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perspective
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Abstract

Background: Ecological speciation is a process in which a transiently resource-polymorphic species divides into
two specialized sister lineages as a result of divergent selection pressures caused by the use of multiple niches or
environments. Ecology-based speciation has been studied intensively in plant-feeding insects, in which both
sympatric and allopatric shifts onto novel host plants could speed up diversification. However, while numerous
examples of species pairs likely to have originated by resource shifts have been found, the overall importance of
ecological speciation in relation to other, non-ecological speciation modes remains unknown. Here, we apply
phylogenetic information on sawflies belonging to the ‘Higher’ Nematinae (Hymenoptera: Tenthredinidae) to infer
the frequency of niche shifts in relation to speciation events.

Results: Phylogenetic trees reconstructed on the basis of DNA sequence data show that the diversification of
higher nematines has involved frequent shifts in larval feeding habits and in the use of plant taxa. However, the
inferred number of resource shifts is considerably lower than the number of past speciation events, indicating that
the majority of divergences have occurred by non-ecological allopatric speciation; based on a time-corrected
analysis of sister species, we estimate that a maximum of c. 20% of lineage splits have been triggered by a change
in resource use. In addition, we find that postspeciational changes in geographic distributions have led to broad
sympatry in many species having identical host-plant ranges.

Conclusion: Our analysis indicates that the importance of niche shifts for the diversification of herbivorous insects
is at present implicitly and explicitly overestimated. In the case of the Higher Nematinae, employing a time
correction for sister-species comparisons lowered the proportion of apparent ecology-based speciation events from
c. 50-60% to around 20%, but such corrections are still lacking in other herbivore groups. The observed convergent
but asynchronous shifting among dominant northern plant taxa in many higher-nematine clades, in combination
with the broad overlaps in the geographic distributions of numerous nematine species occupying near-identical
niches, indicates that host-plant shifts and herbivore community assembly are largely unconstrained by direct or
indirect competition among species. More phylogeny-based studies on connections between niche diversification
and speciation are needed across many insect taxa, especially in groups that exhibit few host shifts in relation to
speciation.

Background
Ecological speciation is a process in which a shift in
resource or habitat use within an ancestral species trig-
gers the formation of two new sister species, each
adapted to exploit different niches [1,2]. The speciation

process is thought to involve an initial period of
resource polymorphism, during which the parent lineage
utilizes multiple environments or niches [3,4]; subse-
quently, tradeoffs in the efficiency by which individuals
can use different resources lead to disruptive selection
and, eventually, to lineage splitting [5,6]. Ecological spe-
ciation has recently been focus of intensive research,
and it is becoming increasingly clear that niche-based
selection may underlie or at least speed up the
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diversification of, for example, many bird [7,8], lizard
[9], fish [10], and invertebrate [11,12] groups.
Many of the best examples of species pairs that may

have formed as a result of ecological speciation come
from plant-feeding insects [2,13,14]. Insect herbivores
are typically highly specialized in their host-plant prefer-
ences, and exhibit elaborate physiological [15], beha-
vioural [16], and morphological [17] adaptations for
utilizing their respective host plants. However, although
only a small fraction of available plants constitute a sui-
table food source for most insect species, contrasts of
herbivore versus plant phylogenies have in many cases
revealed drastic discrepancies between the phylogenetic
trees [18-20]. In essence, this means that host-plant
associations are evolvable and change occasionally dur-
ing the evolutionary history of insect lineages [21-23].
Occasional colonizations of novel hosts can theoretically
cause ecological speciation, which could provide an
explanation for the enormous species diversity of plant-
feeding insects on the Earth [24-26].
A considerable proportion of evolutionary insect-plant

