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Abstract

Background: Concerted evolution has been believed to account for homogenization of genes within multigene
families. However, the exact mechanisms involved in the homogenization have been under debate. Use of
interspecific hybrid system allows detection of greater level of sequence variation, and therefore, provide

advantage for tracing the sequence changes. In this work, we have used an interspecific hybrid system of scallop
to study the sequence homogenization processes of rRNA genes.

Results: Through the use of a hybrid scallop system (Chlamys farreri @ x Argopecten irradians ), here we provide
solid molecular and cellular evidence for homogenization of the rDNA sequences into maternal genotypes. The TS
regions of the rDNA of the two scallop species exhibit distinct sequences and thereby restriction fragment length
polymorphism (RFLP) patterns, and such a difference was exploited to follow the parental ITS contributions in the
F1 hybrid during early development using PCR-RFLP. The representation of the paternal ITS decreased gradually in
the hybrid during the development of the hybrid, and almost diminished at the 14th day after fertilization while
the representation of the maternal ITS gradually increased. Chromosomal-specific fluorescence in situ hybridization

gene conversion.

(FISH) analysis in the hybrid revealed the presence of maternal ITS sequences on the paternal ITS-bearing
chromosomes, but not vice versa. Sequence analysis of the ITS region in the hybrid not only confirmed the
maternally biased conversion, but also allowed the detection of six recombinant variants in the hybrid involving
short recombination regions, suggesting that site-specific recombination may be involved in the maternally biased

Conclusion: Taken together, these molecular and cellular evidences support rapid concerted gene evolution via
maternally biased gene conversion. As such a process would lead to the expression of only one parental genotype,
and have the opportunities to generate recombinant intermediates; this work may also have implications in novel
hybrid zone alleles and genetic imprinting, as well as in concerted gene evolution. In the course of evolution,
many species may have evolved involving some levels of hybridization, intra- or interspecific, the sex-biased
sequence homogenization could have led to a greater role of one sex than the other in some species.

Background

Concerted evolution is the tendency of the different
genes in a gene family or cluster to evolve in concert,
resulting in sequence homogenization among the mem-
bers of the family [1]. Two primary mechanisms,
unequal crossover and gene conversion, were believed
to function for the homogenization of multigene families
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[2]. Extensive studies of the tandemly repeated riboso-
mal RNA (rRNA) genes suggest that unequal crossover
is the major driving force in the evolution of the rRNA
genes with sister chromatid exchange occurring more
often than exchange between homologs. Gene conver-
sion is also believed to play a role; however, direct evi-
dence for its involvement has not been obtained [3].
However, these mechanisms can act to achieve appar-
ently opposite results: they can correct and eliminate
new variants and they can also promote the spread of
new gene variants throughout individual gene clusters,
among homologous and nonhomologous chromosomes,
and within an interbreeding population [4]. In recent
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years, gene conversion has become more popular in
many theoretical and experimental studies [5-8].
Although gene conversion in yeast can be explained by
a DNA breakage followed by invasive DNA replication
[9], the molecular mechanism of gene conversion in
multigene families is not well understood particularly
when sequence identity is patchy [1].

Within eukaryotic genomes, rDNA gene family exists
in arrays (nucleolar organizer regions or NORs on one
or more chromosomes) of varying length, ranging from
a single gene in the case of Tetrahymena to several
thousand copies per genome in some cereals [10]. Dif-
ferent subunits in rDNA family are known to evolve at
varying rates, depending upon the degree of selective
constraint operative on each. In these subunits, the
internal transcribed spacer (ITS) is not internally repeti-
tive and its evolving rate is between those of genes and
non-transcribed region [11]. Therefore, ITS is an ideal
region for the study of the homogenization processes of
rDNA family [12].

