
RESEARCH ARTICLE Open Access

Fossil gaps inferred from phylogenies alter the
apparent nature of diversification in dragonflies
and their relatives
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Abstract

Background: The fossil record has suggested that clade growth may differ in marine and terrestrial taxa,
supporting equilibrial models in the former and expansionist models in the latter. However, incomplete sampling
may bias findings based on fossil data alone. To attempt to correct for such bias, we assemble phylogenetic
supertrees on one of the oldest clades of insects, the Odonatoidea (dragonflies, damselflies and their extinct
relatives), using MRP and MRC. We use the trees to determine when, and in what clades, changes in taxonomic
richness have occurred. We then test whether equilibrial or expansionist models are supported by fossil data alone,
and whether findings differ when phylogenetic information is used to infer gaps in the fossil record.

Results: There is broad agreement in family-level relationships between both supertrees, though with some
uncertainty along the backbone of the tree regarding dragonflies (Anisoptera). “Anisozygoptera” are shown to be
paraphyletic when fossil information is taken into account. In both trees, decreases in net diversification are
associated with species-poor extant families (Neopetaliidae, Hemiphlebiidae), and an upshift is associated with
Calopterygidae + Polythoridae. When ghost ranges are inferred from the fossil record, many families are shown to
have much earlier origination dates. In a phylogenetic context, the number of family-level lineages is shown to be
up to twice as high as the fossil record alone suggests through the Cretaceous and Cenozoic, and a logistic
increase in richness is detected in contrast to an exponential increase indicated by fossils alone.

Conclusions: Our analysis supports the notion that taxa, which appear to have diversified exponentially using fossil
data, may in fact have diversified more logistically. This in turn suggests that one of the major apparent differences
between the marine and terrestrial fossil record may simply be an artifact of incomplete sampling. Our results also
support previous notions that adult colouration plays an important role in odonate radiation, and that
Anisozygoptera should be grouped in a single inclusive taxon with Anisoptera, separate from Zygoptera.

Background
Understanding past changes in biodiversity is a funda-
mental part of predicting the future of the Earth’s eco-
systems [1,2]. Phylogenies and the fossil record provide
two complementary windows on temporal variation in
biodiversity. The most traditional, palaeontological
approach is to document the gain and loss of taxa in
the fossil record without recourse to phylogenetic infor-
mation [3-6]. Although the fossil record provides a
direct timescale for observations and contains explicit
information about extinction, it is incomplete, and more

robust at higher taxonomic levels. A more recent, neon-
tological approach is to analyse the shape of phyloge-
netic trees of extant taxa, revealing heterogeneity in the
net rate of cladogenesis across taxa or through time
[7,8]. This allows researchers to compare like with like
through identifying sister taxa, but relies on the fossil
record to provide a direct timescale, and does not con-
tain explicit information about extinction. Combining
fossil with phylogenetic information provides the poten-
tial therefore to combine the advantages of both to
make more robust inferences about macroevolution
[9,10]. In this paper we first summarise phylogenetic
information for a long-lived clade of insects, the Odona-
toidea (dragonflies and their relatives) and then combine
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it with fossil information to infer temporal changes in
their diversification.
Identifying changes in the rate of diversification is

central to understanding macroevolutionary processes.
The simplest model of clade growth is an exponential
one, where the rate of increase of taxa is constant
through time [11,12]. The next simplest alternative is
logistic growth, an equilibrium model with the growth
of the clade declining as richness rises, through compe-
tition. Establishing whether or not clade growth follows
expansionist or equilibrial models can therefore contri-
bute towards establishing whether biotic interactions are
important in macroevolution, as implied by the Red
Queen paradigm [1,13]. Rates of speciation and extinc-
tion are also commonly variable across clades [7]. Iden-
tifying which evolutionary branches have experienced
shifts in their macroevolutionary rates is therefore a first
step towards establishing which evolutionary or ecologi-
cal events might be responsible.
The insects comprise the majority of extant described