research has been devoted to the possibility that ecologi-
cal speciation in plant-feeding insects occurs in sympa-
try, so that both sister lineages are formed within a
continuous geographical area [4,13,27]. However, a
more likely scenario is that ecological speciation is
initiated in allopatric or partially allopatric (para- or
peripatric) settings; in these cases, increasing specializa-
tion onto different hosts in different parts of the geogra-
phical range of an insect species is thought to reduce
the probability of hybridization if the populations later
come into contact again [2,28]. Hence, the main differ-
ence to ‘ordinary’ allopatric speciation is that the cause
for reproductive isolation lies in the disparate ecology of
the incipient species, rather than in gradual accumula-
tion of genetic incompatibilities between geographically
isolated populations [29,30].
While numerous putative cases of ecology-based spe-

ciation in plant-feeding insects are known, we still lack
an understanding of the actual frequency or importance
of ecological shifts in the formation of new species
[22,27,31]. Investigations of ecologically divergent spe-
cies pairs can provide insights into traits or circum-
stances that enhance the likelihood of niche-based
divergence, but studying the frequency of ecological spe-
ciation requires use of a broader, phylogeny-based
approach [22,30,32,33]. The usefulness of phylogenies
stems from the fact that different speciational processes
should produce very different distributions of niches on
the phylogenetic trees of insect herbivores: if speciation
is mainly allopatric and non-ecological, particular host
taxa should be closely clustered on the tips of the insect
phylogeny (Fig. 1a). Conversely, if speciation is mainly
ecology-based, closely related insects should tend to
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Figure 1 Phylogenetic distributions of host-plant taxa arising
from different speciation modes in insects. (a) Distribution of
host-plant taxa on the phylogeny of a hypothetical insect group in
which speciation is mainly allopatric, and in which host shifts occur
relatively infrequently in relation to speciation events. (b)
Distribution of host taxa when speciation is mainly associated with
host shifts. Note that only two host shifts are needed to explain
current host-plant associations in a, whereas a minimum of six
changes are needed to produce the pattern in b, although the
number of speciation events is eight in both cases.
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have different hosts, meaning that plants would occur in
an intermixed fashion along the tips of the insect phylo-
geny (Fig. 1b). In the first case, the number of inferred
host-plant shifts should be distinctly lower than the
number of speciation events that are required to pro-
duce the extant herbivore species, whereas, in the latter
case, the number of inferred host shifts should be close
to the number of lineage splits.
Here, we apply a molecular phylogenetic analysis of

sawflies belonging to the so-called ‘Higher’ Nematinae
(Hymenoptera: Tenthredinidae) to estimate the relative
importance of ecological versus non-ecological specia-
tion in plant-feeding insects. This group of over 700
species comprises most of the taxonomic and ecological
diversity found within the tenthredinid subfamily Nema-
tinae, which prompted Ross [34] to speculate: “The
higher group of genera must have evolved some highly
beneficial biological characteristics, because they are at
present the most abundant boreal sawfly group in num-
ber of species and probably also in population.” Indeed,
higher nematines are ubiquitous in most habitats across
the Northern Hemisphere, and their larvae feed on a
wide variety of northern plant taxa [35-37]. Their larval
feeding habits are equally diverse: in addition to ‘normal’
external folivores, the group includes berry miners,
flower and catkin feeders, leaf folders, and various gall-
inducing species (Fig. 2) [38]. Combined with the high
species number, such broad diversity in species-specific
resource use presents many possibilities for studying the
tempo and mode of speciation.

Methods
Taxon sampling, amplification, and sequencing
Our study builds on a previous phylogenetic analysis of
the whole subfamily Nematinae [39] by adding 78 new
species and sequences of a third gene (Cytochrome b)
to the published dataset. The current taxon sample
includes 127 exemplars of 125 Higher Nematinae spe-
cies, meaning that nearly all higher-nematine species
groups and main ecological niches (host-plant taxa and
larval habits) are represented [35,36]. Multiple represen-
tatives were included for all large genera and species
groups (Additional file 1). Trees were rooted by includ-
ing three non-nematine tenthredinids and ten species
belonging to the nematine tribes Hoplocampini, Stauro-
nematini, Pseudodineurini, Caulocampini, Susanini,
Dineurini, and Cladiini as outgroups in the analyses.
These small ‘Lower’ Nematinae groups form a paraphy-
letic grade with respect to the ingroup [39].
Sequence data were collected from two mitochondrial

