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Abstract

Background: At a time when genomes are being sequenced by the hundreds, much attention has shifted from
identifying genes and phenotypes to understanding the networks of interactions among genes. We developed a
gene network developmental model expanding on previous models of transcription regulatory networks. In our
model, each network is described by a matrix representing the interactions between transcription factors, and a
vector of continuous values representing the transcription factor expression in an individual.

Results: In this work we used the gene network model to look at the impact of mating as well as insertions and
deletions of genes in the evolution of complexity of these networks. We found that the natural process of diploid
mating increases the likelihood of maintaining complexity, especially in higher order networks (more than 10
genes). We also show that gene insertion is a very efficient way to add more genes to a network as it provides a
much higher chance of developmental stability.

Conclusions: The continuous model affords a more complete view of the evolution of interacting genes. The
notion of a continuous output vector also incorporates the reality of gene networks and graded concentrations of
gene products.

Background
In the approximately ten years since the completion of
the draft sequence of the human genome, researchers
have become increasingly attuned to the many layers of
complexity that underlie the mechanisms of life [1].
Many new genes have been identified for transcription
factors whose role is to activate or inhibit the produc-
tion of other genes. The interplay between mutually
interacting transcription factors defines a regulatory net-
work that dictates the levels of RNA transcripts, signal-
ing proteins, enzymes and other gene products. Such
networks have emergent properties that are essential in
every living system[2].
Understanding the organization and evolution of these

networks has been a challenge because of their com-
plexity. Experimental studies have been able to identify
important roles of interacting regulatory networks, such
as the ability of yeast to respond to environmental

changes[3], the specification of the endomesoderm in
sea urchin embryos[4], and dorsal-ventral patterning in
the Drosophila embryo[5]. Although early studies of
quantitative traits also revealed clues about such net-
works[6], it has not been generally feasible to address
the more general questions how they originate and
evolve.
A mathematical model of mutually interacting tran-

scription factors was first developed by Wagner[7]. In
this model, the level of expression of n transcription fac-
tors in an individual at time t is given by the values of
the elements in a vector S with n entries. The mutual
interactions between transcription factors are repre-
sented as an n × n matrix W whose elements wij are
real numbers. W defines the gene network, and the dis-
tribution of the non-zero entries of W specifies how
connected the network is. Each row in W corresponds
to a single transcription factor, and Wij represents the
effect of transcription factor j on the production of tran-
scription factor i. The vector St of expression levels in
an individual changes in ontology according to a charac-
teristic time constant τ according to St+τ = f(W × St),
where f is a realvalued function applied element by
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element to the entries of W × St. In Wagner’s model[8],
f (si) = -1, 0, or +1 according to whether the i-th ele-
ment si of W × St is < 0, = 0 or > 0. The model there-
fore allows gene expression to be either completely
repressed (-1), expressed at a basal level (0), or comple-
tely derepressed (+1). An individual is characterized by
the final contents of its gene expression vector S. An
individual is considered viable if, and only if, the final
gene expression level vector converges to a stable state,
meaning, even if the developmental process were con-
tinued [St+τ

= f(W × St)] S would remain unchanged.
Occasionally we use the term viable network, by which
we mean a W matrix capable of yielding viable indivi-
duals from a subset of initial state vectors.
The gene expression patterns generated by this model

were able to mimic certain aspects of Drosophila gene
expression data [8] However, the Wagner model does
not allow for differing concentrations of the transcrip-
tion factors. Further studies [9]were stimulated by the
potential of Wagner’s original model. Siegal and Berg-
man[9] adapted the model to simulate the evolution of
such transcriptional networks, which revealed that stabi-
lizing selection in a population is sufficient to evolve
robustness as predicted by Waddington’s canalization
model of development[10]. In their model, Siegal and
Bergman included parameters to dictate the shape of a
sigmoidal function, which would allow for a continuous
model to be explored, however in all their simulations
the parameters were chosen such that the output vector
would behave exactly like Wagner’s.
This work was followed by additional studies focusing