Natural or synthetic allopolyploids and hybrids with
clear and very recent ancestry are good models for
studying concerted evolution of multigene families
[6,13]. In order to study the homogenization process of
rDNA family, we exploited heterogeneity of ITS
sequences (over 20% sequence divergence) in a hybrid
scallop (Chlamys farreri @ x Argopecten irradians ).
The great sequence divergence would allow the homo-
genization process, if any, to be readily detected in the
hybrid. Here we report the homogenization of ITS
sequences in the hybrid by gene conversion, leading to
the generation of novel hybrid alleles. The gene conver-
sion is massively rapid during early development of the
hybrid, and is biased toward the maternal copy. We pro-
vide direct evidence for gene conversion in the ITS
region of the rDNA gene clusters that may have impli-
cations not only for concerted evolution, but also for
the origin of hybrid zone novel alleles, and for genetic
imprinting.

Results

PCR-RFLP analysis of ITS sequences provides a rapid
diagnostic tool for species identification of C. farreri and
A. Irradians [14]. In the hybrid generated by crossing C.
farreri female with A. irradians male, the restriction pat-
terns using restriction enzyme Hae III differentiate the
maternal ITS from paternal ITS. The C. farreri maternal
ITS should produce three PCR-RFLP fragments of 526
bp, 117 bp and 98 bp (741 bp in total), while the pater-
nal A. irradians ITS should produce three PCR-RFLP
fragments of 343 bp, 244 bp and 182 bp (769 bp in
total). In order to assess dynamic variation of ITS con-
stitution in the hybrid, PCR-RFLP was conducted at var-
ious early developmental stages. As shown in Figure 1,

Page 2 of 10

the proportion of the maternal and paternal alleles var-
ied greatly with development. At the 2-cell stage, both
the maternal and the paternal alleles were equally pre-
sent (Figure 1A); at the trochophore stage (approxi-
mately 20 hours after fertilization), most larvae harbored
alleles from both parents, while some (less than 5%) har-
bored only the maternal ITS (Figure 1B); at the early
stage of umbo larvae (approximately 4 days after fertili-
zation), most larvae still harbored alleles from both par-
ents, but signal intensities of the restriction fragments
representing the paternal A. irradians became signifi-
cantly lower in some larvae, and the proportion of the
larvae that possessed only the maternal ITS allele was
increased (Figure 1C); at the middle stage of umbo lar-
vae (approximately 10 days after fertilization), most lar-
vae possessed only the maternal ITS allele, and even in
those that still possessed the parental ITS allele (less
than 30%), signal intensities of the restriction fragments
representing the paternal allele of A. irradians were sig-
nificantly lower (Figure 1D). At the late stage of umbo
larvae (approximately 14 days after fertilization), the vast
majority of larvae harbor only the maternal ITS allele as
paternal allele was not evident when samples were ana-
lyzed individually (lanes 1 through 4, Figure 1E),
although the restriction fragments from the paternal A.
irradians allele could still be detected when multiple lar-
vae were simultaneously included in PCR-RFLP analysis
(lane 5, Figure 1E). In general, the proportion of the
paternal ITS allele decreased gradually in the hybrid
during the development. At the 14th day after fertiliza-
tion, the paternal allele representation became extremely
low (Figure 1).

Recombinant Variants and Potential Recombinant
Regions: When PCR product of multiple larvae at the
trochophore stage was cloned, 6 recombinant variants
were identified in about 200 randomly selected colonies
with PCR-RFLP technique (restriction enzymes Hae III
and Mbo I). The frequencies of the six variants are 6%
(RV1), 3% (RV2), 1.5% (RV3), 1.5% (RV4), 1% (RV5) and
2% (RV6). These recombinant variants are composed of
segmental sequences of C. farreri and A. irradians.
These recombinant variants were probably intermediates
of the paternal ITS undergoing biased gene conversion.
Of the six recombinant variants, RV1, RV3, and RV4
had their first part of the amplified ITS region contain-
ing sequences from the maternal parent, and their sec-
ond part of the amplified ITS region containing
sequences from the paternal parent. In contrast, RV2
and RV6 contained their first part of the amplified ITS
region containing sequences from the paternal parent,
and the second part of the amplified ITS region contain-
ing sequences from the maternal parent. For RV5, the
two terminal parts of the amplified ITS region contain-
ing sequences from the maternal parent, whereas the
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Figure 1 PCR-RFLP analysis of make-up of the ITS region in the hybrid with restriction enzyme Hae Il at early development. Panel A
exhibits PCR-RFLP analysis at the 2-cell stage (about 1 hour after fertilization) with samples from maternal parent C. farreri (Maternal), paternal
parent A. irradians (Paternal), and samples from five random selected hybrid individuals (1 through 5), and molecular weight standard (MW).
Panel B exhibits PCR-RFLP analysis at the trochophore stage (about 20 hour after fertilization) with samples from six random selected hybrid
samples (1 through 6), and molecular weight standard (MW). Panel C exhibits PCR-RFLP analysis at the early umbo larva stage (about 4 days
after fertilization) with samples from six random selected hybrid samples (1 through 6), and molecular weight standard (MW). Panel D exhibits
PCR-RFLP analysis at the middle umbo larva stage (about 10 days after fertilization) with samples from six random selected hybrid individuals (1
through 6), and molecular weight standard (MW). Panel E exhibits PCR-RFLP analysis at the late umbo larva stage (about 14 days after
fertilization) with samples from maternal parent (Maternal), paternal parent (Paternal), and samples from four random selected hybrid individuals
(1 through 4) and a sample from mixed samples of multiple individuals (5*), and molecular weight standard (MW). Molecular weight standards