genes (Cytochrome oxidase I [CoI]: 810 bp; Cytochrome
b [Cytb]: 718 bp) and from two exons (501 bp + 276 bp =
777 bp) of the F2 copy of the nuclear Elongation

factor-1a (EF-1a) gene following previously-described
protocols [39,40]. The concatenated data matrix con-
sists of 2305 bp of sequence data for 140 species.
Sequences are missing for three, nine, and six species
for CoI, Cytb, and EF-1a, respectively, but every
included species has full-length sequences from at least
two genes. New sequences have been submitted to
GenBank under accession numbers HM237366-
HM237589, and the Nexus-formatted data matrix,
together with resultant phylogenetic trees, is available
as Additional file 2.

Phylogenetic analyses
Modeltest 3.5 [41] was implemented in conjunction with
PAUP* 4.0b10 [42] to identify the least complex substi-
tution model for use in Bayesian phylogenetic analyses
in MrBayes 3.1.2 [43]. Hierarchical likelihood ratio tests
indicated a GTR+I+Γ4 model as optimal for each of the
three genes. A separate, unlinked substitution model
was allowed for each gene in a three-partition analysis.
A single run employing default priors was run for eight
million generations with eight incrementally heated (t =
0.1) chains; tree sampling was done from the current
cold chain every 100th generation, and the first 10,001
trees recovered prior to reaching stationarity were dis-
carded as a burnin. The consensus tree showing all
compatible groupings (Fig. 3) was calculated on the
basis of the remaining 70,000 trees. A corresponding
maximum-likelihood (ML) analysis was performed using
RAxML 7.0.4 [44]. This analysis employed a separate
GTR+I+Γ4 model for each gene, but branch lengths
were estimated jointly for the whole data (Additional file
2). Clade support was estimated on the basis of 500
bootstrap replicates of the data matrix (Fig. 3).
BEAST 1.4.8 [45] was used to estimate the relative

ages of various nematine groups based on a Bayesian
relaxed molecular clock method. The topologically
unconstrained analysis allowed a separate GTR+I+ Γ4

model of substitution for each gene and employed an
uncorrelated relaxed lognormal clock model for rate
variation among branches, a Yule prior on speciation,
and default priors for other parameters except for the
mean of branch rates (ucld.mean), which was fixed to 1.
Three independent runs with automatic tuning of opera-
tors were run for 80 million generations, and parameters
and trees were sampled every 1,000 generations (the
XML file is available as Additional file 3). After inspec-
tion of adequate convergence of runs and effective sam-
ple sizes of the parameters in Tracer 1.4.1 [46], the tree
files were combined in LogCombiner 1.4.8 (part of the
BEAST package). The first 40,000 trees from each file
were discarded as a burnin, and the tree file was subse-
quently thinned by resampling trees every 3,000
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Figure 2 Examples of the diversity of resource use within the Higher Nematinae. (a) Female of Pristiphora mollis ovipositing on a leaf of
Vaccinium myrtillus. (b) Larva of Amauronematus amplus feeding on Betula pubescens. (c) Colony of Pristiphora erichsonii larvae on Larix sp. (d)
Larva of Phyllocolpa leucosticta inside opened leaf fold on Salix caprea. (e) Larva of Pristiphora angulata feeding on flowers of Spiraea
chamaedryfolia. (f) Larva of Pontania pustulator inside opened leaf gall on Salix phylicifolia. (g) Melastola sp. larva inside opened berry of
Vaccinium parvifolium. The locations of these exemplar species on the phylogeny of Higher Nematinae are indicated by letters in Fig. 3.
(Photographs by T. Nyman).
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Figure 3 Phylogeny of the Higher Nematinae and the diversification of host-plant use within the group. The tree was reconstructed
according to a Bayesian phylogenetic analysis allowing a separate GTR+I+Γ4 model of substitution for each gene. Numbers above branches
show Bayesian posterior probabilities (%) followed by bootstrap proportions (%) from the corresponding ML analysis (hyphens in the place of
bootstrap values denote clades that were not present in the ML tree). Branches are colored according to a maximum-parsimony reconstruction
of host-family use, larval feeding habits are indicated by font colors and by symbols after species names (see legend). Species illustrated in Fig. 2
are indicated to the right of the tree.
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generations; the maximum clade credibility (MCC) tree
showing mean branch lengths (Fig. 4) is based on the
40,001 post-stationarity trees that remained after
thinning.

