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Abstract

subpopulations with different mutation rates.

viruses.

Background: In any natural population, mutation is the primary source of genetic variation required for
evolutionary novelty and adaptation. Nevertheless, most mutations, especially those with phenotypic effects, are
harmful and are consequently removed by natural selection. For this reason, under natural selection, an organism
will evolve to a lower mutation rate. Overall, the action of natural selection on mutation rate is related to
population size and mutation effects. Although theoretical work has intensively investigated the relationship
between natural selection and mutation rate, most of these studies have focused on individual competition within
a population, rather than on competition among populations. The aim of the present study was to use computer
simulations to investigate how natural selection adjusts mutation rate among asexually reproducing

Results: The competition results for the different subpopulations showed that a population could evolve to an
“optimum” mutation rate during long-term evolution, and that this rate was modulated by both population size
and mutation effects. A larger population could evolve to a higher optimum mutation rate than could a smaller
population. The optimum mutation rate depended on both the fraction and the effects of beneficial mutations,
rather than on the effects of deleterious ones. The optimum mutation rate increased with either the fraction or the
effects of beneficial mutations. When strongly favored mutations appeared, the optimum mutation rate was
elevated to a much higher level. The competition time among the subpopulations also substantially shortened.

Conclusions: Competition at the population level revealed that the evolution of the mutation rate in asexual
populations was determined by both population size and mutation effects. The most striking finding was that
beneficial mutations, rather than deleterious mutations, were the leading force that modulated the optimum
mutation rate. The initial configuration of the population appeared to have no effect on these conclusions,
confirming the robustness of the simulation method developed in the present study. These findings might further
explain the lower mutation rates observed in most asexual organisms, as well as the higher mutation rates in some

Background

Understanding the genetic structure of populations
requires knowledge of the mutation rate, an important
parameter of evolution. One of the essential problems in
population genetics is determining how natural selection
acts on the mutation rate of an organism during long-
term evolution. Although mutation provides the ultimate
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source of genetic variation, it typically leads to decreased
fitness. Even when a population is in the process of adap-
tation, the majority of its mutations are still deleterious
and will ultimately be eliminated by selection. This type
of selection pressure was first observed by Sturtevant [1],
who questioned why the mutation rates never fall to zero.

Since Sturtevant’s pioneering work, the evolution of
mutation rate has been researched by many evolutionary
biologists and our understanding of this question has
been improved in many respects. At present, several
methods have been proposed for characterization of the
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evolution of mutation rate, including direct estimates
from mutation accumulation experiments [2-5], indirect
estimates from comparisons of DNA sequences among
related species [6-8], and theoretical analysis [9-12].
Overall, these methods have been successful in detecting
and estimating mutation rates, as well as in describing
the relationship between natural selection and mutation
rate. Drake [13] suggested that the genome mutation
rate (U) in DNA-based microbes was about 0.0034 per
generation despite a wide variation in genome size. This
relatively constant observed value indicates that the gen-
ome mutation rate in microbes has evolved perfectly to
fit the pace of environmental changes through natural
selection. Several theoretical methods have the potential
to explain Drake’s observation from different perspec-
tives [11,12,14,15]. For instance, a previous classical
research on the evolution of mutation rate was investi-
gated by Leigh based on mathematical analysis [11]. He
described the long-term fate of a modifier in infinite
asexual populations, and showed that the error rate of
DNA replication was exactly equal to the rate of envir-
onmental changes. Orr [15] found that the optimum
mutation rate was equal to the harmonic mean of the
selection coefficients of deleterious mutations when
selection for beneficial mutations was assumed milder
than selection for deleterious mutations. However, most
theoretical analysis methods have focused solely on indi-
vidual competition within a population. Competition
among populations has not yet been sufficiently investi-
gated with respect to the evolution of mutation rates.

