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A multi-gene phylogeny of Cephalopoda
supports convergent morphological evolution
in association with multiple habitat shifts
in the marine environment
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Abstract

Background: The marine environment is comprised of numerous divergent organisms living under similar selective
pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic
squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances
leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class
Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages
bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing
hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically
comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type
and morphological characters, which we use to infer ancestral character states and test for correlation between
habitat and morphology.

Results: Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six
morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an
autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic
habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the
first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the
evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively.

Discussion: Our study supports the hypothesis that habitat has influenced convergent evolution in the marine
environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other
benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment
lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive
for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such
convergent characters can increase understanding of the underlying forces driving ecological and evolutionary
transitions in the marine environment.
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Background
Large-scale shifts in habitat during evolution require
populations to respond to new selective pressures, often
resulting in a cascade of novel morphologies. For
example, the initial land invasion by marine tetrapods
required significant changes in physiology, morphology,
and life history, which led to the origin of amniotic eggs,
modified limbs, scales to reduce water loss, and modified
lungs (e.g. [1]). Distantly related lineages that transition
to similar habitats are under the same kinds of selec-
tive pressures, often resulting in convergent structures.
Canonical examples include spines in plants inhabiting
arid environments and flight morphologies in insects,
birds, and bats. Convergence remains largely understud-
ied in many marine invertebrates, where continued habi-
tat shifts and diversification have led to a number of
diverse lineages that possess multiple potentially conver-
gent characters.
Potentially adaptive morphological features shared

between distantly related organisms inhabiting similar
environments provide an opportunity to test for correl-
ation between morphology and habitat to provide new
hypotheses about the factors influencing evolution and
diversification. For example, stickleback fish have long
been studied for their numerous instances of convergent
characters such as body shape, pelvis morphology,
skeletal armor, and mating preferences, associated with
transitions from marine to freshwater benthic and lim-
netic habitats (e.g. [2-5]). In sticklebacks, recent work by
Jones et al. [6] identified a core set of genome-wide loci
that are associated with the transition from marine to
freshwater habitats, shedding light on the underlying
genes that are responding to and driving adaptive evolu-
tion. In other marine taxa, numerous cases of conver-
gent evolution have been found, including: very similar
antifreeze glycoproteins that occur in phylogenetically
distinct Arctic and Antarctic fishes [7], the presence of
marine bioluminescence in almost all marine inverte-
brate phyla (e.g. [8-10]), and the thunniform body shape
seen in whales, ichthyosaurs, and several species of large
pelagic fishes [11]. However, in cephalopods, studies that
examine the potential for correlation between habitat
and morphology have been largely limited to physiology.
Childress [12] argued that many of the observed rela-
tionships between metabolism and depth in oceanic
squids were the result of adaptation rather than phylo-
genetic history, because similar metabolic rates consist-
ently coincide with depth, even across distantly related
taxa. Seibel and Carlini [13] tested this hypothesis in a
phylogenetic context using a molecular-based phylogeny,
and found that correlation between changes in metabol-
ism and depth existed in the pelagic squids.
The marine environment can be broadly divided into

two macrohabitats, each promoting a suite of adaptations
in the inhabitants. The largely two-dimensional demersal
habitats include both the benthic and benthopelagic habi-
tat, where organisms live on or just above the bottom,
respectively. Demersal habitats are dominated by animals
with defensive techniques that do not require extended
periods of rapid movement, such as releasing ink and
then jetting away, burrowing in sediment or emitting
toxic substances. Many demersal fishes and cephalopods
commonly utilize cryptic behaviors that involve changing
body coloration, texture, and/or shape to avoid predation
(e.g. [14,15]). In contrast, the three-dimensional pelagic
environment is dominated by animals that are capable of
rapid movement, that often have body plans capable of
responding to stimuli from several directions, and that
use cryptic techniques such as transparency, reflection,
and ventral bioluminescence (e.g. [14,16]) to allow for
improved predation, communication, and predator avoid-
ance. Transitions between demersal and pelagic habitats
during evolution should promote shifts in suites of mor-
phological features, a hypothesis that can be examined
with phylogenetic comparative analyses on lineages living
in both habitats.
Modern cephalopods occupy nearly every habitat of

the marine environment from the rocky intertidal to the
deep sea, making them an excellent group in which to
test for convergent evolution. The two most speciose
lineages, Decapodiformes (pelagic squids, bobtail squids,
and cuttlefishes) and Octopodiformes (octopuses and
Vampyroteuthis infernalis) are each comprised of demer-
sal and pelagic taxa. Although the two cephalopod
lineages are morphologically very distinct, some features
seem to appear consistently in species inhabiting similar
environments. Demersal taxa generally tend to have
a more bulbous body, corneas covering the eye, and
exhibit some of the most advanced crypsis seen in the
marine environment (e.g. [14,17-19]). Pelagic cephalo-
pods often possess photophores for communication
and crypsis, fins to help with propulsion, the ability to
become almost entirely transparent, and a flexible
internal shell for stability. However, there are exceptions
to these trends. For example, the squid family Loligini-
dae, the most common group in the lineage Myopsida
(Decapodiformes) is an important fisheries group that
lives in coastal waters and lays its eggs in the benthic en-
vironment, but feeds in the water column (e.g. [20]).
Loliginids have a streamlined, muscular body morph-
ology and internal shell similar to many pelagic squids,
while bearing corneas reminiscent of benthic squids, bac-
teriogenic photophores (in some species), and accessory
reproductive structures found largely in benthic species.
To study the phylogenetic and environmental forces