Character analyses
To reconstruct ancestral host-plant families and feeding
habits, these traits were treated as unordered multistate
characters and maximum-parsimony optimized on the
phylogenetic trees using Mesquite 2.6 [47]. Oligo- and
polyphagous taxa were coded with all used host families.
To estimate the number of ecological shifts that have

occurred during the radiation of the Higher Nemati-
nae, we first identified all distinct ecological niches
(feeding habit × host plant(s)) found in the ingroup
species included in the phylogenetic analysis, and
coded each niche with a separate state within a single
character (outgroup states were coded as unknown).
Because the aim was to calculate numbers of changes,
the typical number of steps between two different
states was 1. However, we also created ‘generalist ’
states for species that utilize multiple plant taxa and
then used the step-matrix option in Mesquite to define
the cost to these states, from the plant taxa that are
included within the generalist host range, as being
zero. By doing so, we essentially assumed that a clear
overlap in the host ranges of different species implies
that they have not speciated ecologically (theoretical
models of resource-based speciation typically assume
distinct, non-overlapping niches as the cause of diver-
gent selection [2,30]). Phylogenetic uncertainty in the
estimate was taken into account by recording the num-
bers of steps in the niche character across the 70,000
post-burnin trees that were sampled by MrBayes
during the phylogenetic analysis [48].
As a separate estimate of the proportion of lineage

splits accompanied by a shift in resource use, we inden-
tified all terminal sister-species pairs across the MCC
tree (Fig. 4), and then separated these 35 pairs into
those in which both species have identical or overlap-
ping niches, and into those in which the species have
different niches. Thereafter, we performed a logistic
regression in SPSS for Windows 17.0 (SPSS, Inc., 233 S.
Wacker Drive, Chicago, IL 60606-6307, USA) to test
whether the probability that sister species have a differ-
ent niche depends on the time elapsed since their most
recent common ancestor (= relative node height in the
MCC tree).
Proportions of higher nematine species feeding on dif-

ferent plant genera (Fig. 5) were extracted from
Lacourt’s [36] list of host-plant affiliations of sawflies of
the Western Palearctic region. Only species with known
hosts were included, and proportions were calculated
separately for the tribe Pristiphorini and for the

Nematini+Mesoneurini clade (see Figs. 3, 4 and 5).
Oligo- and polyphagous species were counted as an
additional species for each plant genus on which they
feed (for example, the oligophagous Craesus latipes (Vil-
laret) was treated as one species on Alnus and another
on Betula).

Results
Phylogenetic trees
The Bayesian and ML analyses of the sequence data
produced relatively well-supported trees showing that
the Higher Nematinae constitutes a monophyletic clade
within the subfamily Nematinae (Figs. 3 and 4; the ML
tree is included in Additional file 2). The three topolo-
gies are largely congruent, with discrepancies mainly
evident in tree regions that are weakly supported. Major
divisions within the ingroup correspond closely with the
traditional tribes Nematini, Pristiphorini, and Mesoneur-
ini (Figs. 3 and 4). Conflict with traditional classifica-
tions is mostly evident in that the largest nematine
genera (Nematus, Pristiphora, and Amauronematus)
come out as para- and polyphyletic (see [39]). Posterior
probabilities and bootstrap proportions of many group-
ings within Nematini are low, but because these uncer-
tainties concern mainly relationships among strongly
supported middle-level clades, they have only minor
importance for the conclusions below.
The trees document a pattern of frequent faunal

