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Does a shift in host plants trigger speciation in
the Alpine leaf beetle Oreina speciosissima
(Coleoptera, Chrysomelidae)?
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Abstract

Background: Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous
Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have
fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly
unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes
and their economic importance as common agricultural pest organisms make this family particularly interesting for
studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf
beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia
roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In
general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu
stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run
vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through
use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of
Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis.
By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to
provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle.

Results: While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the
topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly
defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two
ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an
ecological speciation framework.

Conclusions: The question of whether this case of ecological differentiation occurred in sympatry or allopatry
remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is
likely driven by a recent shift in host plant use.

Background
The debate about the relative importance of ecological
speciation in species diversification spans several dec-
ades [1-20]. However, concrete cases based on empirical
evidence remain relatively scarce [1,21-25]. In essence,
ecological speciation is related to the “ecological species

concept”, which was defined as follows [26]: “a species is
a lineage (or a closely related set of lineages), which
occupies an adaptive zone minimally different from that
of any other lineage in its range and which evolves sepa-
rately from all lineages outside its range”. The driving
force behind ecological speciation is thus divergent nat-
ural selection between environments or, in other words,
reproductive isolation of populations by means of adap-
tation to different environments or niches
[18,19,21,27,28]. Ecological selection is a consequence of
individual-based interactions with the environment.
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From this interaction follows that divergent selection
between ecological niches is a major driving force differ-
entiating lineages until reproductive isolation occurs
[17]. Ecologically divergent pairs of populations will
show higher levels of reproductive incompatibility and
lower levels of gene flow than ecologically more similar
population pairs [29]. A resulting corollary is that ecolo-
gical speciation is more likely to arise in regions with
patchworks of contrasting habitats and/or distinct envir-
onmental gradients.
The number of taxa within the insect order Coleop-

tera exceeds that of any known plant or animal group
[30]. More than half of the beetles are phytophagous,
including the species rich superfamilies Curculionoidea
and Chrysomeloidea, of which a majority feeds on
angiosperms [31]. The increase in phytophagous beetle
diversity was facilitated by the rise of flowering plants
[31]. The family Chrysomelidae currently consists of
more than thirty-five thousand recognized species
including economically important pest species such as
the Colorado potato beetle (Leptinotarsa decemlineata),
the Northern corn rootworm (Diabrotica virgifera), the
Cereal leaf beetle (Oulema melanopus), and the Striped
turnip flea beetle (Phyllotreta nemorum). The biological
and economic importance of the superfamily Chrysome-
loidea make it vital to understand the factors that drive
diversification in this group.
Here, we present a case of ecological niche differentia-

tion in the alpine leaf beetle Oreina speciosissima that
may represent the early stages of ecological speciation.
The genus Oreina currently includes twenty-eight spe-
cies, of which only seven early-diverging taxa do not
exclusively occur in high forbs (i.e. five develop in stone
run vegetation and two can be found in both high forbs
and stone runs) [32]. According to current knowledge
[34], the most parsimonious explanation is that high
forbs vegetation is the ancestral niche for the remaining
twenty-one Oreina lineages, among which only our focal
taxon Oreina speciosissima shows a partial reversal,
since it is found both in high forbs and stone run
vegetation.
Oreina speciosissima is distributed across nearly the

entire range of the genus Oreina (from the Pyrenees in
the west to the Carpathian Mountains in the east)
through a wide altitudinal gradient (ranging from 800 to
2700 m above sea level). At lower elevations it generally
colonizes the very abundant high forbs vegetation
whereas at higher elevations it is found in stone run
habitats across a small portion of its distribution range
[unpublished observations MB, TVN][32]. Kippenberg
[32] and personal observations suggest that Oreina spe-
ciosissima feeds exclusively on Asteraceae (Achillea,
Adenostyles, Cirsium, Doronicum, Petasites, Senecio and
Tussilago) and colonizes four distinct habitats