species. Previous work on insect macroevolution [14]
began with the traditional taxic approach from palaeon-
tology [4,15], to which was added the neontological phy-
logenetic approach [16-19] which has identified a
number of evolutionary and ecological processes that
have shaped insect diversity [14]. Data have suggested
that overall rise in taxonomic richness may be declining
modestly towards the present [4], although not strongly
so [15], and not in many recent radiations [14]. This is
consistent with the generally exponential increase in
taxa in the terrestrial fossil record [5,11,12,15] in com-
parison to the marine record [6]. However the relative
incompleteness of the insect record may provide a
source of bias, because the true originations of clades
likely occurred prior to their first appearance in the fos-
sil record. Using phylogenies to infer ghost ranges,
Davis et al. [19] showed that a number of insect orders
likely originated prior to their first fossil appearance,
making the increase in orders through time look more
logistic. The analysis of order-level trends however
raises problems; there is a greater risk of paraphyly,
complicating the estimation of ghost ranges, and
changes in order richness do not necessarily reflect
changes at lower taxonomic levels [20]. It would there-
fore be useful to examine patterns of diversification at a
lower taxonomic level, in a clade of insects of equivalent
age to the whole class, which previous studies have only
achieved using the traditional taxic palaeontological
approach.
Despite being less speciose than many other insect

orders, the Odonatoidea (Odonata plus the extinct Pro-
todonata) (= Holodonata [21], = Neodonatoptera [22])
are among the most ancient of all living continental
fauna, with a fossil record extending back 320 million

years, surviving several mass-extinction events [21].
Their accessibility as study systems has informed on
many questions in ecology, evolution, and conservation
biology [23]. This study aims to summarise existing phy-
logenetic information on the Odonatoidea by construct-
ing a supertree at the family level. We first apply a
neontological approach to the tree to detect where shifts
in the net rate of diversification have occurred, and then
combine the phylogenetic information with fossil record
data to observe patterns of family-lineage richness over
time.

Methods
Taxonomy
While previous family-level supertree studies of insects
[18,24] have used the taxonomic nomenclature of
Gordh & Headrick [25] for extant families and Ross &
Jarzembowski [26] and the EDNA fossil insect database
[http://edna.palass-hosting.org] for extinct families stu-
dies, it is evident from examining more recent literature
that views of odonate taxonomy have since altered, par-
ticularly with respect to fossil families [21]. Using the
above references as our starting point, we thoroughly
scoured recent literature to build up a taxonomy which
represents more recent views, including new families
and addressing synonymy. This is provided with refer-
ences in additional file 1. Any synonyms used in input
trees were corrected accordingly to ensure that only one
name was used per taxon, preventing the same taxon
appearing in the tree in two different positions. The
family Eugeropteridae represents the separate order Ger-
optera and has been used as the supertree outgroup, in
line with previous work [19,21,27].

Input trees
Papers containing Odonata phylogenies were searched
for online using Google Scholar, Web of Knowledge and
Science Direct databases. References cited in the studies
found were used to find additional papers. As input tree
searches were carried out until February 2010, no papers
published after that time are here considered. Only
papers post-1969 were used, being published after the
groundbreaking study by Hennig [28] on insect classifi-
cation and cladistic methodology.
Family-level Odonata phylogenies, constructed from

either molecular or morphological data, were collected.
In genus- and species-level phylogenies, taxa from the
same family were reduced into a single leaf. In the case
of a valid family (using our taxonomy) emerging as
paraphyletic in a species level tree, all lineages were con-
densed into a single branch as this has no bearing on
relationships with other families, and any valid families
that were shown as polyphyletic were removed on
grounds of uncertain placement following Davis et al.
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[18]. Trees where families were grouped together as
higher taxa (e.g. into superfamilies) were not used. In
total, 32 phylogenies from 23 papers were collected (see
additional file 2).