exchange across the Holarctic region, because European,
North American, and Asian exemplar species (see Addi-
tional file 1) are intermixed throughout the trees. Nearc-
tic species are found scattered among European ones in
all major higher-nematine genera (Nematus, Amaurone-
matus, and Pristiphora), but also in smaller groups such
as Eitelius, Pontopristia, and Pikonema (Figs. 3 and 4).
Our analysis also confirms Smith’s [49] hypothesis of a
close relationship between the North American Nema-
tus erythrogaster -group and the Holarctic genus Crae-
sus, as well as his earlier [50] suggestion of a connection
between the exclusively Nearctic genus Neopareophora
and European Nepionema.

Evolutionary dynamics of resource use
Diversification of the Higher Nematinae has been a
dynamic process in which host-plant associations and
larval lifestyles change continually, although feeding-
habit changes are distinctly rarer than shifts in
host-plant use (Figs. 3 and 4). Various forms of internal
feeding, such as gall induction, leaf folding, catkin feed-
ing, and berry mining, have evolved repeatedly from
ancestors whose larvae were external feeders on leaves
or on needles (Fig. 4). Higher-nematine larvae are cur-
rently found on plants belonging to over 16 families, but
most species are concentrated on plants in Salicaceae,
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Figure 4 Relaxed molecular-clock phylogeny of the Higher Nematinae, and the evolution of different larval habits within the group.
The maximum clade credibility tree resulted from a topologically unconstrained Bayesian phylogenetic analysis employing a relaxed lognormal
clock and a separate GTR+I+Γ4 model of substitution for each gene. Numbers above branches show posterior probabilities (%), and blue shaded
bars the 95% highest posterior density intervals for relative node ages for nodes with probabilities over 50%. Branch colors denote larval feeding
habits according to unordered maximum-parsimony optimization, symbols to the right of species names show host-plant genera and families of
the exemplar species (see legend). Full host ranges of polyphagous species are given in Additional file 1.

Nyman et al. BMC Evolutionary Biology 2010, 10:266
http://www.biomedcentral.com/1471-2148/10/266

Page 7 of 13



Betulaceae, Rosaceae, Ericaceae, and Pinaceae (Fig. 5),
partly because colonization and recolonization events
have occurred repeatedly among these plant taxa (Fig.
3). Interestingly, the distribution of species across uti-
lized plant families differs between the clade formed by
Pristiphorini and its sister clade formed by Nematini
+Mesoneurini (Fig. 5; c2= 155.93, df = 15, P < 0.0001),
the clearest discrepancy being the high proportion of
Salix-feeding species within the most species-rich tribe
Nematini.

Speciation and niche shifts
The existence of the 125 sampled ingroup species
demands 124 past speciation events, but explaining the
current distribution of species-level niches on the Baye-
sian consensus tree (Fig. 3) and on the ML tree requires
only 68 shifts in feeding habits and/or host taxa. This
estimate is robust against phylogenetic uncertainty,
because when niches are similarly maximum-parsimony
optimized on the 70,000 Bayesian post-burnin trees, 67-
69 shifts (mean = 68.13) are needed. Even if shifts to
generalist host-use states are treated as a true niche
shift (= 1 step from other states), the Bayesian consen-
sus tree is only 75 steps long (ML tree = 74 steps), and
all trees in the Bayesian tree sample require between 73
and 75 changes (mean = 74.73 steps).
When only sister-taxon pairs on the MCC tree are

considered, species in 19 out of 35 pairs (54.3%) have
non-overlapping host ranges and/or a distinct difference
in their larval feeding modes. However, the logistic
regression (Fig. 6) shows that the probability of sister
species having different niches is strongly affected by
the time since their most recent common ancestor: Pdif-
ference = 1/(1+e-(-1.29+15.12*split age)), the constant (P =
0.045) and the effect of split age (P = 0.013) being statis-
tically significant.