on such issues as network robustness to mutation[11-14].
Bergman and Siegal [15]showed that knockout mutations
(replacing an entire row and column with zeroes) would
significantly increase the sensitivity to initial conditions,
but later studies showed that the relationship between a
gene’s connectivity and its fitness effect upon knockout
depends on its equilibrium expression level[16]. In all
these studies, the model was used with the limitation of
Wagner’s original -1,0,1 output vector. In the model dis-
cussed in detail below, we propose an alternate definition
of deleterious mutation and analyze its effect on viability
in a continuous output scenario.
Sexual and asexual reproduction as well as the coevo-

lution of reproductive method and genetic architecture
were analyzed by Azevedo et al[17,18]. They showed
that sexual reproduction evolves greater robustness than
asexual reproduction, using the same canalization[10]
framework as Siegal and Bergman[9]. But both studies
rely on a version of the model in which transcription
factors are either on or off and all mating is treated as
haploid. In this study we show that, under the continu-
ous model, the effects of mating in haploid and diploid
populations are quite different.

The network structure of the Wagner model has been
studied in many ways[7,8,13,19-22], and the results sug-
gest that large networks evolve to be sparse[16,20,23,24]
and modular[2,21,25,26], The general argument holds
that the cost of maintaining unnecessarily complex
interactions is too large to be maintained[20], and once
modules of interactions (i.e. smaller networks that
achieve a viable final state) are formed, it is easier to
combine them together than to evolve the same
mechanisms de novo in new networks [21].
Other types of network models have also been devel-

oped. A system of coupled ordinary differential equa-
tions derived from the principle of chemical kinetics
was used to describe genes and the concentration of
their products[27]. Boolean networks were also used to
illustrate how gene interaction networks could be mod-
eled together with their products assuming just two
states, on or off[24,28,29]. Stochastic models[30] based
on the Gillespie algorithm[31,32,31]were motivated by
recent experimental results that have demonstrated that
gene expression can have a component affected by sto-
chastic noise[33-35]. These models are limited to very
small networks due to the inherent complexity of the
algorithm[36,37].
A continuous network model (that is, one in which

the elements wij in W and sj in the vector S are continu-
ous real variables) might be capable of describing prop-
erties of the regulatory networks not present in the
discrete model. One approach to a model of a regulatory
network with continuous output was based on using
artificial neural networks[38] to describe cellular differ-
entiation and morphogenesis[39].
The discrete version of the Siegal and Bergman[9]

model is limited by the concept of viability. Because of
the bounding of the gene expression levels to discrete
values (-1, 1), the development process St+1 = f(W × St)
will discard every network in which the matrix W does
not have an eigenvector pointing towards one of the
vertices of the hypercube centered at the origin. In this
sense most viable individuals in a population created
using the discrete model will be essentially similar. In a
continuous model, networks that have eigenvectors of
the matrix W pointing to an edge or face of the hyper-
cube can also yield viable networks. This is due to the
broader range of acceptable values of the output vector.
As a consequence, the continuous model should yield a
more diverse population of developmentally stable
matrices (a formal analysis of this point is presented in
the additional file 1).
In this work, we describe another approach to a net-

work model with continuous output generalizing that in
Wagner (1996). The continuous variation in the abun-
dance of the gene products creates additional complex-
ity that allows a more complete description of the
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evolution of these networks. The model is intuitively
appealing because different concentrations of transcrip-
tion factors should affect gene expression quantitatively,
resulting in different levels of activation and repression.
The output vector would therefore be expected to be
composed of elements that are continuous rather than
discrete. We build on Wagner’s model[8] in order to
allow detailed comparison between the continuous and
discrete versions of the model.