Supertree methods
Two matrix-based methods were initially used for super-
tree construction: Standard Matrix Representation with
Parsimony (MRP [29,30]), and Matrix Representation
with Compatibility (MRC [31]). These methods have
been shown to perform well compared to other methods
in empirical studies [19] and cope with data sets con-
taining high amounts of conflict [24]. MRP has been
shown to perform well in simulation [32], and MRC has
been shown to perform similarly well [33]. For each
method, a majority rule tree with minority components
was constructed from all equally optimal trees returned.
Where there is less than a 50% majority for a relation-
ship between particular taxa in equally optimal trees,
the relationship appearing more times than any other is
taken in the consensus. Fully bifurcating trees were
required for diversification analyses (see below). For
software and settings see additional file 3. Distance
supertree methods were not considered as these have
performed poorly compared to matrix-based methods in
similar empirical studies [18,19,24]. Methods such as
matrix representation with flipping (MRF) and quartet
fit (QFIT) were not possible to use as our dataset
proved too computationally demanding to run using
available software [34,35] without compartmentalising
the data set multiple times. Furthermore, we also avoid
using strict supertree methods [see 36] which identify
only relationships common to all input trees. There is
unavoidably conflict between relationships in input trees
collected from the literature and the aim of our work is
to find an optimum solution rather than only summarise
the areas of greatest certainty regarding phylogenetic
relationships.
The dataset was then refined to account for data non-

independence, following the protocol outlined in Davis
et al. [24]. Thirty input trees were used in the final
supertree analyses. The refined dataset was then used to
construct phylogenies using both the standard MRP and
MRC methods.
We use the V index [37] to measure support as used

in previous supertree studies [18,19,24,38]. This consid-
ers the number of input trees in agreement and in con-
flict with relationships in the supertree on a scale
running from -1 (all conflicting) to +1 (all supporting).
An input tree and supertree are in agreement when the
relationship in the input tree directly matches that in
the supertree (accounting for missing taxa in input
trees). Conversely, where there is direct disagreement in
a relationship between supertree and input tree, this is

conflict. Input trees not relevant to the supertree node
in question are not considered. For each supertree node,
a score is given (either -1 or +1) for each input tree in
the data set. For example, in a supertree study with 10
input trees, the supertree node would receive 10 indivi-
dual scores which are averaged to give the overall nodal
support value. The average score of all nodes gives a
total V score for each supertree. Rather than V scores
alone, V+ scores were also considered, because as well
as relationships found directly in the dataset, they also
consider as supporting relationships those that could be
permitted by the dataset and do not directly conflict (e.
g. polytomies). For a detailed discussion of the V index
and supertree support see Wilkinson et al. [37].

Diversification analysis and taxon age
Significant upshifts and downshifts in the rate of diversi-
fication throughout the MRP and MRC majority rule
trees were detected using the Slowinski-Guyer measure
of imbalance, which compares the species richness of all
extant sister clades [39-41]. The number of species in
each family was obtained from the World Odonata List
[http://www.pugetsound.edu/academics/academic-
resources/slater-museum/biodiversity-resources/dragon-
flies/world-odonata-list]. Any differences between this
list and our taxonomy were accounted for (e.g. the
inclusion of families we recognise as valid grouped
under another family name were separated). Species
numbers are shown in Table 1. This measure uses the
assumption that, although diversification rates were not
constant, at any point in time the diversification
between two clades occurred at the same rate. Under