Discussion
Research on ecological speciation has traditionally
focussed on sister-species pairs or on small groups of
closely related lineages that differ in their resource use,
and which could therefore have originated by niche
shifts. While such studies have convincingly shown that
ecology-based diversification is possible in highly dispa-
rate taxa and under many plausible scenarios (e.g.,
[8,51,52]), the overall frequency of ecological speciation
remains unknown. Recently, broader phylogenetic
approaches have provided insights into the relative
importance of alternative speciation modes [53-55]. For
example, comparative analyses employing age-range cor-
rections have shown that closely related species tend to
have less overlap in their geographical ranges than do
distantly related species, which indicates that speciation

rarely occurs in sympatric settings [53,56-58]. However,
the finding that speciation is largely allopatric does not
exclude the possibility that the build-up of reproductive
isolation between incipient species has an ecological
basis: as mentioned above, ecological divergence can,
and in fact is more likely to, occur in complete or par-
tial allopatry [27,28,30]. Therefore, phylogenetic studies
on the frequency of niche shifts in relation to the num-
ber of past speciation events are more likely to produce
a correct view of the prevalence of ecological speciation
[22,31,33,56].
The traditional paradigm in plant-herbivore research

is that host shifts are a major factor promoting species
divergence [23,59,60]. However, there are two good rea-
sons for suspecting that the importance of niche shifts
for speciation is overestimated: First, there has been a
huge–most likely disproportionate–interest in the intri-
guing possibility that host-associated speciation in insect
herbivores could occur in sympatry, i.e., without geogra-
phical isolation [4,13,27,58]. Second, it seems probable–
and perfectly logical–that insect groups that are chosen
for phylogenetic studies on host-plant shifts are selected
preferentially from taxa in which species are known a
priori to be relatively specialized and to exhibit clear
interspecific variation in host-plant use (e.g., [19,40,61]).
In the case of the Higher Nematinae, our phylogenetic

analysis reveals a pattern of frequent niche shifts both in
terms of larval lifestyles and host-plant use (Figs. 3 and
4). Despite this, optimizing larval niches on the Bayesian
tree sample shows that at most about 60% of lineage
splits could have been caused by ecological factors. This
value should be considered as an upper limit, because
our ecologically overdispersed taxon-sampling scheme
will raise the relative number of niche shifts, and the
sampling design should also override the tendency of
maximum parsimony to underestimate the frequency of
changes in fast-evolving traits [62]. When only sister
species are considered, the percentage of pairs having
divergent niches is 54. This raw value is intriguingly
close to Winkler & Mitter’s [22] recent ‘fifty-fifty’ esti-
mate of the proportions of ecological vs. nonecological
speciation, which was based on a broad literature survey
of sister species of herbivorous insects. However, our
logistic regression (Fig. 6) shows that immediately after
speciation only an estimated 21.6% of higher-nematine
sister-species pairs would have non-overlapping niches.
The discrepancy between the methods is most likely
explained by postspeciational host shifts, which can
inflate the apparent frequency of ecological speciation in
uncorrected sister-species comparisons. Although denser
taxon sampling will be needed for a more exact estimate
of the prevalence of ecology-based diversification within
the Higher Nematinae, the marked drop in the inferred
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proportion in the age-adjusted analysis suggests that
phylogenetic time corrections would be useful also in
surveys of other insect herbivore taxa.
It is possible, however, that the frequency of ecological