Methods
Our model is similar to that of Siegal and Bergman[9] in
positing a gene regulatory network of n genes repre-
sented by the n × n matrix W, where wij measures the
extent to which the abundance of the product of gene j
affects the production of the product of gene i. Given a
vector S0 of initial expression levels in an individual for
each of the n genes, the individual is tested for “viabi-
lity” in a stepwise process of “development” [St+1 = f(W
× St)] that tracks the amounts of the transcription fac-
tors in the individual over time. A viable individual is an
individual that develops a stable output vector S.
The concept of stability is based on the development

of the individual represented at time t by the vector St.
Each developmental step is modeled as the result of
multiplication between the matrix W and the vector St,
yielding a new vector St+1, which is multiplied again by
the same matrix W until the variation in St+1 is less
than some sensitivity constant s when compared to pre-
vious values.
The multiplication of each row i of the matrix W by

the vector S represents the interaction between every
gene in the network. Each value in the matrix describes
the type and strength of the interaction. Positive values
mean activation or enhancement of production, whereas
negative values mean repression or inhibition. Because
the values in the matrix are continuous in the interval
[-1, 1], the absolute value describes the strength of the
interaction, be it positive or negative.
By multiplying W with the vector of gene products, we

scale the effects of the direct and indirect interactions,
adding together the weighted effect of every interaction
between each gene and every other gene in the network.
The result is an updated vector calculated as:

St+1 = f

⎛
⎝ N∑

j=1

wijsj(t)

⎞
⎠ (1)

where the function f is as described below. Each new
St+1 is evaluated by a measure analogous to the variance
(D) against the mean of the last τ (in this work τ = 10
for all simulations) state vectors obtained in previous
iterations. If � (defined below) is less than a sensitivity

margin s, then the vector St is considered stable and its
final state designated S,

ϕ(St) =
1
τ

t∑
i=t−τ

D(Si, S̄t) (2)

where D (X,Y) =
N∑
i=1

(Xi − Yi)
2/(4N) lies in the interval

[0, 1] and S̄t is the average of the expression levels over
all times from τ- t to t. The number of genes in the net-
work is n, and X and Y are vectors with n elements
each. The number of steps (L) to reach stability is taken
as a measure of path length. Lmax = 100 is the cutoff
value in the number of development steps, after which a
matrix is considered unstable. As a stability criterion we
chose s = 10-4. This model yields viable individuals in
which the levels of the transcription factors are continu-
ous, and is a straightforward extension of Wagner’s
model of transcription regulatory networks[8,14]. Both
models discard networks with imaginary eigenvalues of
the matrix W owing to the cyclic behavior of the output
vector and the lack of convergence to stable value of S.
If one were to define St+1 merely as St+1 = W × St, the

expression levels in St could grow to positive or negative
infinity unless constrained. To constrain these values we
follow Siegal and Bergman[9] in applying a scaling func-
tion (f) that bounds the values of the upper and lower
limits of gene production to 1 and -1. This function
plays the role of confining the expression levels to the
interval [-1, 1] in a potentially continuous fashion. Spe-
cifically,

f (x) =
2

(1 + e−ax)
− 1 (3)

which is a sigmoidal function centered at x = 0. Its
curvature is determined by the constant a. Although the
bounding effect of this function is obvious, the extent to
which it spreads the expression levels is subtler and
depends on the curvature.
We analyzed different values of a, and found that

values greater than 2 result in a very large variance, for-
cing all values of the final state vector close to either -1
or 1, essentially making it a discrete model. Between the
values of 1 and 2, however, we found that the values of
the final state vector would be well distributed along the
-1, 1 interval allowing us to use the model in a continu-
ous fashion without affecting the number of viable net-
works we can yield through our development process.
Hence for all simulations in this work, we used a = 1.5.
This choice of a is virtually identical to the sigmoidal
tanh function used by Kaneko (2011)[40]
The continuous model gives us a more complete view

of the evolution of interacting genes. It allows the
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addition of more genes to the networks and is more effi-
cient in maintaining stability. The notion of a continu-
ous output vector also creates a closer relationship with
the reality of gene networks and gene products, where it
is not sufficient to ascertain merely whether a gene is
on or off. Gene product concentrations play an impor-
tant role in determining the viability of individuals, and
aids in the evolution and maintenance of complexity.
The different mechanisms to generate network com-