Table 1 Species richnesses of extant families

Family Species
described

Family Species
described

Aeshnidae 441 Isostictidae 45

Amphipterygidae 12 Lestidae 152

Austropetaliidae 12 Lestoideidae 14

Calopterygidae 176 Libellulidae 986

Chlorocyphidae 151 Lindeniidae 32

Chlorogomphidae 45 Macromiidae 123

Chlorolestidae 35 Megapodagrionidae 193

Coenagrionidae 1121 Neopetaliidae 1

Cordulegastridae 51 Perilestidae 19

Cordulephyidae 5 Petaluridae 12

Corduliidae 244 Platycnemididae 227

Dicteriadidae 2 Platystictidae 214

Epallagidae 69 Polythoridae 59

Epiophlebiidae 2 Protoneuridae 259

Gomphidae 923 Pseudolestidae 1

Hemiphlebiidae 1 Pseudostigmatidae 19

Hypolestidae 116 Synthemistdae 43
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this null model, the probability of observing an equal or
greater difference in species richness between sister
groups is given by 2[Nsmall/(Nlarge+Nsmall-1)]. This calcu-
lation is carried out through all extant sister clades in
the phylogeny. Assuming that sister groups originated at
the same time, effects of the ages of clades on diversifi-
cation between sister groups can be accounted for.
However, with this approach, there is the possibility that
significant shifts at nodes will have an effect on those
nodes further down the tree, known as the ‘trickle-down
effect’. The method used by Davies et al. [41] of adjust-
ing the species richness in significant clades was used to
eliminate this effect [see [18,19,24,42]]. Alternative
methods are available for detecting the location of shifts
in diversification across a phylogeny, but are not suitable
for our data. For example the SymmeTREE approach
[43] employs likelihood-based shift statistics but requires
a resolved or nearly-resolved phylogeny at species level.
Medusa [44] can be applied to an incompletely-resolved
phylogeny but requires a fully dated tree.
Family-level richness over time was also documented.

Families which could not be included in the phylogeny,
because phylogenetic information is unavailable, were
however included when looking at family-level richness
over time, to provide as complete a picture as possible.
Using literature published up to the end of 2009, the
origination dates of known families were taken from
their first appearance in the fossil record and extinction
dates of extinct taxa from their last appearance. Dates
are in line with a recent geological timescale [45,46] (see
additional file 4). Using this information, the number of
family lineages present in each stage through geological
time can be plotted. For a discussion on the use of the
term “lineages” here, rather than families sensu stricto
see Davis et al. [19]. This richness was then corrected
according to information in both the MRP and MRC
phylogenies, by adjusting family lineage origination
dates based on ghost ranges. Assuming that sister taxon
lineages must have both been present when the diver-
gence between them occurred, and that differences
between the fossil record and phylogenies were caused
by an incomplete fossil record and not an incorrect phy-
logeny, sister lineage origination dates were altered to
equal that of the earlier sister group. The effect of both
the standard MRP and MRC phylogenies was examined.

Tests for exponential or logistic increase in family-lineage
richness
To conduct time series analysis it is generally preferable
to have equally-spaced sampling intervals. This was
achieved by generating from the original data, new
interpolated time-series of the same length, but equally
spaced, using akima splines [47], using the aspline func-
tion in the Akima package in R. The expectation from

exponential growth is that the logarithm of number of
taxa will increase linearly over time. Logistic growth,
where the rate of increase in taxon richness declines at
high richness, can therefore be inferred from significant
non-linearity (i.e. a deceleration of log richness nearer
the present), which can be established by comparing the
fit of linear and quadratic regressions of log(richness +1)
against time. We tested for temporal autocorrelation in
the linear regression by the Durbin-Watson test. All
residual series showed significant positive autocorrela-
tion at lag 1, and in all cases examination of the auto-
correlation and partial autocorrelation functions
indicated that the residuals were well described by an
autoregression model of order 1 (AR(1)). We therefore
accounted for this by using generalized least squares to
model the data with an AR(1) residual correlation struc-
ture [48], and compared the linear and quadratic mod-
els. Modeling was performed in R [49] using the gls
function from the nlme library.

Results
Phylogeny
Both the MRP and the MRC phylogenies (see Figure 1)
show the divergence of the Zygoptera (damselflies) and
Anisoptera (true dragonflies) + “Anisozygoptera” into
two robustly supported monophyletic groups (V scores:
Zygoptera, +0.280; Anisoptera + “Anisozygoptera”,
+0.714). The Anisoptera are nested within a paraphyletic
assemblage of “anisozygopteran” families, comprising five
main lineages, including the extant family Epiophlebiidae
belonging to its own exclusive lineage. The whole crown
group of extant odonate families nests within a paraphy-
letic assemblage of fossil protodonate and odonate
families. The backbone of the tree as a whole in both
MRP and MRC analyses is robustly supported with pri-
marily positive V scores for clades. The only clade receiv-
ing a negative V score is crown group Odonata (V =
-0.111), though there is some uncertainty regarding the
backbone in Anisoptera, where some clades are not
found in all equally optimal trees and there are differ-
ences in the most commonly found relationships between
MRP and MRC analyses. However, the MRP and MRC
trees are largely similar at lower levels (Figure 1). For V
and V+ scores of individual clades see additional file 5.

