DNA was extracted from freshly collected wallaby fur, toe
clips of a Big Brown Bat, and DMSO preserved tissue
from a little brown bat using the DNA Quickextract kit
(Epicentre Technologies) modified to have a two hour
incubation step at 65°C.

PCR, RTPCR, and DNA Sequencing
50 μl PCR reactions contained 5 μL of extracted DNA
template, 25 μL of 2× GoTaq PCR reagent mix (Promega)
each primer. Primers for sequencing and PCR were: 5'-
GCCTTGTCGACGTTCATCCTGTG-3' and 5'-GAGC
CATTGGTTGCTCGGAAGC3- for Myotis; 5'-GGA-
GACCTCGAGCAAATGGAGC-3' and 5'-GAGCCATT-
GGTTGCTCGGAAGC-3' for Eptesicus and 5'-TGA
GTTTTGGGGTGAATTAGC-3' and 5'-GGGTGACA
TAGGGAAGCACA-3' for Macropus. The PCR tempera-
ture profiles were: 30 cycles of 94°C for 30 s, 50°C for 30 s

Figure 6 Summary graph showing mammalian genomes assayed for filovirus-like elements and the phylogenetic distribution of the mam-
mals with filovirus-like elements. Red shading indicates that species with detected filovirus-like elements fall into a marsupial and a eutherian 
group. The platypus genome was also assayed but is not depicted here. The mammalian phylogeny is based on a composite of recent studies 
[30,44,45].
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and 72°C for 2 min, and final extension at 72°C for 5 min.
PCR products were purified and sequenced by the Uni-
versity of Washington High Throughput Genomics Facil-
ity. Geneious 4.8 was used to assemble and edit
electrophoregrams. New sequences from this study have
been named as endogenous filovirus-like NP elements
(EFLNP) and assigned the following Genbank accession
numbers: HM545133-HM545135.

Bioinformatics
Initial searches for sequence similarity to filoviruses used
protein sequences from genes of Marburgvirus
(NC_001608.3) as a query with tBLASTn in the WGS
database and the EST database and BLASTp in protein
database of NCBI. A second tBLASTn in the same data-
bases used the best scoring non-viral sequence of placen-
tal mammals as a query. A third search used the EST
nucleotide sequences Trichosurus as a query for the
nucleotide and WGS databases. Nonviral subject
sequences with expect values of E < 10-5 and two different
sequences from each of the five known species in the

Filoviridae were retained for alignment. A search con-
strained to Mononegavirales NCBI Genomic Reference
Sequences Marburgvirus (NC_001608.3) found two spe-
cies of Morbillivirus had expect values below 10-5

(Rinderpest virus, and Measles virus) that were retained
for alignment. L protein sequences searches used a simi-
lar strategy but many more Paramyxoviruses had a signif-
icant match to Marburgvirus. We retained 19 different
Paramyxoviruses for alignment with filovirus and the
mammal sequence using BLAST explorer [33].

For genome assembly sequences, the sequence bound-
aries and translations identified by tBLASTn were used to
retrieve nucleotide sequences and assemble amino acid
sequences. MAFFT [34] was used to align the protein
sequences for all analyses using the default parameters.
The NP alignment was trimmed to the range of the mam-
malian filovirus-like sequences and the L protein align-
ment which had a mosaic of conserved and length
variable regions was trimmed by Gblocks [35] (with gaps
allowed).

Figure 7 Chromosome maps showing synteny of regions flanking filovirus-like elements in rat and mouse genomes with a whole chromo-
some view (A) and a local view (B). White asterisks represent the locations of the phylogenetic sister copies of filovirus-like elements. Five synteny 
blocks with a reversal distance of 2 were found between CHR 16 of the mouse and CHR 11 of the rat. The filovirus-like elements are located on a re-
versed synteny block (purple shading). A close up view shows the flanking gene locations and acronyms.
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Phylogenetic estimates were obtained with a maximum
likelihood optimality criterion (PhyML [36] and RAxML
[37]) and Bayesian MCMC methods [38]. Models were
chosen according to the best available optimal model
from Prottest [39] (ML) or using a mixed model prior for
amino acids (Mr.Bayes). Reliability was assessed by non-
parametric bootstrapping (ML), approximate likelihood
ratio tests (aLRT: SH like tests), and posterior probabili-
ties. Prottest determined that the LG+G+F model was the
best fit with the AIC criterion for the L protein alignment
and the JTT+G model was the best fit for the NP align-
ment. We therefore carried out maximum likelihood
analysis using these models. However, as RAxML does
not accommodate the LG model we used the next best fit
model of RtREV+G+F for the RAxML of L protein [40].
For bootstrapping, RAxML estimated the number of
pseudoreplicates. For PhyML, both SPR and NNI search
algorithms were used with five random starting trees. For
Bayesian analysis, a million Markov chain Monte Carlo
generations were initially carried out and convergence
metrics were assessed. If the average standard deviation
of split frequencies <0.01 and a plot of log-likelihood
scores versus generation time as consistent with conver-
gence, then we culled the burn-in set of half of the trees
and calculated the posterior probabilities. We added
500,000 MCMC generations at a time until convergence
metrics were satisfied.

Tests of neutral evolution were carried out using both
approximate methods (Codon-based Z test with Kumar
model [27] that accommodates transition-transversion
ratio bias) and Bayesian methods [28] of estimating site-
specific Ka/Ks. For input, codon alignments were esti-
mated using PAL2NAL [41] from a subset of sequences
from the amino acid sequence alignment. We used only
one sequence per species in the alignment. As both
MEGA and Selecton require continuous ORF's, disrupted
codons were replaced with gaps. For the Bayesian esti-
mate of Ka/Ks, an ML tree was input after estimating with
PhyML and a GTR+G model. Site-specific Ka/Ks values
were culled from the Macropus sequence sites, which
reduced the influence of alignment end gaps on the esti-
mates. A histogram of the Ka/Ks values was created in
PASW statistics 18.

To evaluate orthology between rat and mouse NIRVs,
we used genomic BLAST searches and visualized the
matches and annotations on the NCBI chromosome
maps. Whole chromosome comparisons of larger orthol-
ogous blocks were assessed using the Cinteny server [42]
and Roundup database [43].
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