plexity tested had a strong impact in the probability of
yielding a viable individual, even in networks with many
genes and especially for diploid mating. By “diploid mat-
ing”, we mean that each element of the matrix W of the
progeny network equals the arithmetic average of the
corresponding elements in the parental matrices. The
probability that a random network of 15 genes yields a
viable individual is far smaller than that obtained by
diploid mating between two viable networks suggests
that sexual reproduction may be a key component in
the evolution of complexity. The phenomena of inser-
tion and deletion probably also play an important role
in the evolution of complexity, given the high probabil-
ity of a viable individual to remain viable after under-
going an insertion or a deletion.
The continuous model also gives insight into the

mechanisms that regulate the evolution of complexity in
a general setting that represents the concentration of
the products of gene networks. The inclusion of gene
product concentration brings the model closer to actual
transcriptional networks, and perhaps gives us a better
idea of the difficulty of obtaining complex networks that
yield viable individuals in the real world.

Results and Discussion
Intraclass Correlation
The final stable output vector describes the gene expres-
sion levels of a viable individual. The distribution of out-
put values on (-1, +1) across individuals was
indistinguishable from a uniform distribution, as might
be expected. We also tested whether the output vectors
were correlated across individuals. To test for correla-
tion, we examined the intra-class correlation coefficient
(ICC) of the elements of n stable output vectors, each
from a distinct viable network with k genes:

ICC =
1

n− 1

[
n
ks2

k∑
i=1

(x̄k−x̄)2 − 1

]
(4)

The ICC tests whether the final output vectors of the
n viable individuals are clustered together in small
regions of the space [-1, 1]. In the equation for ICC, x̄n
is the sample mean of the elements in the n-th indivi-
dual, x̄ is the mean of all output vectors in the popula-
tion, k is the number of genes in the network, and s2 is

the variance of the elements among the n individuals.
The value of ICC can be positive or negative, but a
value close to zero means not correlated, whereas a
value close to 1 or -1 means high intra-class correlation.
From our data for both the discrete and continuous

models, for any number of genes, we found the ICC
value very close to zero. Even with a small number of
genes where there is little room for variation, the ICC
was still extremely low, as shown in Figure 1 for the
continuous model.

Generating Viable Individuals
Individuals were generated at random by drawing net-
works and initial vectors of gene expression levels from
a uniform distribution on [-1, +1]. One possible inter-
pretation of the initial vector is that it is the level of
gene products passed by maternal inheritance to the
zygote, where development of the embryo would begin.
We generated 12 populations of 1000 viable indivi-

duals each (one population for each network from 3-15
genes). Figure 2 shows the likelihood of finding a viable
network at random. It is clear that viable networks with
many genes are unlikely to occur by chance.
The model depends on a set of initial conditions to

start the developmental stage of the simulation using a
randomly generated initial state vector. It is therefore
unclear whether the viability of these individuals is
determined by the choice of the initial output vector or
by the wiring of the gene network.
To test the impact of the choice of an initial output

vector we selected viable individuals and replaced their
networks with randomly generated ones, however
retaining the original initial state vector. We repeated
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Figure 1 The intraclass correlation coefficient (ICC) indicates
how closely gene products levels are clustered in viable
individuals. An ICC of 0 means uncorrelated.
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this process 1000 times for each individual, generating a
different network each time, while tallying the number
of random W matrices that supported development into
a viable individual. Analogously, we performed a similar
test by keeping the network while randomly changing
the initial state vector instead. These tests enabled an
analysis of the relation between stability due to the
input vector and stability due to the network.
As shown in Figure 3, at most 20% of the vectors

tested for any number of genes in the network were
responsible for stability, yielding numbers very close to
those of viabilities of initial state vectors drawn at ran-
dom; therefore, the initial state vector has little or no
effect on generating viable individuals. The network
itself, however, is highly correlated with viability. In the
discrete output model, viability was determined by the
choice of matrix and averaged about 70% of the 12 mil-
lion tests.

Evolution of Complexity
Given the very low likelihood that a random W matrix
with a high number of genes will be viable (that is, sup-
port development of random vectors to a stable state as

defined by Equation [2]), we tested how easily complex-
ity might evolve from combining ("mating”) viable net-
works and producing a new network that may be
interpreted as the “offspring” of two viable networks.
Mating was performed by defining a population of

1000 viable networks and mating two randomly drawn
networks at a time. The “offspring” network was then
tested for stability by iterating random initial vectors
according to Equation 1. This process was repeated
1000 times to generate 1000 new progeny networks.