Diversification
Both the MRP and MRC majority rule supertrees show
significant shifts in net rates of diversification (Figure 1).
Both show downshifts in the single family lineages
Hemiphlebiidae (Zygoptera) and Neopetaliidae (Anisop-
tera), and a downshift in the lineage leading to Pseudo-
lestidae + Dicteriadidae + Polythoridae + Calopterygidae
(Zygoptera), before a subsequent positive shift in the
lineage leading to Polythoridae + Calopterygidae. All
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shifts except that involving Neopetaliidae occur at the
base of clades obtaining positive V scores, and in the
case of Neopetaliidae, a significant downshift is detected
despite differing placement in the two trees. Other

upshifts and downshifts detected are shown in just one
tree or the other. These shifts are detected in the region
of uncertainty regarding the backbone of the Anisoptera
clade - a downshift in the Petaluridae lineage (MRP), or

Relationship not in all equally optimal trees 
(for consensus tree relationships = all equally optimal trees
from both MRC and MRP analyses)

V and V+ negative values

V negative value but V+ positive value (including 0)

V and V+ positive values (including 0)

MRC MRP

Strict Consensus combining MRC and MRP trees

Crown
Odonata

Zygoptera

Anisoptera +
"Anisozygoptera"

Anisoptera

Protoneuridae
Platycnemididae
Isostictidae

Platycnemididae
Isostictidae
Protoneuridae

Lestoideidae
Epallagidae
Zacallitidae*

Amphipterygidae
Chlorocyphidae

Rudiaeschnidae*

Juracorduliidae*

Eumorbaeschnidae*

Cymatophlebiidae*

Austropetaliidae

Cordulephyidae

Eocorduliidae*

Gomphidae

Hemeroscopidae*

Liupanshaniidae*

Aktassiidae*

Neopetaliidae

Paracymatophlebiidae*

Valdicorduliidae*

Chlorogomphidae

Libellulidae

Cretapetaluridae*
Protolindeniidae*

Macromiidae

Mesuropetalidae*

Aeshnidae

Araripelibellulidae*

Nannogomphidae*

Corduliidae

Araripechlorogomphidae*

Petaluridae

Proterogomphidae*
Araripegomphidae*

Cordulegastridae

Lindeniidae

Araripephlebiidae*

Synthemistidae

Progobiaeshnidae*

Cordulephyidae

Nannogomphidae*

Araripegomphidae*

Mesuropetalidae*

Macromiidae

Aeshnidae

Valdicorduliidae*

Libellulidae

Lindeniidae

Araripechlorogomphidae*

Austropetaliidae

Corduliidae

Petaluridae

Liupanshaniidae*

Neopetaliidae

Progobiaeshnidae*

Protolindeniidae*

Araripelibellulidae*

Hemeroscopidae*

Cymatophlebiidae*

Gomphidae
Proterogomphidae*

Paracymatophlebiidae*

Aktassiidae*

Eumorbaeschnidae*

Synthemistidae

Cordulegastridae

Juracorduliidae*
Araripephlebiidae*
Eocorduliidae*

Chlorogomphidae

Rudiaeschnidae*

Cretapetaluridae*

Chlorolestidae
Perilestidae
Lestidae

Chlorocyphidae
Epallagidae

Zacallitidae*
Amphipterygidae

Lestoideidae

Chlorolestidae
Perilestidae
Lestidae

Archithemistidae*
Campterophlebiidae*
Isophlebiidae*

Campterophlebiidae*
Isophlebiidae*
Archithemistidae*

Epallagidae

Permagrionidae*

Eumorbaeschnidae*

Aeschnidiidae*

Cordulephyidae

Hemeroscopidae*
Chlorogomphidae

Cretacoenagrionidae*

Juraheterophlebiidae*

Lindeniidae

Progobiaeshnidae*

Meganeuridae*

Zygophlebiidae*

Liassogomphidae*

Macromiidae

Kennedyidae*

Cretapetaluridae*

Xamenophlebiidae*

Cordulegastridae

Epiophlebiidae

Araripephlebiidae*

Petaluridae

Batkeniidae*

Nannogomphidae*

Triassolestidae*

Araripechlorogomphidae*

Eocorduliidae*

Platycnemididae

Pseudostigmatidae

Stenophlebiidae*

Cymatophlebiidae*

Dicteriadidae

Asiopteridae*

Prostenophlebiidae*

Sphenophlebiidae*

Hemizygopteridae*

Permepallagidae*

Austropetaliidae

Piroutetiidae*

Erichschmidtiidae*

Polytaxineuridae*

Polythoridae
Calopterygidae

Turanothemistidae*