represented by well-established plant associations: two
occurring in high forbs - Petasition officinalis and Ade-
nostylion - and two in stone run -Androsacion alpinae
on siliceous bedrock and Petasition paradoxi on calcar-
eous bedrock - (see Figure 1)[33]. These plant commu-
nities are often patchily distributed due to the myriad of
spatially proximate microclimates that occur in the
Alps, especially sites with calcareous bedrocks which
regularly present a mosaic of microhabitats. For
instance, sinkholes or dolines, formed through water
erosion in so-called karstic areas represent ecological
islands inhabited by high forbs vegetation surrounded
by areas covered by stone run vegetation [unpublished
observation TVN]. Beetles inhabiting the highly diver-
gent habitats have been categorized in two different sub-
species, namely Oreina speciosissima sensu stricto
(distributed across the whole species range) and Oreina
speciosissima troglodytes (restricted to the Swiss and
neighbouring Italian Alps), on the basis of differences in
elytral coloration and the shape of male genitalia (aedea-
gus) [32]. Oreina speciosissima sensu stricto beetles are
bright metallic green or blue whereas the coloration in
Oreina speciosissima troglodytes is generally darker and
mat [32]. It is not known whether the morphological
differences between ecotypes are in any way adaptive
and/or have a genetic basis, although color patterns in
another species of Oreina are known to influence nat-
ural selection through predation pressure [35]. Like
most other members of the genus, Oreina speciosissima
sensu stricto can be found feeding or mating throughout
the day on, or in the vicinity of its host plants. In con-
trast, Oreina speciosissima troglodytes is usually found
adjacent to its host plants, concealed in crevices and
under loose rocks. Previous studies by the authors
[36,37] greatly challenged the existence of clear species
boundaries within the genus: it is therefore realistic
from a biological point of view to refer to these taxo-
nomic entities as ecotypes rather than subspecies. Leaf
beetles from the genus Oreina are generally thought to
make only limited use of their dispersal capabilities
[38,39] even though Kalberer et al. [40] reported an
average flight dispersal of approximately one hundred
meters for Oreina cacaliae beetles during autumn
migration. Rowell-Rahier [35] showed that low vagility
in concert with a patchy host plant distribution resulted
in a low level of genetic structuring in Oreina speciosis-
sima. Oreina speciosissima sensu stricto beetles inhabit
high forbs patches that are generally larger in size, lie
closer together and harbor more beetles per unit of sur-
face area than stone run patches inhabited by Oreina
speciosissima troglodytes [unpublished observations MB,
TVN].
The present work investigates 13 populations repre-

sentative of the two ecotypes, using sequencing of
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nuclear (ITS2) and mitochondrial (hereafter mtDNA)
(16S, COI and COII) DNA regions as well as AFLP gen-
ome fingerprinting in a way to address the following
questions:

1. Are ecotypes monophyletic?
2. Is adaptation to different habitats and host plants
associated with genetic divergence?

Results
Phylogenetic reconstruction of the DNA sequence data
sets
The nuclear ITS2 region showed no variation for Oreina
speciosissima and was thus excluded from further ana-
lyses. In contrast, the three mtDNA regions were

polymorphic with a total alignment length of 1632 bp;
529 bp for 16S, 470 for COI and 633 bp for COII.
Excluding the outgroup, 30 characters were potentially
parsimony informative (hereafter PPIc) among 37 vari-
able characters. The three mtDNA regions contributed
as follows: 16S (3 PPIc among 5 polymorphic sites), COI
(13 PPIc among 16 polymorphic sites) and COII (14
PPIc among 16 polymorphic sites). The best substitution
models were Hasegawa-Kishino-Yano (HKY) [41] for
16S and Hasegawa-Kishino-Yano plus Gamma (HKY+G)
[41,42] for COI and COII. The alignments of the
mtDNA markers were combined in a total evidence
approach, after pairwise incongruence length difference
ILD test [43] revealed no incongruence among the three
mtDNA markers (COI and COII, P value = 1.00; COI