Haploid Mating
In the process of “haploid mating”, a given gene is
inherited at random from the network of either parent
with equal probability. Accordingly, in the haploid mat-
ing process, we randomly selected individual rows from
within the paternal or maternal network and copied
them to create an offspring network. This process passes
on parental genes without modification from one gen-
eration to the next. Repeating the selection process for
each row yields a new offspring network with a random
set of both parents’ genes.
The initial state vector of the new offspring is chosen

at random to equal a stable state of one of the parents.
This procedure reflects the assumption that one of the
parents would be passing on the general stable gene-
product concentrations to its offspring, analogous to the
interaction between an oocyte and its mother during the
earliest stages of development.
When applied to a population of 1000 viable networks

(see Figure 4), haploid mating maintained a stability rate
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Figure 2 Likelihood of finding a viable individual with a
random input vector in the discrete and continuous models.
The Discrete Output Vector model (DOV) is an adaptation of
Wagner’s original model with continuous values in the network and
discrete values in the output vector, resulting from a choice of a =
100 in Equation 3. The additional requirements for stability still hold
(minimum population variance of 0.1). The continuous output
vector model (COV) rarely yields viable individuals in networks with
a small number of genes, but quickly matches and exceeds the
likelihood of the DOV in networks with 6 genes. With more than 7
genes, the COV is actually more efficient at yielding viable
individuals than the DOV, while maintaining a higher population
variance (not shown).
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higher than 40% for progeny networks with up to 6
genes. The stability rate drops, however, to 30-40% in
networks with 7 to 10 genes, and drops further to
between 20-30% for networks with more than 10 genes.
This result suggests that it is possible to generate com-
plex networks with haploid mating with a much higher
likelihood than generating them at random. Haploid
mating is especially efficient at maintaining network sta-
bility for lower complexity networks.
It is interesting to draw a parallel between haploid mating

in the discrete model and the continuous one. Haploid mat-
ing displays the same behavior in both models, with high
efficiency in generating viable networks with a small num-
ber of interacting genes, but then efficiency falls off sharply
as the number of genes increase. In the case of the discrete
model, the efficiency drops to almost zero with 8 or more
genes. In contrast, the continuous model maintains a more
consistently slower drop with increasing number of genes,
without ever reaching 0 even for networks of size 15.

Diploid Mating
Diploid individuals benefit from heterozygosity to mod-
ulate the effects of damage or deleterious mutations as

well as from increasing diversity through the recombina-
tion events between the parental chromosomes. In the
process of “diploid mating,” each row in the W matrix
of the progeny is calculated as the arithmetic mean of
the corresponding rows in the W matrices of the par-
ents. Biologically, this means that the effects on gene
expression are additive, and effects due to dominance,
overdominance, underdominance, epigenetics, parent of
origin, and so forth are ignored. Taking the impact of
each gene as the average of the impacts of this same
gene in each parent tends to mitigate large negative or
positive effects of the parental genes.
When applied to a set of 1000 viable networks, the

diploid mating model generated viable progeny networks
of up to 10 interacting genes in 19-32% of the iterations
(Figure 4). This percentage is not as high as that in the
haploid model, but diploid mating performs better as
the number of genes increases. For networks with more
than 10 genes, the number of viable offspring networks
lies between 43-48%. The positive slope of the curve
shows that the diploid mechanism with additive gene
effects is very efficient in maintaining stability in com-
plex networks.
A randomly generated network with 15 interacting

genes has an 8.9% chance of being viable. When two
viable individuals mate following the haploid-mating
model, the likelihood of generating a viable network
jumps to 22%, however diploid mating increases the
likelihood to 47%. This increase may be due to the fact
that these original two networks were already selected
from a small pool of viable networks with 15 genes, and
diploid mating maintains network stability better than
haploid mating. We conclude that, while for any level of
complexity (number of genes in the network) it is diffi-
cult to generate viable complex individuals at random,
mating is relatively efficient in producing viable net-
works of the same level of complexity as those in the
parents.