In any finite population, the process of evolution
is well known to be influenced by population size
and mutation effects [16]. Beneficial mutations are
more frequently fixed in large populations than in
small ones, whereas deleterious mutations are more
frequently eliminated. Two studies, one based on a the-
oretical mathematical model [17], and one on experi-
ments of digital organisms [18], arrived at a similar
conclusion; namely, that mutational robustness tended
to decline with increasing population size, and thus
selection in small populations would favor robustness
mechanisms. In a population of a given size, the pro-
cess of evolution will depend on the relative rate of
appearance of deleterious and beneficial mutations as
well as their actual mutational effects. Selection asso-
ciated with deleterious mutations will favor lower
mutation rates, while beneficial mutations will favor
higher mutation rates [9]. Nevertheless, the evolution
of extremely high mutation rates is unlikely to occur
unless organisms are under special circumstances [19]
for the reason that beneficial mutations rarely compen-
sate for deleterious mutations. The importance of this
interplay between mutation rate and its effects was
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pointed out by Keightley [20], who showed that the
genome-wide mutation rate and the distribution of fit-
ness effects of mutations could not be simultaneously
estimated because they are confounded with one
another: a high mutation rate can usually be explained
by a low variance in fitness effects, or a low mutation
rate with a high variance in fitness effects. Unfortu-
nately, this conclusion is true only for deleterious
mutations and further investigation is needed for cases
where beneficial mutations also occur.

When both deleterious and beneficial mutations are
present, it is necessary to explore whether an organism
could evolve to an “optimum” mutation rate under these
two opposing forces. The nature of the dominating fac-
tors that shape the optimum mutation rate also needs to
be determined. In the present paper, we have developed a
simulation method based on competition among subpo-
pulations with different mutation rates to examine how
selection may impact the evolution of genome mutation
rate. Our results indicate that a larger population could
tolerate a higher mutation rate than could a smaller one.
The optimum mutation rate depends almost exclusively
on the effects of beneficial mutations regardless of the
extent of deleterious mutation effects. Possible reasons
for these findings are discussed in comparison with pre-
vious studies.

Methods
The model
We consider a finite strictly asexual haploid population
(with constant population size N) that comprises 10
subpopulations, each of which has N/10 individuals and
a different mutation rate, with everything else equal.
The rationale of the method is that these subpopulations
compete for existence under natural selection and ran-
dom drift. At the end of a simulation, only one subpo-
pulation remains and the rest are extinct. The mutation
rate of the remaining population becomes the “fixed”
mutation rate in that competition. By simulating the
process many times, we can define the most frequently
fixed mutation rate as the “optimum” mutation rate.
Each of the ten subpopulations is assigned with a dis-
tinct mutation rate per genome per generation (see
parameters). Both deleterious and beneficial mutations
occur in each subpopulation with fractions for beneficial
and deleterious mutations represented by p, and p, (i.e.
1- py), respectively. The effects (selection coefficients) of
both beneficial and deleterious mutations are drawn
from continuous probability distributions. We denote s,
as the effects of beneficial mutations (in which case fit-
ness w is increased by a factor 1+ s;), while s, repre-
sents the effects of deleterious mutations (in which case
fitness w is decreased by a factor 1- s;) [21].
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We assume that s, follows an exponential dis-
tribution: f(s,, 1) = Ae v with 1/A as the mean value
of the distribution. This assumption has good theoretical
support from extreme-value theory and has been widely
used in population genetics models [22-24]. The effects
of deleterious mutations may be complex and no gen-
eral assumption yet exists about the distribution of s,
in analytical calculations; however, empirical studies
support a gamma distribution with shape parameter
smaller than one (other distributions are not necessarily
excluded) [25,26]. In the present study, we assume
that s; follows a skewed gamma distribution
f(sar0t, B)=5,""'¢™4/P [ (B°T(@)) (@<1). The gamma
distribution used in our simulations is truncated with
the value 1.0, which is necessary to avoid producing a
negative fitness. In addition, we assume that the mean
effects of beneficial mutations (5, ) are much smaller
than the mean effects of deleterious ones (s;), which
seems to be reasonable in most cases [27,28].