Figure 1 Host plants of Oreina speciosissima and their altitudual zonation and habitat. According to literature [32] and personal
observations of the authors, 13 plant species were referred to as putative host plants for Oreina speciosissima. These species belong to four plant
associations, i.e. Petasition officinalis, Adenostylion, Petasition paradoxi and Androsacion alpinae [33], which segregate along altitudinal zonation
and bedrock type gradients. Whereas Petasition officinalis and Adenostyles correspond to high forbs habitat, Petasition paradoxi and
Androsacion alpinae represent stone run habitats. In particular conditions, the Petasition paradoxi can merge with high forbs (see text). Each
association includes bold written codes (see Table 1 for details) of sampled populations. Plant associations are written from left to right as a
function of their mean elevation, and also according to a putative scenario of colonization of central Alpine silicious stone run vegetation by
specific Oreina speciosissima lineages (high forbs representing the original habitat for most Oreina species). Main host plant species of Oreina
speciosissima in each of the four associations are as follows: Petasites albus in Petasition officinalis, Adenostyles alliariae in Adenostylion, Doronicum
grandiflorum in Petasition paradoxi, and Doronicum clusii in Androsacion alpinae.
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and 16S, P value = 1.00; COII and 16S, P value = 1.00).
The resulting dataset was investigated using maximum
parsimony (hereafter MP) and Bayesian phylogenetic
inference methods [44]. Both approaches produced
highly congruent topologies with the same major nodes.
The MP topology with Bremer supports [45] and corre-
sponding Bayesian posterior probabilities from the Baye-
sian analysis (hereafter bpp) are shown in Figure 2. The
ingroup is well supported with a Bremer support of 42
and a bpp of 1.00. The ingroup splits into two groups, a
well-supported clade (Bremer support = 10 and bpp =

1.00) containing all individuals from the GRA popula-
tion and a polytomy (Bremer support = 5 and bpp =
1.00) containing all other individuals. Apart from a
clade containing all individuals of GSB and one with
two individuals from CDM and one from TSC, there is
no resolution within the polytomy. Sample NUF_3 failed
to amplify and is therefore not shown in Figure 2. Only
samples that rendered both satisfactory DNA sequences
and AFLP fingerprints were used for phylogenetic
analysis.

AFLP
The AFLP analysis produced a total of 530 bands (171,
166 and 173 for EcoRI-ACA/MseI-AGC, EcoRI-ACA/
MseI-ACG and EcoRI-ACA/MseI-AAC, respectively)
with an average of 254 bands per individual and an
average reproducibility rate of 96.1%. Among 510 vari-
able characters, 458 were potentially parsimony informa-
tive. Just as the mtDNA data, the AFLP dataset was
investigated using MP and Bayesian phylogenetic infer-
ence methods. Again, both approaches were highly con-
gruent as the MP and Bayesian trees shared the same
major nodes. Consequently, only the Bayesian phylogeny
(including the bpp and Bremer supports) is displayed in
Figure 3. Due to the lack of an outgroup, we present an
unrooted topology (with supports extracted from the
corresponding midpoint-rooted topology), which led to
a separation of specimens into two well supported clans
sensu Wilkinson et al. [46] (clan I and clan II), each
with a bpp of 0.94 (Figure 3). Clan I includes three sub-
clans supported with bpp values of 1.00 (Ia), 0.79 (Ib)
and 0.98 (Ic) respectively. Clan I contains nine speci-
mens with a strict Oreina speciosissima sensu stricto
morphology (sub-clan Ic) and six specimens with an
intermediate morphology (sub-clans Ia and Ib). Within
clan II, two sub-clans were well supported with a bpp of
0.96 (IIa) and 0.91 (IIb) respectively. Clan II contains
eight individuals with strict Oreina speciosissima troglo-
dytes morphology (all of sub-clan IIb, except UMB spe-
cimens) and five individuals with an intermediate
morphology (all of sub-clan IIa and UMB specimens
from sub-clan IIb). Notably, specimens with intermedi-
ate morphologies were sorted close to the midpoint root
of the tree topology. The AFLP dataset was further
investigated using a Bayesian (i.e. STRUCTURE see
[47,48]) and a distance-based (i.e. K-means; see [49,50])
clustering algorithm. The approaches produced fully
congruent relationships and only results of the former
are provided here. The STRUCTURE analysis showed
highly likely clusters when considering K values ranging
between two and five (see box Figure 3). The obtained
results were largely congruent across K values (Figure 3)
and highly compatible with the phylogenetic relation-
ships. The only incongruence that could be observed