Permaeschnidae*

Cyclothemistidae*

Corduliidae

Triadophlebiidae*

Callimokaltaniidae*

Triadotypidae*

Gondvanogomphidae*

Pseudolestidae

Steleopteridae*

Gomphidae

Synthemistidae

Amphipterygidae

Sieblosiidae*

Libellulidae

Hypolestidae

Liupanshaniidae*

Zacallitidae*

Paralogidae*

Coenagrionidae

Chlorocyphidae

Erasipteridae*
Namurotypidae*

Protolindeniidae*

Henrotayiidae*

Rudiaeschnidae*

Juracorduliidae*

Hemiphlebiidae

Chlorolestidae

Megapodagrionidae

Myopophlebiidae*

Lestoideidae

Araripegomphidae*

Neopetaliidae

Paracymatophlebiidae*

Permolestidae*

Araripelibellulidae*

Heterophlebiidae*

Ditaxineuridae*

Lestidae

Proterogomphidae*

Liassophlebiidae*

Paurophlebiidae*

Perilestidae

Protoneuridae

Campterophlebiidae*

Tarsophlebiidae*

Isostictidae

Mesuropetalidae*

Protomyrmeleontidae*

Archithemistidae*

Aktassiidae*

Eugeropteridae*

Mitophlebiidae*

Valdicorduliidae*

Platystictidae

Isophlebiidae*

Liassostenophlebiidae*

Aeshnidae

Significant upshift detected in both trees

Significant downshift detected in both trees

Significant downshift detected in MRC tree

Significant downshift detected in MRP tree

Significant upshift detected in MRP tree

Significant upshift detected in MRC tree

Figure 1 Supertree phylogeny of Odonatoidea based on MRC and MRP analyses of 30 input trees. The strict consensus between MRC
and MRP supertrees is supplemented where MRC and MRP topologies differ. Taxa in grey marked with * are extinct. Taxa in black are extant.
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a downshift in a clade comprising Epiophlebiidae +
Petaluridae + Lindeniidae + Gomphidae + Austropetalii-
dae + Aeshnidae + Neopetaliidae + Cordulegastridae +
Synthemistidae + Macromiidae + Libellulidae + Cordu-
liidae, then a subsequent upshift in this clade to the
exclusion of Epiophlebiidae and Petaluridae (MRC). See
additional file 6 for sister group species richness com-
parisons in full.

Family richness, originations and extinctions
Aside from family extinctions at the end of the Permian
and Triassic, a lineage through time plot based on fossil
information only (Figure 2) shows an increase in the
number of family-level lineages leading up to the Juras-
sic-Cretaceous boundary. The increase in richness is
interrupted by extinctions and origination events
throughout the Cretaceous, including a significant
extinction at the Lower-Upper Cretaceous boundary,
before a sharp rise in richness to the present.
The inclusion of ghost range information shows a

slightly different scenario. Both MRP and MRC-based
analyses give similar pictures. As expected with ghost
ranges inferred, earlier originations occur in the phylo-
geny-adjusted models, and richness is higher (see Figure
2). With ghost ranges inferred, between 46 (MRC) and
50 (MRP) families have their fossil ranges extended (see
additional file 4 for details), with the most dramatic
extension for Epiophlebiidae (0 to 196.5 my). Although
the same extinction events are apparent, the rise in
family-level lineages is slightly sharper in the Triassic
and rises dramatically during the Jurassic. The ultimate
impact of this is that richness calculated using fossil
information alone is only 57-64% of that calculated
using phylogenetic information by the end of the Juras-
sic. Patterns of origination and extinction are similar in
all scenarios through the Cretaceous, and while higher
richness is evident in the Cenozoic with ghost ranges
inferred, the level of richness is stable, compared to the
rapid rise in richness found based only on fossil data.
Generalized least squares, accounting for temporal