speciation varies among clades [22,31]. In particular, it
appears that the extreme diversity (400-500 species
[63,64]) of gall-inducing nematines in the subtribe Euur-
ina (Figs. 3 and 4) has been spurred by host-shifting
among Salix species. Like other gall-inducing insects
[65], Euurina gallers are very host-specific compared to
willow-associated nematines having external-feeding lar-
vae, which tend to utilize multiple host species [36,66],
and which therefore probably may have radiated mainly
allopatrically. Higher-nematine subgenera and species-
groups feeding externally on other plant taxa are like-
wise often dominated by species having identical or
broadly overlapping host-plant ranges [36,38,66], and
niche shifting seems to be particularly infrequent in
relation to speciation in groups associated with Picea,
Larix, Vaccinium, and plants within Betulaceae (Fig. 3).
It remains to be studied whether such non-ecological
radiations can be used to estimate the proportion of
non-ecological speciation in related groups in which
species differ in their host use, because some proportion
of host switches also in these groups undoubtedly have
occurred well before or after speciation events (cf. [33]).

While earlier hypotheses on insect diversification
emphasized coevolution of plant defenses and herbivore
counterdefenses as a major driver of insect diversifica-
tion [59,67,68], recent studies applying dated phyloge-
nies have uncovered a possible role of long-term

Figure 5 Distributions of Higher Nematinae species on different plant genera. Proportions are shown separately for the tribe Pristiphorini
and for its sister clade composed of the tribes Mesoneurini and Nematini (see Figs. 3 and 4). Host data and estimates of species numbers are
from Lacourt’s [36] checklist of Western Palearctic sawflies, plant families are denoted by separate font colors (see legend). Numbers in
parentheses after tribe names are in the order: total number of species/number of Western Palearctic species/number of Western Palearctic
species with known hosts.

Figure 6 The probability that higher-nematine sister species
have different niches in relation to time since their divergence.
Data on pairwise niche differences (1 = different hosts and/or larval
feeding habits; 0 = identical or overlapping niches) and split ages
(= relative time since common ancestor) was taken from the 35
terminal sister-taxon pairs in the Bayesian MCC tree (Fig. 4), and the
probability curve was estimated using logistic regression.
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climatic conditions in determining rates of speciation
and extinction in various herbivore groups [69-71].
Throughout the Earth’s history, climatic changes have
lead to major shifts in plant communities and global
vegetation patterns, with direct negative or positive con-
sequences for associated herbivores [72]. In particular,
systems experiencing repeated cycles of range contrac-
tions, expansions, and faunal mixing can constitute ‘spe-
ciation machines’ that lead to escalating diversification
across multiple trophic levels [73-75]. A Cenozoic high-
latitude speciation machine could explain why higher
nematines seem to have an inordinate fondness for wil-
lows: nearly a third of Western Palearctic species in the
tribe Pristiphorini feed on Salix species, and in the
Nematini the percentage is as high as 68 (Fig. 5; this
general pattern holds also in North America [35,37]).
The largest willow-associated radiations have occurred
within the aforementioned gall-inducing subtribe Euur-
ina, and in the predominantly willow-feeding Amaurone-
matus+Pontopristia clade, which includes at least 112
species [36,76]. These temporally overlapping radiations
began c. 30 million years ago (Mya), assuming that the
most recent common ancestor of the Higher Nematinae
lived about 70 Mya (Fig. 4; see [39]). Interestingly, this
would place the onset of these radiations at the time of
strong cooling of the global climate, which began in the
early Oligocene c. 35 Mya, and which was followed by
alternating periods of cold ice ages and warmer intergla-
cials [77]. Such climatic oscillations, with resultant long-
distance migrations of whole ecosystems, could have
promoted the diversification of willows that are concen-
trated in relatively cool habitats and that currently com-
prise over 400 species [78,79]. The conditions that
generated diversity in Salix would simultaneously have
acted also on the insect groups that depend on them
and, like in higher nematines, willows currently support
a considerable proportion of species also in, for exam-
ple, northern butterflies and moths [80], phytophagous
beetles [80,81], and leafhoppers [31].
The role of competition in directing the historical