Figure 2 Strict consensus tree of Oreina speciosissima, as
revealed by mtDNA regions 16S, COI and COII (maximum
parsimony tree). Node supports are given by Bremer supports
(decay index) ≥ 1 and Bayesian posterior probabilities (italic).
Specimens are labeled according to morphotypes (i.e. square
-Oreina speciosissima sensu stricto, circle - Oreina speciosissima
troglodytes and polygon - intermediate forms).
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Figure 3 Half-compat consensus tree and clustering of Oreina speciosissima, as revealed by AFLP data (Bayesian tree and STRUCTURE
clustering). a) Specimens are labeled according to morphotypes (i.e. square - Oreina speciosissima sensu stricto, circle - Oreina speciosissima
troglodytes and polygon -intermediate forms) and clusters defined using the Bayesian model-based STRUCTURE algorithm applied to AFLP data
(i.e. colors of tips according to K = 5 groups; legend center panel - log-likelihood values of the best STRUCTURE runs for K1 to K7 groups, see
text for further details). In addition, the corresponding habitat types (translated into plant associations) are displayed as color coded
backgrounds. The names of clans (Ia,b,c and IIa,b, based on the Bayesian AFLP tree topology) and the node supports (i.e. above - Bayesian
posterior probabilities and below - Bremer supports ≥ 1) are provided. b) Insights from alternative STRUCTURE results (i.e. K2 to K4). The tree and
morphotype symbols are as in a).
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when considering all K values, or when comparing
STRUCTURE results with the tree topology, involved
specimens with an intermediate morphology. Hereafter,
we will consider and discuss results based on K = 5,
given that they are the most informative. When viewed
from a host plant perspective it becomes apparent that
all leaf beetle specimens in clan II occur in the same
stone run habitat with individuals from sub-clans IIa
and IIb developing respectively in alkaline Petasition
paradoxi and in acidic Androsacion alpinae habitats
(Figures 1 and 3). In contrast all individuals from clan I
occurred in high forbs, in Adenostylion or Petasites offi-
cinalis habitat, either on alkaline, neutral or slightly
acidic soils [33] (see Figures 1 and 3).

Discussion
Are ecotypes monophyletic?
The phylogenetic tree based on mtDNA markers provides
high support for the monophyly of Oreina speciosissima
sensu lato (Figure 2). However, very little polymorphism
and genetic structure are revealed within the ingroup,
although the mtDNA markers proved variable enough to
reconstruct intra-specific phylogenetic relationships in
other arthropod systems (e.g [51-53]). Indeed, the resulting
topology supports neither geographical nor ecotypic group-
ing of the beetles, possibly suggesting a recent divergence
of Oreina speciosissima lineages, with the exception of spe-
cimens from the GRA population, which cluster as the sis-
ter lineage to all other specimens. Beetles from this latter
population thus form an orphan clade [54], which may cor-
respond to an isolated refugial lineage. AFLP data on the
other hand shows a clear-cut differentiation of specimens
(Figure 3). However, this pattern does not appear to have a
geographical basis (Figure 4) and instead correlates with
the beetle ecotypic definition, or in other words, to the
plant habitat (Figure 1). In contrast, AFLP genetic structur-
ing only partly correlates with morphotypes (sub-clans Ic
and the larger part of IIb, see Figure 3). Ecotypes per se are
thus not monophyletic, although there is a strong tendency
for specimens and populations to cluster within the bound-
aries set by plant associations and their intrinsic ecologies.

Is adaptation to different habitats and host plants
associated with genetic divergence?
Our results showed that genetic differentiation among
Oreina speciosissima lineages was clearly associated with
plant communities (Figure 3). Accordingly, clustering in
Oreina speciosissima is well explained by differences in
bedrock type and host plants (translated here into differ-
ent plant associations) (Figures 1 and 3). While speci-
mens feeding in the Petasition paradoxi association (in
which the calcicolous Doronicum grandiflorum is the
main host plant for Oreina speciosissima [unpublished
observations MB, TVN]) cluster in sub-clan IIa,

specimens developing in the Androsacion alpinae asso-
ciation (in which the silicicolous Doronicum clusii is lar-
gely dominant as a host plant for Oreina speciosissima
[unpublished observations MB, TVN]) are restricted to
sub-clan IIb. The effect of soil acidity is less striking in
clan I, probably because the Adenostylion and Petasition
officinalis associations, which are characteristic of all
specimens within this clan, are defined by intermediate
soil pHs. These two plant communities include species
showing an intermediate tolerance to acidic-alkaline var-
iation, such as Achillea macrophylla, Adenostyles
alliarae and Petasites albus [55]. Whereas the latter two
represent the main host plant species of Oreina specio-
sissima in high forbs habitat [unpublished observations
MB, TVN], other species (particularly in the Petasition
paradoxi association) could play or have been playing
the role of subalpine bridge species between the mon-
tane high forbs and alpine stone runs (see below). We
are confident that these results are robust to potential
shortcomings inherent to our limited sampling size (see
[56] for a review). First, specimens were collected
throughout the common geographical range of both
ecotypes, a strategy that maximized both the phylogeo-
graphic and ecological representativity of our sampling.
Second, robust and consistent results were obtained
using both phylogenetic and clustering algorithms.