were 100 bp DNA ladder.

middle segment of approximately 50 bp containing
sequences from the paternal allele (Figure 2).

Sequence analysis revealed that all potential recombi-
nant regions located in the regions of 5.8S and ITS2
(Figure 3, for sequences involved in the recombinant
regions, see Figure 2, shown in black background).
These potential recombinant regions involved sequences
of 9-116 bp, suggesting that recombinant variants may
have resulted from site-specific recombination. Biased
gene conversion in the hybrid may be drawn by site-spe-
cific recombination between the parental ITS sequences.
Among these recombinant variants, RV1 and RV2 are
mirror complement with exactly the same recombinant
region: RV1 had its first part coming from the maternal
allele and the second part coming from the paternal
allele, while RV2 had the exactly opposite components
with the first part coming from the paternal allele, and
the second part coming from the maternal allele. This
suggested that gene conversion tracts were bidirectional.
However, the mirror complement of RV3-RV6 was not
found, although no extensive efforts were devoted for
the search and they could have also existed.

The Recombinant Variants Were Likely Amplified
from Genuine Recombinant Templates: We had to con-
sider the possibility of PCR-generated errors because all
the sequenced clones were derived from PCR amplified
material. While point mutations introduced by PCR as a
result of infidelity of Tag polymerase are well documen-
ted, and is not the major concern in this situation, tem-
plate jumping is of concern because it also can interpret
the observed recombinant variants. In vitro recombina-
tion occurs when incompletely extended PCR segments
from one allele serve as primer during subsequent
amplification cycles amplified segments [15]. In spite of
the technical difficulties in providing absolute proofs
because our approaches nonetheless still involved the
use of PCR, several considerations made us to believe
that the observed recombinant variants were real, and
were not derived from PCR artifacts. First, we con-
ducted sequence analysis of the PCR templates for the
presence of hairpins or other major secondary struc-
tures, and found no major hairpins in the observed
recombinant regions except minor secondary structures
with RV1, RV2 and RV3. The presumption is that
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Figure 2 Alignment of parental and 6 recombinant variants’ sequences. Cf: C. farreri; Ai: A. irradians; RV1-6: recombinant variants 1-6.
Potential recombinant regions in recombinant variants are shown in black background. Asterisks show identical bases; dashes indicate alignment
gaps. (ITS1: 34-350 bp; 5.85: 351-506 bp; ITS2: 507-805 bp). Restriction sites for Mbo | GATC are indicated by a blue box while restriction sites for
Hae Il GGCC are indicated by a red box.
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Figure 3 Schematic presentation of the recombinant variants of the interspecific hybrid showing the origins of the sequences in the
ITS region. Open bar, sequences from maternal parent; sketched bar, sequences from paternal parent. Restriction sites for Mbo | are indicated
by blue arrows while restriction sites for Hae Ill are indicated by red arrows.
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certain partially extended PCR products would have
been quite abundant if they had served as primers for
subsequent rounds of PCR to allow their sufficient
amplification for detection using cloning with limited
numbers of sequenced clones. In order to have abun-
dant partially amplified products, secondary structure
would have been required. Second, we conducted PCR
directly using primers representing the recombinant var-
iants, and PCR products were readily produced. If the
recombinant variants had been absent from the template
pool, success of such PCR would have required template
jumping. To provide a reasonable control, we have con-
ducted PCR amplification using a mixture of DNA iso-
lated from maternal C. farreri and paternal A. irradians
as templates. No PCR products were generated from
such mixed templates, suggesting that PCR templates
for the recombinant variants were genuinely present in
the hybrid scallops. Third, we considered mathematical
assessment of product abundance. In this regard, all the
recombinant variants but RV5 requires just one recom-
bination while RV5 requires two recombination, and
they were all readily detectable from limited sequenced
clones. If indeed template jumping was involved, mole-
cules requires more than one recombination should be
very rare as it can be picked up several rounds later in
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subsequent PCR cycles. In addition, the molar ratio of
the partially extended products to the PCR primers
would be miniscule, and annealing of long, partially
extended products would otherwise require more time
than the annealing of short PCR primers. This consid-
eration, however, is just theoretical as opposite conclu-
sions were reached by Bradley and Hillis with 29% each
of the parental types and 43% of recombinant variants,
several of which required more than one recombination
(see discussions below).