assembly and present structure of herbivore communities
has been debated for decades [82-84]. If competition was
a force directing host switching, shifts would tend to
occur towards un- or underused plant taxa, meaning
that, over time, herbivore host-plant associations would
become overdispersed with regard to plant phylogeny. By
contrast, higher-nematine host use is strongly underdis-
persed, shifts having occurred repeatedly and in many
directions among a handful of dominant northern plant
families, while a large proportion of the Holarctic flora
apparently has been effectively ignored for tens of mil-
lions of years. This shifting pattern conforms to the
‘resource island model’ [23,85,86] of herbivore diversifi-
cation, in which phylogenetically biased colonizations

and back-colonizations among plant taxa, in combination
with abundance-dependent extinction, lead to accumula-
tion of herbivore species on common plants that have
many relatives [80,87,88]. Competition could still operate
more subtly, if recruitment follows a ‘macroevolutionary
ideal free distribution’ (cf. [89]), so that the number of
herbivore species that can be supported depends on the
commonness (or overall biomass) of a given plant [90].
However, the convergent, asynchronous, and undoubt-
edly ongoing colonizations of many plant taxa by various
higher-nematine groups (Figs. 3 and 4) indicates that
ecological pre-emption of host taxa does not occur, and
that northern insect-plant communities are still unsatu-
rated and could therefore soak up even more herbivore
species in the future. The broad overlaps in the geogra-
phical distributions [35,36] of many closely related, eco-
logically near-identical higher-nematine species–that
necessarily must have diverged in allopatry and then
brought to sympatry by postspeciational range shifts–
provides further support for the view that interspecific
competition, either via direct resource competition or via
indirect competition caused by shared natural enemies, is
of minor importance in structuring herbivore commu-
nities [73,82,84,91].

Conclusions
Our phylogeny-based analysis of the Higher Nematinae
strongly indicates that the importance of niche shifts for
speciation in plant-feeding insects is at present explicitly
and implicitly overestimated. In particular, applying a
time correction for sister-group comparisons lowered
the proportion of apparent ecology-based speciation
events from roughly 50% to around 20%. The vast
majority of lineage splits in higher nematines therefore
seem to have occurred non-ecologically in allopatry, and
this may well be true also for most other plant-feeding
insects. Reconciling this result with the finding of Janz
et al. [92] that species richness in nymphalid butterfly
clades correlates positively with collective host ranges
requires further work; we propose that the correlation
follows from reduced extinction probabilities in ecologi-
cally versatile groups, rather than from increased ecolo-
gical speciation within them.
Evolutionary dynamics observed within the Higher

Nematinae favour a largely non-interactive, non-equili-
brium view of community assembly in northern plant-
herbivore networks: geographical shifts across the whole
Northern Hemisphere have been commonplace in many
higher-nematine groups, and the frequent co-occurrence
of related species utilizing seemingly identical niches
indicates that distributional changes occur largely unim-
peded by direct or indirect competitive interactions.
More detailed surveys of local communities are, how-
ever, necessary in order to exclude the possibility that
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competitive repulsion occurs on smaller geographical
scales, which could lead to a mosaic pattern of patch
occupancy by ecologically equivalent relatives [93].
The Higher Nematinae comprises well over 70% of the

species in the subfamily Nematinae, but the main part of
higher-nematine diversity lies within the tribe Nematini,
in which a strikingly high proportion of species use wil-
lows as hosts. This suggests that the success of higher
nematines was caused, not by the evolution of superior
biological characteristics as suggested by Ross [34], but
by a fortuitous association with willows at a time of a
cyclically cooling global climate. Reliably dated molecu-
lar-phylogenetic analyses of Salix and Salix-associated
herbivores are desperately needed to test our hypothesis
that the diversification of willow-based food webs was
accelerated during the latter half of the Cenozoic Era.
The genus Salix has thus far proven to be an extremely
challenging target for such studies [94,95], but even
comparative analyses across herbivore taxa would surely
provide interesting insights into the evolutionary history
of Holarctic plant-herbivore communities.
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