Towards a scenario of ecological speciation in Alpine
Oreina speciosissima
Although our data does not allow for divergence time
estimates between Oreina speciosissima ecotypes, it

Figure 4 Geographical distribution of the 13 sampled
populations of Oreina speciosissima and results from AFLP
Bayesian clustering. Populations are labeled according to
morphotype (i.e. square - Oreina speciosissima sensu stricto, circle -
Oreina speciosissima troglodytes and polygon - intermediate forms)
and clusters defined using the Bayesian model-based STRUCTURE
algorithm (i.e. colors of tips according to K = 5 groups). Grey
shaded areas represent elevated regions with altitudes above 1000
m. For full names of the populations see Table 1.
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seems likely that they diverged relatively recently.
Indeed, the current distribution of Oreina populations
suggest that the ecotype divergence might have arisen
after one of the last glacial maxima, given that popula-
tions were probably not able to survive cold periods at
high altitudes due to the presence of ice caps (with the
possible exception of the GRA population; see above).
This hypothesis is consistent with the low level of
genetic variation observed in nuclear sequences and the
low resolution in the mtDNA topology, as well as with a
preliminary dating of the Oreina genus, in which the
origin of Oreina speciosissima is estimated at circa 0.4
million years ago [36].
Our results suggest that from an ancestral niche asso-

ciated with high forbs (see above) beetle populations
were able to colonize new habitats along an altitudinal
gradient (Figure 1) and invaded the acidic siliceous
stone run habitat (corresponding to the Androsacion
alpinae association), which is typical for Alpine regions
in Central Europe. We propose that this habitat change
could have been associated with host shifting events.
Accordingly, the plant communities on which Oreina
ecotypes feed appear to be connected by phylogeneti-
cally related host species. In a framework of plant-insect
coevolution [57,58], adaptation to a given plant species
might allow beetles to spread to other similarly-
defended congeneric species [59,60]. Accordingly, Doro-
nicum species occur in the Petasition paradoxi and the
Androsacion alpinae, Petasites species link the Petasition
officinalis to the Petasition paradoxi and finally, Adenos-
tyles species are shared among the Adenostylion, the
Petasition paradoxi and the Androsacion alpinae.
Assuming host-plant conservatism, the connections
described above might represent “shifting” routes that
could explain how Oreina speciosissima lineages trans-
ited among habitats via host switching. Furthermore,
these connections could account for the presence of
putatively admixed specimens showing intermediate
morphologies (e.g. UMB), thereby outlining a possible
ongoing migration of beetles from one habitat to the
other.

Conclusions
Our study reveals a genetic structure in Oreina specio-
sissima as a function of the plant community in which
beetles develop. We discussed several possible ecological
features that could cause the divergence between eco-
types, among which the habitat and host-plant switches
seem key factors. These results could be consistent with
an ecological speciation scenario. Still, non-adaptive pro-
cesses such as genetic drift, founder events and popula-
tion bottlenecks might also have produced the observed
pattern. Hence, further investigation is needed, for
instance, fine scale studies relying on genomic

approaches and targeting populations from a patchy dis-
tribution of the two ecotypes following an approach
such as described by [61] could provide a powerful fra-
mework for detecting adaptive signatures associated to
ecological speciation. Additionally reciprocal transplan-
tation experiments in concert with crossings using local
and non-local beetles could possibly reveal performance
differences between locally adapted and non-adapted
beetles and strengthen our argument for the existence
of host races and ongoing or incomplete speciation (cf.
[62,63]).