Cellular Evidence for Maternal Biased Gene Conver-
sion of ITS Alleles: Two competing hypotheses can
explain the reduction of the paternal ITS allele in the
hybrid: (i) the rDNA-containing chromosomes of A.
irradians have been gradually lost in the hybrid, since
interspecific hybridization is commonly accompanied by
chromosome expulsion, or (ii) biased gene conversion
which makes the paternal ITS be gradually converted to
the maternal ITS, occurred in rDNA family of the
hybrid. In order to differentiate the two possibilities,
fluorescent in situ hybridization (FISH) and genomic in
situ hybridization (GISH) were conducted to determine
the status of ITS on chromosomes (Figure 4). It has
been reported that rDNA family of C. farreri is solely
located on the telomeric region of the short arm of

represents 5 pm.

Figure 4 Chromosomal locations of the parental ITSs in the hybrid. (A) FISH in C. farreri with probe from C. farreri (signals are shown by
arrows); (B) FISH in C. farreri with probe from A. irradians (no signal is detected); (C) FISH in A. irradians with probe from A. irradians (signals are
shown by arrows); (D) FISH in A. irradians with probe from C. farreri (no signal is detected); (E) GISH in the hybrid with genome probe from A.
irradians (a shows the ITS-bearing chromosome of C. farreri; b show the ITS-bearing chromosomes of A. irradians; metaphases in E, F and G are
same); (F) FISH in the hybrid with probe from C. farreri (signals are detected at a and b); (G) FISH in the hybrid with probe from A. irradians (no
signal is detected at a but weak signals are detected at b); (H) FISH in the hybrid with probe from C. farreri (a shows the ITS-bearing
chromosome of C. farreri; b, ¢ show the [TS-bearing chromosomes of A. irradians; signal intensity at b is higher than that at c). Scale bar
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chromosome 5, while that of A. irradians is located on
the telomeric region of the short arm of chromosome 4
and chromosome 8 [16]. Because of the significant levels
of sequence divergence, (sequence homogeneity less
than 80%), the parental ITS sequences can be distin-
guished by FISH technique under the optimized condi-
tion, which allowed us to gain direct cellular evidence
for the biased gene conversion.