Parameters

In our simulations, the sizes of fractions and effects of
both beneficial and deleterious mutations are the most
important quantitative parameters. Numerous experi-
mental studies on microbes have shed some light on
this area and some estimates of these parameters are
summarized in Table 1 [29-35]. These data provide the
best available assumptions of parameters used in the
simulations. One example of the distribution of muta-
tion effects and the corresponding fitness variation
caused by mutations we adopt is shown in Figure 1.
Another essential parameter involved in the simulations
is the mutation rates initially assigned to the ten subpo-
pulations. And the logarithmic form of the mutation
rates (Ig(ll)) is roughly uniformly distributed between -4
and -1. In addition, we adopt several ranges consisting
of different mutation rates, which are shown in Table 2,
to see if this initial range influences the optimum muta-
tion rate.
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Numerical Simulations

Throughout the study, we assume that generations are
discrete and non-overlapping. In each generation, the
number of new mutations (m) appearing in an indivi-
dual belonging to the i-th subpopulation is drawn from

a Poisson distribution p(m,U;) = Uime‘uu' /m!, where

U; is the genome mutation rate of the i-th subpopula-
tion. The deleterious mutation rate is then given by
U;xp, and the beneficial mutation rate is U;xp,. Given
that a deleterious (or beneficial) mutation occurs, the
fitness w of the individual is decreased (or increased) by
1- s, (or 1+ s,), where s, (or s;) is randomly drawn
from a gamma (or exponential) distribution. Here, we
assume that no epistasis occurs; therefore, all mutations
have independent effects on fitness and act multiplica-
tively. It is possible that an individual may carry multi-
ple mutations within a single generation. In this case,
the fitness of an individual in the n-th generation (w,,) is
a function of the mutation numbers the individual car-
ries (m), their mutation effects (s;), and the fitness of its
parent in the (n-1)-th generation (w,_;). This function
can be described as

m
w, =w,_; xH(l ts;)
j=1

Offspring are sampled with repetition according to a
multinomial distribution, weighted by the fitness of their
respective parent. We label each offspring with a unique
identifier for its particular subpopulation.

We trace the numbers of individuals of each subpopu-
lation until the population size of one subpopulation
reaches N and the sizes of other subpopulations become
zero. At this point, the process is stopped and the corre-
sponding mutation rate of the remaining subpopulation
is recorded. In addition, the number of generations one
competition takes is also traced. We run simulations
that vary both the population size and the mutation

Table 1 Some estimates of mutation parameters from previous experiments on microbes

Deleterious Beneficial
Taxon Pd Sy Sy Reference
Vesicular stomatitis virus 29.2% 0.24 4.2% 0.042 Sanjuan et al. (2004) [29]
Tobacco etch potyvirus 36.4% 041 0 Carrasco et al. (2007)° [30]
S. cerevisiae - 022 - Zeyl and DeVisser (2001) [2]
Diploid S. cerevisiae - - 5.75% 0.061 Joseph and Hall (2004) [31

]
0.02 Imhof and Schlotterer (2001) [32]
]

E. coli - -
E. coli - - 0.054 Hegreness et al. (2006) [33
E. coli - - 0.67%" 0.01 Perfeito et al. (2007) [34]
P. fluorescens - - 0.023~0.089 Kassen and Bataillon (2006) [35]

a, b: in both studies, p4 does not include lethal mutations.
c: pp is 1/150, compared to Drake’s famous genome mutation rate 0.0034 [13].
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Figure 1 One example of distribution of mutation effects. (A) The effects of deleterious mutations follow a gamma distribution with a = 0.6
(shape parameter), B = 0.5 (scale parameter) and the mean effects is 5; = 0.3. (B) The effects of beneficial mutations follow an exponential
distribution with A = 100 and the mean effects is 5, = 0.01. (C) The distribution of fitness changes by both deleterious and beneficial mutations with
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Table 2 Summary of different mutation rates assigned initially to ten subpopulations