autocorrelation in the residuals, supports the inclusion
of a quadratic (i.e. curvilinear) temporal component to
log richness for both the MRC supertree (t = -2.65, df =
43, p = 0.011) and the MRP supertree (t = -3.12, df =
43, p = 0.0032). However, for the fossil data alone inclu-
sion of the quadratic term is not well-supported (includ-
ing extant richness t = -1.49, df = 43, p = 0.144; not
including extant richness t = -1.93, df = 42, p = 0.06).

Discussion
Odonata phylogeny
Two alternative supertree analyses, representing the lar-
gest family-level phylogenetic analysis of Odonatoidea to
date, converge on a very similar topology, with overall

positive support, indicating general agreement between
input trees regarding many relationships within the tree
(Figure 1). Therefore based on primary studies from
which input trees have been acquired, we can summarise
the following consensus regarding relationships within
Odonatoidea, following supertree analysis. Importantly,
Zygoptera are a monophyletic suborder, separate to Ani-
soptera (+ “Anisozygoptera”), which refutes previous
hypotheses suggesting Zygoptera could be a paraphyletic
grade towards Anisoptera [50,51]. “Anisozygoptera”,
although considered a modern suborder, and regarded as
such in recent phylogenetic analyses [e.g. [52]] based on
the single extant family Epiophlebiidae, should not be
given official taxonomic status. As can be seen, with
inclusion of fossil taxa, “Anisozygoptera” is a paraphyletic
assemblage with Anisoptera nested within.
It is important that the backbone of the tree receives

mostly positive V support, and provides a solid frame-
work to analyse evolutionary questions at a high level in
Odonatoidea, though there are some areas of the tree
which do remain problematic. The negative support
(representing much conflict in the constituent input
trees) at the node representing crown Odonata is initially
concerning. However, there is much agreement for
monophyletic Zygoptera and Anisoptera + “Anisozygop-
tera” and the negative support for the crown group as a
whole represents uncertainty relating to the placement of
the fossil family Tarsophlebiidae (i.e. is it included in the
crown group or not?). In both supertrees Tarsophlebiidae
sits outside the crown group, yet it is represented both
within [53,54] and outside [55] of the crown group in
input trees, and Bybee et al. [56] show these alternative
scenarios in different analyses. Input trees do not concur
well over the position of this taxon, and though the
debate rolls on, recent fossil evidence supports the more
basal position for Tarsophlebiidae that we find here [57].
The most important phylogenetic uncertainty to target

in future work must be along the backbone of the Ani-
soptera clade with most topological differences between
the two supertree methods occurring here, and this does
affect the result of diversification analyses (see below).
However, below the suborder level there is much agree-
ment in relationships. The supertree presented here
should be regarded as a work in progress since taxo-
nomic revisions, discovery of new fossil forms, and new
molecular data for the order are now commonly
reported. Furthermore, the inclusion of more fossil
families may help resolve the tree further, but many are
yet to be included in phylogenetic analyses.

Significant shifts in diversification and potential
morphological innovations
Previous work by Misof [58] identified two major char-
acteristics within Anisoptera families that are positively
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correlated with species richness: the evolution of elabo-
rate colour patterns and the evolution of sexual
dimorphism in colouration (sexual dimorphism in body
size is common in all Anisoptera [59]), features often
linked to the process of sexual selection and its role in
speciation.
Downshifts in net diversification are inferred from the