Methods
Sampling
During the summers of 2004, 2005 and 2008, specimens
of Oreina speciosissima sensu stricto and Oreina specio-
sissima troglodytes were collected from 13 populations
(Table 1) and stored in pure ethanol at -20°C. All
sampled beetles were found on four distinct plant asso-
ciations, namely Petasition officinalis, Adenostylion,
Petasition paradoxi and Androsacion alpinae. The Peta-
sition officinalis (populations CDM, KAN, TAN and
TSC) and the Adenostylion (populations GSB and NUF)
occurred on neutral to slightly calcareous bedrocks, at
low and medium altitudes, respectively. The Petasition
paradoxi (population GRA) and the Androsacion alpinae
(populations ALB, BER, BET, JUL, UMB and MUM)
grew on medium-high altitude calcareous and siliceous
bedrocks, respectively (see Figure 1). Three individuals
from each population were selected for genetic analysis,
using only males to ensure accurate identifications
based on genitalia. Following the reasoning of Nosil et
al. 2002, 2003 [64,65] a ‘population’ is defined as all of
the insects collected within a homogenous patch of
plants belonging to one of the four abovementioned
plant communities. ‘Parapatric’ populations are those in
contact with a second population using host plants of a
different plant community. If we take the maximum
migration distance of Oreina cacaliae as reported in
[40] as a proxy for migration ability of Oreina speciosis-
sima, and thus the possibility for gene flow, this study
incorporates only one true parapatric pair (TAN -
GRA). As a result of this our study is not suitable to
test the influence of geographical distance with regard
to genetic distance between beetles that use different
plant communities as host plants. The dataset was com-
pleted with two individuals of Oreina virgulata (i.e. a
closely related species) that were used as the outgroup
[34].

DNA sequence data and phylogenetic analyses
The DNA extraction, amplification and sequencing pro-
tocols as well as primers for the nuclear (ITS2) region
and the three mtDNA markers (16S, COI, COII) are

Borer et al. BMC Evolutionary Biology 2011, 11:310
http://www.biomedcentral.com/1471-2148/11/310

Page 7 of 11



provided in [36]. The alignments of mtDNA markers
(using the Clustal-Wallis algorithm [66]) were combined
in a total evidence approach [67] after having performed
pairwise incongruence length difference ILD tests [43].
We followed the snowball procedure as implemented in
the program mILD[68].
Phylogenetic analyses were performed using the maxi-

mum parsimony (MP) and Bayesian Markov chain
Monte Carlo (MCMC) criteria. Each partition and the
combined data set were analyzed using parsimony
ratchet [44] as implemented in PAUPrat[69] and further
run in PAUP* 4b10 [70]. Ten independent searches
were performed with 200 iterations and 15% of the par-
simony informative characters perturbed [44]. The
shortest most parsimonious trees were combined to pro-
duce a strict consensus tree. Branch supports were cal-
culated using the Bremer support (also known as ‘decay
index’) [45] as implemented in TreeRot[71] and further
run in PAUP* 4b10 [70]. The Bremer support measures
the number of extra steps in tree length required before
a node collapses [45,72]. Model selection for the
mtDNA data partitions in the MCMC was carried out
with MrModeltest2 v.2.3 [73] based on the ‘Akaike
information criterion’ [74]. Two Metropolis-coupled
Markov chains with incremental heating temperature of
0.1 were run in MrBayes 3.1.2 [75] for 30 million gen-
erations and sampled every 1000th generation. The
simulation was repeated six times, starting from random
trees. Convergence of the MCMC was checked using
the Potential Scale Reduction Factor (PSRF) [76] imple-
mented in MrBayes 3.1.2 [75] and the effective sample
size (ESS) criterion for each parameter as implemented
in Tracer 1.4 [77]. To yield a single hypothesis of the
phylogeny, the posterior distribution was summarized in
a 50% majority rule consensus tree (the “halfcompat

consensus tree” from MrBayes) after burn-in (for each
analysis 10000 trees were discarded). The combined
dataset was analysed using partition specific model para-
meters [73].

AFLP
Genome fingerprinting was performed using the AFLP
protocol described in [78]. The selective amplifications
were performed using 5-FAM fluorescently labelled
EcoRI primer (i.e. EcoRI + ACA) with one of the follow-
ing: MseI primer + AXX (AGC, ACG and AAC). All
amplifications were run in a Biometra TGradient ther-
mocycler (Biometra, Göttingen, Germany). Samples
were randomly displayed on a 96-well PCR plate, with
ten individuals being replicated to assess the overall
reproducibility of reactions. PCR products were analysed
using the GeneScan technology with a capillary sequen-
cer (ABI 3730XL, Applied Biosystems, Foster City, CA;
the service was provided by Macrogen Inc. Seoul, South
Korea).
Resulting electropherograms were analysed with

PeakScanner (ABI, peak detection parameters: default
parameters with the addition of a light peak smoothing)
in order to detect and calculate the size of AFLP bands.
The scoring was performed using an automated scoring
R CRAN package, RawGeno 2.0 [79,80]. The library was
settled as follows: scoring range = 100 - 250 bp for
EcoRI-ACA/MseI-AGC, EcoRI- ACA/MseI-ACG and
100-280 for EcoRI-ACA/MseI-AAC, minimum intensity
= 50 rfu, minimum bin width = 0, maximum bin width
= 1 bp and closely sized bins (5%) were removed.
Finally, the matrices of the three scored primer pairs
were concatenated into a single binary matrix where
individuals and bands were stored as lines and columns,
respectively.