Subpopulation

Ry, 1 2 3 4 5 6 7 8 9 10
1 u 0.0001 0.0003 0.001 0.003 0.01 0.02 0.03 0.04 0.06 0.1
lgu -4.0 -35 -30 -25 -20 -1.7 -15 -14 -1.2 -1.0
2 U 0.0001 0.0003 0.001 0.002 0.004 0.006 0.01 0.02 0.05 0.1
lgu -4.0 -35 -3.0 -2.7 -24 -2.2 -2.0 -1.7 -1.3 -1.0
3 u 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1
lgu -4.0 =37 -33 -30 -2.7 -23 -20 -1.7 -13 -1.0
4 U 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2
lgu -3.7 -3.3 -3.0 -2.7 -2.3 -2.0 -1.7 -1.3 -1.0 -0.7
5 u 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1
lgu 4.3 -4.0 -33 -30 -23 -20 -13 -1.0 -03 00

effects to evaluate how and to what extent these influ-
ence the competition results (see Results). Some initial
conditions of the population are also relaxed to test the
robustness of the method (see Discussion).

Results

Our extensive simulations were designed to test whether
natural selection could shape the optimum mutation
rate, given the initial configuration of the population.
Each curve represents one simulation result with 300
competitions among all the figures and each point
represents the frequency of being fixed of the corre-
sponding mutation rate. For convenience of description,
we used the symbol U,,, as the optimum mutation rate
and G as the mean number of generations required for
competition in one simulation. We also used R, to
represent which group of mutation rates was adopted in
Table 2. The simulation results suggested that the distri-
bution of the frequencies of the fixed mutation rates was
similar to a bell shape, revealing that the optimum
mutation rate will be maintained within an intermediate
range under natural selection rather than be kept at a
minimal one.

Figure 2 shows the change in the frequencies of fixed
mutation rates with population size (N). Clearly, N had
a significant effect on the frequencies of fixed mutation
rates. With all other factors held constant, increasing in
N caused the curve to shift to the right, which demon-
strated that a larger population tolerated a higher muta-
tion rate. Large populations could benefit from relatively
higher mutation rates because beneficial mutations
appeared more frequently and selection was more effi-
cient in removing deleterious mutations in large popula-
tions than in small ones [36]. As Figure 2 shows, the

optimum mutation rate increased from 0.003 to 0.02
when the population size varied from 10* to 10”.

To investigate the influence of the relative fraction of
deleterious and beneficial mutations, and the combined
effects of both, on the optimum mutation rate, we ran
simulations where one factor was controlled and the
other was varied. In Figure 3, we show the change in the
frequencies of fixed mutation rates with the fraction of
beneficial mutations (p,), while holding the effects of
both deleterious and beneficial mutations constant. The
curve was shifted to the right with increasing pj, indicat-
ing that a population could evolve to a higher mutation
rate when beneficial mutations appeared more frequently.
As Figure 3 shows, the optimum mutation rate increased
from 0.01 to 0.03 as p;, varied from 1% to 10%.

In Figure 4, we show the change in the frequencies of
fixed mutation rates in response to changes in the scale
parameter (f) of the gamma distribution for describing
deleterious mutations effects, while holding the shape
parameter and the effects of beneficial mutations constant.
The frequencies of the fixed mutation rates varied only
slightly and the optimum mutation rate held constant
when 8 was varied, although the mean effects of deleter-
ious mutations changed substantially. Evaluation of how
the shape parameter (@) of the gamma distribution influ-
enced the results was also important. In Figure 5, we show
the change in the frequencies of fixed mutation rates in
response to changes in o, while holding the scale para-
meter and the effects of beneficial mutations constant. As
o decreased, the deleterious mutations that had small
effects increased while those with large effects decreased,
shifting the curve slightly to the right. Varying the shape
parameter therefore had more effect on the frequencies of
fixed mutation rates than did varying the scale parameter.
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Figure 2 Change in the frequencies of fixed mutation rates vs. Ig(U)-given different population size N (R, = 1). In all cases, the
conditions were constant: p, = 3%, Ed =0.3, Eb =0.01.
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Nevertheless, the optimum mutation rate remained con-
stant in this case, indicating that deleterious mutations
were effectively eliminated by relentless selection and that
their effects had little influence on the optimum mutation
rate in long-term evolution. Only when the deleterious
mutation effects became small enough to compensate for
the beneficial mutation effects could the optimum muta-
tion rate evolve to a higher level (data not shown).