Chromosomal lose was not involved in the observed
reduction of the paternal allele. GISH analysis revealed
that the haploid chromosomes from both parents were
intact in the hybrid in more than 66% metaphases (see
Fig. 4E). In FISH analysis, when probe from C. farreri
was used for hybridization with the hybrid chromo-
somes, one signal was found in the ITS-bearing chromo-
some of C. farreri as expected, while two signals were
found in the ITS-bearing chromosomes of A. irradians
(see Fig. 4F), suggesting the presence of C. farreri ITS
allele sequences on the ITS-bearing chromosomes of A.
irradians. Moreover, intensities of the two signals that
found in the ITS-bearing chromosomes of A. irradians
were significantly inconsistent in some metaphases (see
Fig. 4H). When probe from A. irradians was used, only
two weak signals were found in the ITS-bearing chro-
mosomes of A. irradians as expected, while no signal
was found in the ITS-bearing chromosome of C. farreri
(see Fig. 2G). Taken together, these results provide cel-
lular evidence for the maternal biased gene conversion
at the ITS region of the rDNA loci, which confirm the
molecular evidence for maternal biased gene conversion.

Discussion

This work took advantage of the hybrid from two scal-
lop species C. farreri and A. irradians, whose ITS
sequences are readily distinguishable, for the study of
concerted sequence homogenization of the rDNA. As
reviewed by Eickbush and Eickbush [3], unequal cross-
over has been regarded as the major mechanism for the
evolution of rRNA genes. Here, we provided strong
molecular and cellular evidence for maternal biased
gene conversion, leading to reduction of the paternal
allele toward homogenization with the maternal allele.
Although unequal crossover remains a possibility, it
does not support to explain the observed sequence
homogenization. First, it is difficult to explain why
paternal ITS sequences can be totally replaced just
through mitotic cell divisions by unequal crossover. Sec-
ond, about 70% C. farreri eggs can be fertilized with A.
irradians sperm. About 80% fertilized eggs can be devel-
oped to trochophore larvae, which is comparable to that
observed in the intra-specific cross of C. farreri. We
used trochophore larvae at the early stage for chromo-
some spread preparation, and yet, no signal was
observed on the maternal rRNA loci using paternal
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sequence as the probe in the FISH experiment, which
suggests unequal crossover did not occur between pater-
nal and maternal rRNA loci-containing chromosomes.
Although most theoretical and experimental studies on
concerted evolution of rDNA family were conducted in
model organisms such as yeast, Drosophila, and mice as
well as in humans [1], non-traditional model system can
provide cleaner evidence for the mechanisms involved
in sequence homogenization, as demonstrated here with
the scallops. In this paper, maternal biased conversion
of ITS sequences was evident during early stages of
development of the hybrid scallop. Hybrid larvae at later
developmental stages have not been obtained due to
high mortality rate, and are therefore not included in
the current study.

Site-specific recombination and double-strand breaks
(DSBs)

In yeast, DSBs are considered as the sole mechanism of
recombination in meiotic cells and are a major factor in
recombination in mitotic cells [9]. In a general model,
DSBs are cut on both strands to create large gaps
flanked by rather short regions of single-stranded DNA
that could invade a homologous template and initiate
DNA repair[17]. In this study, potential recombinant
regions identified in the hybrid are also conservative in
the ITS sequences of other 6 species of Pectinidae
which represent all now available in GenBank. Recombi-
nation in these regions may be site-specific but not
sequence-specific since common sequences of these
regions are not found. Some sites in these regions may
be recognized by some endonucleases, which may be
analogous to Spollp in Saccharomyces cerevisiae
[18,19], to generate DSBs. In general, homologous
recombination in DSB repair involves hundreds of
nearly perfectly matched base pairs. However, most
recombinant regions identified in this study are very
short. It is not unique since homologous recombination
in DSB repair can also occur with surprisingly short
homologous regions in yeast [9]. Moreover, conversion
tracts in RV3-RV6 could be unidirectional because the
counterparts of these recombinant variants were not
found. The phenomenon that conversion tracts
extended only on one side of the DSB was also reported
in yeast in meiosis and mitosis [20-22].