Random Insertion
The difficulty in finding a viable network with more
than 10 interacting genes prompted the question of
whether increasing the number of genes of a viable net-
work is more successful than generating a viable net-
work at random. To answer this question we randomly
inserted a gene into a viable network and developed
stable state vectors to test whether stability was retained.
A gene insertion represents the phenomenon of a new

gene being fully incorporated by the genome and inter-
acting with the other genes in the network. In the
inserted gene all interaction values are chosen at ran-
dom from the uniform distribution [-1,1], and all pre-
existing genes receive new randomly generated values
for interaction with the newly inserted gene. The stable
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Figure 4 Haploid and diploid mating stability. When compared
with the DOV model, diploid mating displays a very different
behavior. As with the haploid model, the discrete model excels in
smaller networks, with rates as high as 60%, but falls sharply and
starts oscillating between 10-40% in individuals with more than 10
genes. The continuous model shows the opposite pattern starting
at values between 20-40% for small networks and consistently
increasing as the number of genes grows, achieving values of 43-
47% for the rate of viability with networks greater than 10
interacting genes. This result suggests that diploid mating has a
greater impact on viability in the continuous model.

Carneiro et al. BMC Evolutionary Biology 2011, 11:363
http://www.biomedcentral.com/1471-2148/11/363

Page 6 of 8



vector also receives a new randomly generated value,
representing the initial concentration of the product of
the new gene. The result is a new individual with an
extra transcription factor that may or may not be viable
when developed with the augmented network.
From a population of 1000 viable networks we

selected each in turn and tried 100 different random
insertions and tested for stability. Each insertion adds a
new gene at a random place in the network. The graph
in Figure 5 shows how many of the 1000 networks
yielded at least one viable individual after insertion. The
number of genes shown in Figure 5 is the original num-
ber of genes in the network prior to the insertion. Inser-
tions had a 62.6% success rate generating viable gene
networks of 11 genes derived from 10-gene networks.
The efficiency decreases as the number of genes
increases, but still succeeds in 60.0% of the attempts of
generating a viable network with 16 interacting genes.
Figure 6 shows the result of duplicating an existing

gene at random. In this case the probability of generat-
ing a viable network is about 50% independent of the
number of genes in the network. Gene duplication
therefore affords an efficient mechanism of increasing
the dimensionality of viable gene networks.

Random Deletion
Similarly to the test with random insertions, the likeli-
hood of obtaining a viable network after removing a
gene was tested by deleting one gene at random from a
viable network and developing viable individual state

vectors to asses if it would remain viable. We performed
100 random deletions in each of the 1000 previously
generated viable networks. A gene deletion comprises a
row and column deletion in the network, plus an entry
deletion for the corresponding gene product in the
initial output vector.
For networks with few interacting genes, loss of a gene

is critical, with very few networks remaining viable after
a deletion. This result is compatible with the difficulty
in finding viable networks when there are few interact-
ing genes. With more complex networks the numbers
are still high, for example, 67.9% for networks with ori-
ginally 10 interacting genes, which is significantly
greater than the 14% rate for randomly generated net-
works with 9 interacting genes. Deletion maintains
66.6% of the viable networks with 15 interacting genes.

Conclusion
We presented an alternative model to describe the
development and evolution of gene transcription factors
that allows for a continuous distribution of expression
levels. This version of the model allows the study of
more complex network (both in number of genes and
degree of connectivity) given the additional classes of
networks that yield viable individuals. The continuous
model, however, makes it more difficult to define the
concept of “neighboring networks” but this may be
addressed by defining a threshold below which
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Figure 6 As a special scenario of insertions, gene duplication
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differences between networks define them as neighbors.
Another limitation to our model is computing time, as
the matrix multiplication in development and the tests
for viability are more time consuming than in the dis-
crete model.

Additional material

Additional file 1: Mathematical Background. Formal mathematical
background to the computations that are described in the body of this
article and to compare the discrete model (step function) to the
continuous model (ramp function).
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