Finally, in Figure 6, we show the change in the frequen-
cies of fixed mutation rates in response to changes in the
parameter (A1) of exponential distribution, while holding
the effects of deleterious mutations constant. In contrast
to the very small impact seen in response to varying the

deleterious mutation effects, the beneficial mutation
effects contributed significantly to the optimum mutation
rate. The curve was substantially shifted to the right with

increasing s, , indicating that populations favored a

much higher mutation rate when strong beneficial muta-
tions appeared. The optimum mutation rate changed
from 0.005 to 0.05 as s, varied from 0.005 to 0.03. In
addition, when 5, increased to 0.03, the mean number
of generations required for competition (G = 210) shor-
tened sharply compared to s, = 0.005(G =1106). Thus,
strongly favored mutations had surprising effects on the
competition time, and this type of effect was rarely
observed when the other parameters were varied.
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Figure 5 Change in the frequencies of fixed mutation rates vs. Ig(U)-given different shape parameter « of the gamma distribution (R, = 1).
(A) In all cases, the conditions were constant: 8 = 1/2, N = 10°, p, = 1%, Eb =0.01. (8B In all cases, the conditions were constant: 8 = 1/3, N = 10°, p,,
=1% 5, =0.01.
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Discussion

In this study, we developed a simulation method based on
competition among subpopulations in order to explore the
pattern of evolution of mutation rate in large asexual
populations. Our simulation results showed that popula-
tions tended to form an optimum mutation rate based on
their initial configuration. This optimum mutation rate
depended on the influx of favorable mutations as well as
on their corresponding effects. Below, we first discuss the
influence of the initial configuration of the population. We
then discuss why beneficial mutations are important in
asexual populations. Finally, we compare the present
results to previous studies about mutators.

Influence of the initial configuration of the population

To assess whether different mutation ranges and differ-
ent initial fitness influenced the optimum mutation rate,
we performed new simulations, yielding the following
results. In Figure 7, we show the change in the frequen-
cies of fixed mutation rates in response to changes in
the range of initial mutation rates assigned to subpopu-
lations. The optimum mutation rate appeared to remain
constant for any given initial mutation range, although
the exact count was dependent on the interval of muta-
tion rates and thus showed slight differences. The opti-
mum mutation rate depended very little on the
particular choice of the mutation range, as long as that
range placed the optimum mutation rate at some

intermediate value (i.e., lower than the upper limit and
higher than the lower limit). In summary, despite the
diversity of this mutation range, the optimum mutation
rate was essentially determined by population size and
mutation effects (Note: even larger orders of ranges
gave very rough results and are not shown).

We also assigned rugged initial fitness to replace the
assumption that all individuals had unified initial fitness
value of 1.0. In Figure 8, we show the change in fre-
quencies of fixed mutation rate given that the initial fit-
ness of all individuals followed a normal or a gamma
distribution. The results confirmed that the optimum
mutation rate was little influenced by the initial fitness
of individuals.

Finally, we show the influence of organism’s fertility
limitation on the optimum mutation rate in Figure 9.
Fertility is defined as the upper limit on the number of
offspring per individual per generation. Because this lim-
itation might slow down the spread speed of beneficial
mutations, we assumed different fertility of the popula-
tion to test that whether such limitation would cause a
lower optimum mutation rate. Nevertheless, the results
in Figure 9 showed that a limitation in fertility led to no
difference in the corresponding optimum mutation rate.
Taking the influence of random factors in simulation
studies into account, such small differences in frequen-
cies of fixed mutation rates could be neglected. How-
ever, a long time would be needed to complete one
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competition process when fertility was limited (insert
box of Figure 9). Although the fertility limitation decel-
erated the adaptation process of an organism indeed, it
had little effect on the optimum mutation rate. This
might provide an additional explanation for Drake’s
observation of constant genome mutation rates across

DNA-based microbes, despite their different fertility
mechanisms.