Although identification of recombination variants have
also been reported in ITS1 sequences of Darwinula ste-
vensoni [23], there still exists the possibility that recom-
binant variants are artifacts generated by PCR
amplification [15]. In order to exclude this possibility,
PCR product amplified from the mixture of genomic
DNA of C. farreri and A. irradians was cloned and
recombination variants were subsequently screened in
300 randomly selected colonies. Only RV1 and RV2
were identified at significantly lower frequency, which



Wang et al. BMC Evolutionary Biology 2010, 10:6
http://www.biomedcentral.com/1471-2148/10/6

suggests that short homologous regions in RV3-RV6
may be not significant to introduce recombination in
PCR amplification. Moreover, as an alternative techni-
que, loop-mediated isothermal amplification (LAMP)
developed by Notomi et al. [24] was also used in this
study (data not shown). Because cycles of denaturation
in PCR amplification are not needed in this technique,
this technique can significantly avoid the generation of
recombinant variants. When specific primers were
designed for RV6 (FIP: 5-ACAGCCGACCCTCAGACA-
CATCGATATCTTGAACGCACA

TTGC-3; BIP: 5-CCGGCGAGCGGTCTTAAA-
CTGGTTTGTTTTTGGTTCGATTG

GA-3’; F3: 5-TGTGAATTGCAGGACACATTGA-3;
B3: 5’-GCGTCTCTTGTAATTT

GTTCCGTA-3’), RV6 could be amplified from the
hybrid and further was confirmed by subsequent
sequencing.

Biased gene conversion: Gene conversion can be bidir-
ectional as those reported in Gossypium allopolyploid
and Nicotiana allopolyploid [6,25]. However, gene con-
version is biased in the hybrid in this study and similar
phenomenon was also reported in other studies [26-28].
This phenomenon may be general in Pectinidae, because
biased gene conversion was also observed in other
hybrids such as C. farreri @ x Chlamys nobilis 3, C. far-
reri @ x Patinopecten yessoensis G, and P. yessoensis @ x
A. irradians G (our unpublished data).

The possible mechanism for biased gene conversion in
the hybrid may involve maternal restriction systems. In
the initial formation of the hybrid, maternal enzymatic
system may treat the chromosomes of A. irradians as
intruding chromosomes. Specific sites in paternal
recombinant regions are thus recognized by maternal
endonucleases to produce DSBs. Biased gene conversion
can subsequently occur when the directionality of DSB
repair is in favor of the maternal DNA sequences. There
were evidences from yeast that the directionality of DSB
repair is in favor of the donor sequences [29,30].

The rate of gene conversion and mitosis

Although gene conversion was almost complete in all
individuals sampled at the late stage of umbo larvae
(about 14 days after fertilization), this process could
have started well within 20 hours after fertilization (see
Fig. 1). The rate of gene conversion is surprisingly rapid
in the hybrid. For rDNA family, although the highest
rate calculated from hybrids of Armeria was one order
of magnitude above that in Drosophila reported by
Dover [31], one generation is still needed [26]. Liao et
al. [32] demonstrated that it is even possible that con-
certed evolution could be achieved quite rapidly, per-
haps within one or a few meioses or mitoses. Because of
absence of meiosis, the process of gene conversion in
this study thus may occur in mitosis. Rapid gene
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conversion may be involved with long conversion tracts
and/or at high frequency. In mitosis, conversion tracts
in yeast could even extend up to 400 kb [9,33]. In gen-
eral, exchange rates between rDNA arrays residing in
the heterochromatin were expected to be rather low.
However, it was found that recombination between the
rDNA arrays occurs at a much higher rate than the rest
regions of the heterochromatin in Drosophila melanoga-
ster [34]. It has been suggested in some studies that
gathering of rDNA in/at the nucleolus and its exposure
to nucleolin play an important role in recombination
[35-37].

Gene conversion between non-homologous
chromosomes

It is currently unclear that which of rDNA-containing
chromosomes of A. irradians is homologous to that of
C. farreri. Inconsistent numbers of rDNA locus in the
two species suggest that at least one of rDNA-contain-
ing chromosomes of A. irradians is nonhomologous to
that of C. farreri. Based on the result that two signals
were found in the ITS-bearing chromosomes of A. irra-
dians in the hybrid when probe from C. farreri was
used, biased gene conversion had occurred between
nonhomologous chromosomes as well as between the
homologous chromosomes in the hybrid. Recombination
between nonhomologous chromosomes may be more
convenient in the hybrid since rDNA loci in the parents
are all located on the telomeric region of short arm of
chromosomes. Gene conversion among rDNA loci on
nonhomologous chromosomes were also reported in
humans and apes [38,39]. In the hybrid, intensities of
two signals were found significantly inconsistent in
some metaphases, which may imply that the rates of
gene conversion are different between homologous
chromosomes and nonhomologous chromosomes. For
example, in Fig. 2H, a may be more homologous to b
than to ¢, because signal intensity in b is higher than
that in c.