low extant richness of Hemiphlebiidae, Neopetaliidae
(both significant downshifts in both trees), Epiophlebii-
dae, Petaluridae (both significant downshifts in the MRP
tree) and a clade containing Pseudolestidae (significant
in both trees, preceding a later upshift in Polythoridae
and Calopterygidae). All these families have simple body
colouration patterns [60], consistent with Misof [58]. In
addition the families Polythoridae and Calopterygidae
both show dramatic bright and sexually dimorphic col-
ouration and are associated with a robust diversification
upshift in both trees. Our results therefore combine well
with Misof’s findings by demonstrating where identifi-
able radiations and restrictions have likely occurred. In
addition to these features, Epiophlebiidae also has long
larval stages (5-6 y), which could feasibly increase
extinction risk or hinder speciation [14]. The Neopetalii-
dae has extremely specialised niches (riverside caves)
possibly restricting its diversification. In the latter two
cases though, such characteristics might just be those of
surviving species rather than the families as a whole, so
caution is required. A fuller determination of the causes
of any shifts would benefit from an analysis at finer
taxonomic resolutions. The use of simple topology-
based statistics in the absence of fossil data and extinct
taxa likely limits the inferences that can be made on
diversification shifts, and may induce biases [see
[61,62]]. Hence the findings presented here should be
revisited as the opportunity to incorporate new data and
more complex, and potentially realistic, diversification
models presents itself.

Family richness through time
Fossil record-only analysis follows some similar short
term variation to the phylogeny-based analyses, but phy-
logeny-based analyses show some noticeably higher
increases in family-level lineage richness through the
Triassic and Jurassic, and we show that richness was
likely much higher through the Cretaceous and then
consequently the Cenozoic than can be shown by using
the fossil record alone (Figure 2). It is most probable
that the extensions of fossil ranges we infer are quite
conservative [63], but the impact of including such
information is evident in our analyses. The divergence
between the fossil and phylogenetic richness curves (Fig-
ure 2) accumulates gradually throughout the timeline,
and is notable towards the end of the Jurassic, suggest-
ing that many lineages with much later first fossils are

rather first found here. This may of course partly repre-
sent an abundance of suitable fossil-bearing strata
instead of, or as well as, a genuine set of first origina-
tions. It therefore remains possible that the taxa
involved actually have still earlier origination dates. If
true however, this would only strengthen our findings
by making the true richness curve appear even more
logistic. Using fossil data alone there is a suggestion of a
slow-down in the net rate of origination that is not sig-
nificant, mirroring the insect fossil record as a whole
[4]. Both the phylogenetic analyses however alter the
fossil-based curve to a more logistic model, with a sud-
den increase in family richness through the Jurassic
being the most noticeable difference. There has been
debate in the past over whether the fossil record for all
organisms exhibits logistic growth, or whether it has
been exponential but punctuated with mass extinctions
that limit the level of taxonomic diversity [64]. However,
given that an approximately exponential increase in
richness can turn to a logistic one after accounting for
gaps in the fossil record, our results suggest that caution
should be applied to other such cases, particularly in the
terrestrial record where the evidence for logistic growth
has so far been thinner [11,12,15].
After accounting for the general trend in taxonomic

richness, variation around this trend remains. Some of
this coincides with well-documented mass-extinctions
and recoveries, including here the end-Permian, but in
other cases, such as the end-Cretaceous, no effect is
seen [see also 65]. In the fossil record as a whole, fluc-
tuations are known to correlate with a number of envir-
onmental and geophysical variables [66,67]. The sudden
increase in richness in the Jurassic coincides with an
icehouse climate mode [68], as is the case for the initial
radiation of Odonatoidea in the Carboniferous, consis-
tent with the findings of Mayhew et al. [66]. Also, nota-
ble changes to freshwater ecosystems occurred in the
Jurassic with the radiation of aquatic Diptera and other
animal taxa that are today important food sources for
Odonata [69]. Though the environmental correlates of
Odonata richness through time requires a fuller study,
our results suggest that such studies could benefit from
incorporation of phylogenetic information.

Conclusions
Phylogenetic information provides one way to adjust for
the imperfections and biases inherent in analyses of fos-
sil data. When such information is used to address
family-level richness in an ancient clade of insects, dif-
ferent models of macroevolution are supported. The
more logistic pattern of diversification we observe when
phylogenetic information is included in such a study is
in contrast to the exponential pattern of increases in
odonate richness suggested by the fossil record alone,
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and the terrestrial record more generally. These results
therefore imply that some of the major differences
between the marine and terrestrial records are artifacts
of incomplete sampling. Our supertrees provide a base-
line for further macroevolutionary, comparative and
phylogenetic studies of Odonata and Protodonata.
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