To summarize, the initial configuration of the popula-
tion had little influence on the optimum mutation rate,
demonstrating the robustness of the developed method
based on competition among subpopulations.
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Figure 8 Change in the frequencies of fixed mutation rates vs. Ig(U)-given different initial individual fitness (R, = 1). y; represents
normal distribution with mean u = 0.5 and variance 6 = 0.1; y, represents gamma distribution with o = 20, B = 20; and y; represents the initial
fitness of all individuals equal to a unified value 1.0. In all cases, the conditions were constant: N = 10°, pp=3%, 5;,=0.3, 5, =0.01.
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Beneficial mutations are crucial in shaping the optimum
mutation rates

In this study, we have made three assumptions about
mutation effects: first, the mean effects of deleterious
mutations are much larger than those of beneficial
ones; second, beneficial mutation effects are exponen-
tially distributed; and finally, deleterious mutations
effects follow a gamma distribution. However, our simu-
lation results hinge mainly on the first two assumptions.
The first assumption is likely to be biologically realistic
in many cases, although surely not universally true.
Indeed, theory analysis [27,28] and empirical research
(see Table 1) have shown that the mean effects of dele-
terious mutations are greater than those of beneficial
ones. In addition, we assumed that the effects of benefi-
cial mutations followed an exponential distribution,
which has good theoretical [22-24] and empirical sup-
port [32,35,37]. Therefore, the exponential distribution
seems a reasonable choice. As for the third assumption,
we do not yet have a good understanding of the distri-
bution of deleterious mutation effects due to their com-
plexity. However, the effects of deleterious mutations
had little influence on the optimum mutation rate as
long as not producing an excessive amount of slightly
deleterious mutations. If the mean effects of deleterious
mutations was too small to counteract the beneficial

mutation effects (e.g., 5; is smaller than 0.01), the opti-
mum mutation rate might reach a higher value than the
one presented.

In general, organisms are well adapted to their living
environments, so only a few changes lead to fitness
increases and these beneficial mutations have very small
effects [32,34,35,37]. In a recent study, Cowperthwaite et
al [38] used an in silico system to show that beneficial
mutations with small effects have always existed in the
process of evolution. Although beneficial mutations are
much rarer compared to deleterious mutations, they sup-
ply the driving force for adaptive evolution and contribute
to survival of populations in tough environments [39]. As
shown in our results, an increase in either the fraction or
the effects of beneficial mutations led to a parallel increase
in the optimum mutation rate. It is established that in
asexual populations, two problems affect the adaptation:
clonal interference and multiple mutations; clonal inter-
ference causes beneficial mutations in different genetic
backgrounds compete with one another, while multiple
mutations in the same background could assist each
other’s spread toward fixation [40-44]. How the both fac-
tors determine the rate at which asexual population evolve
has been investigated in recent studies and their actions
are related to influx of beneficial mutations, including
their fraction (p,,) and effects (s;) [41,43].
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If the fraction of beneficial mutations (p;) is relatively
high, the clonal interference becomes important. How-
ever, in this case, there will also be more chances for
multiple beneficial mutations to occur in the same
genetic background. Whenever clonal interference is
important, so are multiple mutations. As Desai and
Fisher showed, evolution in asexual budding yeast popu-
lations was dominated by the accumulation of multiple
mutations of moderate effect [43]. Individuals that carry
multiple beneficial mutations probably have higher fit-
ness than those with one original beneficial mutation.
Thus, a subpopulation with a higher mutation rate
could benefit from more multiple beneficial mutations,
as Figure 3 shown.