The maternally biased gene conversion reported here
may have important implications for concerted gene
evolution among gene families, as the similar mechan-
ism can be used for sequence homogenization in various
multigene families. The appearances of recombinant var-
iants could help explain the origin of hybrid zone novel
alleles, a phenomenon long puzzled the scientific com-
munity [40]. In spite of their interpretation of recombi-
nant variants as being generated from PCR template
jumping [15], the high proportion of recombinant (43%)
may argue against their conclusion. In our case here,
although the frequency of recombinant variants was
relatively low, their evolutionary consequences can be
highly significant. If such a mechanism is involved in
hybrids, or crossbreeds of more distantly related popula-
tions, its impact on the emergence of novel alleles
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would be tremendously high. The biased gene conver-
sion would also have significance implications for
genetic imprinting where only one allele from a specific
parental origin is expressed. Therefore, the hybrid scal-
lop offers a unique system for further studies involving
all of these issues.

Conclusions

Taken together, these molecular and cellular evidences
support rapid concerted gene evolution via maternally
biased gene conversion. As such a process would lead to
the expression of only one parental genotype, and have
the opportunities to generate recombinant intermedi-
ates; this work may also have implications in novel
hybrid zone alleles and genetic imprinting, as well as in
concerted gene evolution. In the course of evolution,
many species may have evolved involving some levels of
hybridization, intra- or interspecific, the sex-biased
sequence homogenization could have led to a greater
role of one sex than the other in some species.

Methods

Scallop Materials

Several sex-matured individuals of C. farreri and A. irra-
dians were obtained from an aquacultural hatchery in
Penglai, Shandong Province, China. Artificial hybridiza-
tion (C. farreri @ x A. irradians G) was carried out in a
laboratory. Because A. irradians is hermaphroditic,
sperm was filtered by a sieve cloth (500 meshes) in
order to avoid introducing eggs of A. irradians. After
fertilization, hybrid larvae were reared at 20°C. Samples
of hybrid larvae were taken at the 2-cell stage (about 1
hour after fertilization), the trochophore stage (about 20
hours after fertilization), the early stage of umbo larvae
(about 4 days after fertilization), the middle stage of
umbo larvae (about 10 days after fertilization) and the
late stage of umbo larvae (about 14 days after fertiliza-
tion). The muscles of parental scallops were preserved
at -20°C and the larvae were stored in ethanol at 4°C.
DNA Extraction

Genomic DNA of parental scallops was extracted from
frozen muscle tissues with phenol/chloroform extraction
as described by Sambrook et al [41]. Larval DNA extrac-
tion was described as follows. Larvae were transferred
from ethanol to a cavity slide and left until the ethanol
evaporated completely. Then the larvae were rinsed and
agitated with sterile pure water. In total, 30 larvae at each
stage were individually isolated through micro-operation
and then transferred on a mounted needle to a 0.2 mL
PCR tube containing 10 pL of STE solution (100 mM
NaCl; 10 mM Tris-Cl [pH 8.0]; 1 mM EDTA [pH 8.0]; 0.5
mg/mL proteinase K). The tubes were kept at 56°C for 30
min to break the cells and expose the DNA, and then 95°
C for 10 min to inactivate proteinase K.
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PCR Amplification

PCR amplifications were set up in a 20 pL volume com-
posed of 100 ng parental genomic DNA or 10 pL of lar-
val DNA solution, 0.2 uM each primer, 2 mM MgCl,,
0.2 mM each ANTP, 1 x PCR reaction buffer, and 1 U
Taq polymerase (Promega Inc., Shanghai, China).
According to the primers designed for Mytilus mussels
[42], a pair of primers (forward: 5 GTTTCTGTAGGT-
GAACCTG 3’ reverse: 5 CTCGTCTGATCT-
GAGGTCGGA 3’) were used in this study. These
anneal at the 3’ end of 18S rRNA gene and the 5’ end of
28S rRNA gene, amplifying I'TS1, 5.8S gene and ITS2.
Thermal cycling used a PTC-100 cycler (M] Research
Inc., USA). All PCR cycles began with an initial dena-
turation at 94°C for 3 minutes, followed by 30 cycles of
94°C 30 s, 54°C 30 s, and 72°C 1 min, and a final exten-
sion at 72°C for 10 min.