Table 1 Sampled populations of Oreina speciosissima

Code Population Altitude Coordinates Morphotype Habitat Year

KAN Kandersteg 1314 m 46°28’21"N, 07°39’23"E speciosissima hf 2004

TSC Tschiertschen 1325 m 46°48’55"N, 09°36’31"E speciosissima hf 2004

CDM Col des Mosses 1716 m 46°23’26"N, 07°07’30"E speciosissima hf 2005

TAN Lac Taney 1389 m 46°20’38"N, 06°50’01"E speciosissima hf 2008

GRA Le Grammont 1974 m 46°21’15"N, 06°49’04"E intermediate sr 2008

NUF Nufenenpass 2172 m 46°28’41"N, 08°22’36"E intermediate hf 2008

GSB Grand St. Bernard 2410 m 45°52’04"N, 07°10’27"E intermediate hf 2008

BET Bettmerhorn 2628 m 46°24’44"N, 08°04’33"E troglodytes sr 2008

UMB Umbrailpass 2647 m 46°32’53"N, 10°25’43"E intermediate sr 2008

BER Berninapass 2315 m 46°24’37"N, 10°01’36"E troglodytes sr 2008

ALB Albulapass 2324 m 46°34’46"N, 09°50’15"E troglodytes sr 2008

MUM Muottas Muragl 2735 m 46°30’27"N, 09°56’29"E troglodytes sr 2008

JUL Julierpass 2373 m 46°28’02"N, 09°43’35"E troglodytes sr 2008

Sample locations with altitude (meters above sea level), coordinates (WGS 84) and year of collection with their codes, morphotype and habitat (hf: high forbs; sr:
stone run).
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Phylogenetic and clustering analyses of the AFLP data set
Phylogenetic analyses of the AFLP data were performed
using the MP and Bayesian MCMC criteria. The MP
analysis (including Bremer support analysis) was per-
formed as described above. Parameters for the Bayesian
MCMC analysis performed in MrBayes 3.1.2 were set as
follows: “datatype = restriction” and “coding = noabsen-
cesites”. Four metropolis-coupled Markov chains with
incremental heating temperature of 0.1 were run for 5
million generations and sampled every 1000th genera-
tion. The simulation was repeated six times, starting
from random trees. Convergence of the analysis was
checked using the PSRF and ESS criteria (see above for
more details). The posterior distribution was summar-
ized in a halfcompat consensus tree (see above) after
burn-in (for each analysis 1500 trees were discarded).
Two independent clustering algorithms were used to

assign Oreina speciosissima specimens into a user-
defined number of groups (hereafter K). First, we used
non-hierarchical K-means clustering [81], a distance-
based algorithm that proves reliable in an AFLP frame-
work [49,50,82]. A total of 100 000 independent runs
was carried out for each value of K clusters assumed (i.
e. ranging from two to seven) and only runs yielding the
highest inter-cluster variance were considered for
further analysis. The optimal K value was determined
based on the second derivative of the intercluster inertia,
as in [50]. Computations were performed using R CRAN
[83] (script available upon request to NAR). Second, we
performed a model-based Bayesian inference clustering
as implemented in STRUCTURE 2.2 [47,48]. The analy-
sis assumed an admixture model and independent allele
frequencies between clusters. Five independent runs
were carried out for each value of K (i.e. ranging from
one to seven), with parameters and model likelihood
estimated over 1 000 000 MCMC generations (following
a burn-in period of 200 000 generations). For each K
value, only runs that obtained the highest likelihood
value were taken into account for further analyses. The
majority-rule criterion (>0.5 in the assignment probabil-
ity) was applied to assign samples to a given cluster as
in [50]. Both clustering approaches provided fully con-
gruent insights and therefore only results from STRUC-
TURE are displayed here.
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