On the other hand, if the effects of the majority of
new arising beneficial mutations (s;) are small, these
mutations need more generations to be fixed and
remain at low frequency in the population for quite a
long time [45]. This provides a sufficient chance for
competing mutations to occur in the ensuring genera-
tions, causing the beneficial mutation with small effects
to be wasted [46]. By contrast, if the beneficial mutation
effects increase (i.e., strong beneficial mutation appears),
natural selection increases their fixation probability and
shortens its fixation time, thus reducing the effect of
clonal interference [42,45,47]. This may explain why
competition time among subpopulations was signifi-
cantly shortened when s, increased. As Wilke pointed
out, in the presence of clonal interference, adaptation
speed in asexuals still continued to grow with the mean
beneficial mutation effects [21], although in a decelerat-
ing way. Therefore, reduction in the effect of clonal
interference due to increasing s, may further increase
the adaptation rate of populations considerably. In this
case, the population favored a much higher mutation
rate. Our simulation results indicated that if strong ben-
eficial mutations (s, = 0.03 ) were produced, the popu-
lation would evolve to a much higher optimum
mutation rate (Uyp = 0.05).

This might provide an alternate explanation for why
viruses are capable of evolving to a much higher muta-
tion rate [48] under the influence of the responding rate
of immune systems [49]. To survive in extremely stress-
ful environments, the virus populations must evolve
more beneficial mutations with large effects.

Selection on mutation rate in asexual populations

The action of selection on mutation rate can be classi-
fied as either direct or indirect: direct action is depen-
dent on the effects of modifier alleles on fitness, while
indirect action is dependent on the “linkage disequili-
brium” between modifier alleles and alleles at other loci
affecting fitness [19]. Strong effect modifiers that
increase mutation rates are called mutators [12,50].
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Considerable theoretical literature exists on the evolu-
tion of mutation rates based on the evolutionary fate of
mutators [11,12,51]. For instance, Ander and Godelle
[12] elucidated the fate of modifiers of mutation rates
and obtained three results: first, when adaptation has a
significant role, a strong-effect mutator will emerge. Sec-
ond, the modifier with large effects is likely to appear
only when the fitness cost of deleterious mutations is
very weak. Third, in small populations, the mutation
rate is always blocked at a lower level. In the present
study, the optimum mutation rate increased with the
effects of beneficial mutations, in agreement with their
first result. We also pointed out that effects of deleter-
ious mutations had little influence on the optimum
mutation rate unless an excessive number of slightly
deleterious mutations were produced, in agreement with
their second result. Finally, in our study, when every-
thing else being equal, large populations would evolve to
higher optimum mutation rates, in agreement with their
third result.

Nevertheless, it should be noticed that in all of the
previous studies, high genome mutation rates were gen-
erally disfavored in asexual populations except when
organisms were under extreme conditions. Gerrish et al.
suggested that in the case of complete linkage, the
mutation rate would continue to increase until it
reached an intolerable level and then lead to organism
extinction, rather than elevate without a ceiling [51].
The intuitive picture is that selection would drive muta-
tion rate toward a maximum value when beneficial
mutations are occurring [19]. However, as Gerrish et al.
pointed out that natural selection, although very robust,
is a short-sighted process that favors individuals with
immediate fitness benefits. A mutator could get such
immediate profits from a beneficial mutation, whereas
its action might be weakened by the eventual increase in
deleterious mutations.

Other studies involving modifiers also suggested that
even if a high mutation rate increased the rate of adap-
tation in the short term, due to deleterious mutations,
selection would be likely to decrease the mutation rate
in the long term evolution [19,52-54]. Thus the evolu-
tion of mutation rate in an asexual system would yield
an optimum compromise between deleterious and bene-
ficial mutations, as the present study indicated.

Conclusions

Based on competition among subpopulations with dif-
ferent mutation rates, we investigated the evolution of
mutation rates in finite asexual populations. The effi-
ciency of natural selection on mutation rate was shown
to depend on population size and mutation effects.
Large populations tend to have high mutation rates. The
optimum rate is also the result of a balance between
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two opposing forces: a decreasing rate caused by dele-
terious mutations and adaptation caused by beneficial
mutations. However, the influx of favorable mutations is
the critical factor and largely determines the optimum
mutation rate in large asexual populations. Contrary to
our intuition, the effects of deleterious mutations have
little impact on this rate as long as there is no an abun-
dance of deleterious mutations with tiny effects. We
hope this simulation method and these findings provide
useful inspiration for further modeling of the evolution
of mutation rates in asexual populations.
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