PCR-RFLP Analysis

Two restriction enzymes, Hae III and Mbo I, were used
in the PCR-RFLP analysis. Restriction digestions were
performed in 10 pl volumes, containing 3 pl of PCR
product, 2 U of restriction enzyme and 1 ul buffer sup-
plied by the manufacturer (NEB Inc., USA). The reac-
tion was incubated at 37°C for 6 h and then stopped by
inactivating the restriction enzyme at 80°C for 20 min.
Restriction digestion products were analyzed by gel elec-
trophoresis through an agarose gel (1.0%).

Cloning, Sequencing and Sequence Analysis

PCR product of multiple larvae at the trochophore stage
was ligated into pMD18-T (Takara Inc., Dalian, China)
and subsequently transformed into Escherichia coli
DHb5a cells. Using PCR-RFLP technique, recombinant
variants were screened in 500 randomly selected colo-
nies and corresponding colonies were sequenced with a
3730 automatic sequencer (Applied Biosystems Inc.,
USA). Alignment of the parental and recombinant var-
iants’ sequences was performed using the program Clus-
talX 1.83[43].

Chromosome Preparations, FISH and GISH Analysis
Following treatment with colchicine (0.01%) for 2 h at
room temperature (RT), trochophore were exposed to
0.075 M KClI solution for 30 min and then fixed three
times (15 min each) in fresh ethyl alcohol/glacial acetic
acid solution (3:1). After being treated with 50% acetic
acid, the fixed larvae were dissociated into a cell suspen-
sion, and then dropped onto hot-wet slides and air-
dried.

In FISH experiments, probes were labeled by PCR
with biotin-16-dUTP. Chromosome spreads were pre-
treated with 100 pg/ml DNase-free RNase A in 2 x SSC
for 1 h at 37°C, and then treated with 0.005% pepsin in
10 mM HCI for 10 min at 37°C. Chromosome prepara-
tions were denatured in a mixture containing 70% for-
mamide and 2 x SSC at 72°C for 2 min, dehydrated
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with a chilled ethanol series (70%, 90%, and 100%; 5 min
each), and then air-dried. Slides were then incubated
with 20 pl of denatured hybridization mix (5 ng/pl
probe, 10% dextran sulphate, 250 ng/ul salmon sperm
DNA, 50% deionized formamide in 2 x SSC, 80°C for 5
min and cooled immediately) for 16 h at 37°C in a
moist chamber. After hybridization, slides were washed
three times (5 min each) in 50% formamide in 2 x SSC
at 66°C, three times (5 min each) in 1 x SSC at 66°C,
once for 5 min in 2 x SSC at room temperature. Hybri-
dized probes were detected with fluorescein-labeled avi-
din DCS (Vector Laboratories). Chromosomes were
counterstained with 1.5 pg/ml propidium iodide (PI) or
4’-6-Diamidino-2-phenylindole (DAPI) in antifade solu-
tion (Vector Laboratories). For multiple hybridizations,
slides were washed three times by 2 x SSC to remove PI
or DAPI before denaturation in the subsequent hybridi-
zation. Slides were observed using a Nikon Eclipse-600
epifluorescence microscope equipped with a CCD cam-
era. The signals were collected using appropriate filter
sets and LUCIA software (Laboratory Imaging).

In GISH experiments, genomic DNA from A. irradians
was used as the template for labeling a probe. The
probe was labeled by nick translation with biotin-16-
dUTP. All steps in GISH experiments were the same as
described for FISH experiments except that the tem-
perature of post-hybridization wash was set as 42°C.
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