driving character evolution requires a well-sampled
phylogeny. In cephalopods, molecular data sets have
provided many new phylogenetic hypotheses, but have
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either had limited taxon sampling (e.g. [13,21]) or recov-
ered limited resolution for some major extant lineages
[22-25]. Here, we assemble previously published data
from up to 10 genes for over 400 cephalopod taxa
(representing 42 of 47 known families) to create the
most comprehensive molecular analysis of cephalopod
phylogeny to date, and subsequently use the phylogeny
to test the hypothesis that habitat shifts drive convergent
evolution in cephalopods. We first use the phylogeny
to reconstruct ancestral character states for several char-
acters whose evolutionary history remain elusive: the
accessory nidamental gland, a specialized structure that
provides antimicrobial protection to eggs laid on the
ocean floor; the branchial canal, a structure often
thought to be a synapomorphy uniting bobtail squids,
cuttlefishes, and loliginids; the cornea, which covers the
eye in many demersal taxa and whose status as a syn-
apomorphy remains unclear; the presence of the right
oviduct, another important potential synapomorphy for
major clades; and photophores, which occur in many
lineages of Cephalopoda (e.g. [22,26,27]). We then are
able to test whether any of these characters are corre-
lated with either demersal or pelagic lifestyles, thus pro-
viding new information regarding convergent evolution
in the marine environment.

Results
Based on extensive new phylogenetic analyses including
most available cephalopod molecular data, we find that
transitions between demersal and pelagic habitats were
common during the evolutionary history of cephalopods.
We report strong evidence for convergent evolution
of multiple phenotypic traits and correlated evolution
between habitat and some of these traits, including
accessory nidamental glands (ANG), bioluminescent
photophores, and corneas. Below, we detail our results
relating to new phylogenetic analyses, convergent trait
evolution, habitat shifts, and correlations between habitat
and morphology. These results are indicative of conver-
gent adaptations to demersal or pelagic marine habitats
in cephalopods.

A well-sampled phylogeny
Our phylogenetic analyses include the highest degree of
taxonomic diversity of any published study on cephalo-
pods to date (42 of 47 coleoid families). This phylogeny
allows explicit testing of hypotheses of convergent adap-
tations of cephalopods to different marine environments.
Results from phylogenetic analysis of the reduced 188-
taxon dataset (Figure 1) confirms monophyly for almost
all major orders and for all families studied except Octo-
podidae, which is a highly morphologically divergent
group with numerous species complexes [28]. The
sepioid orders at the base of the decapodiform clade did
not form a monophyletic group, and the position of Loli-
ginidae was ambiguous. Such ambiguity may be due to
factors such as substitution saturation and/or rate het-
erogeneity: we found saturation in several mitochondrial
genes, more pronounced in decapodiforms than octo-
pods (Additional file 1 Figures S5-S14), which could hin-
der attempts to resolve ancient, rapid radiations [29].
We accounted for this phylogenetic uncertainty in tests
of character evolution by analyzing all hypotheses on
multiple phylogenies estimated from bootstrapped, pseu-
doreplicated data sets. Despite phylogenetic uncertainty,
we uncovered clear signals of convergent and correlated
character evolution.

Multiple transitions between demersal and
pelagic habitats
Our phylogenetic analyses support multiple habitat tran-
sitions during the history of cephalopods, which allows
us to test whether convergent phenotypes are associated
with such shifts. Habitat reconstruction across the 1000
bootstraps of our 188-taxon tree (Figure 2, condensed to
family, see also Additional file 1 Figure S2), indicates
that transitions to the pelagic realm are relatively com-
mon, while reciprocal transitions to demersal habitats
have been rare. The lack of viable outgroup taxa,
coupled with rapid evolution, which erases deep history,
led to ancestral state analyses uninformative about the
habitat state of the ancestor to Cephalopoda. Neverthe-
less, the deep ancestor of octopuses, true squids, loligi-
nids, bobtail squids and cuttlefish (Coleoidea) received
more support for a demersal state, with 19% of boot-
strap trees recovering significantly greater proportional
likelihood at this node. In contrast, we recover a pelagic
existence for the ancestor of the octopuses and Vampyr-
oteuthis (Octopodiformes), with 14% of bootstrapped
topologies yielding significantly higher proportional like-
lihoods for this outcome compared to zero in favor of a
demersal ancestor of Octopodiformes, a finding contra-
dictory to previous hypotheses [30]. Young et al. [30]
proposed that the immediate ancestor of Vampyroteuthis
had an oral orientation that pre-adapted it for settling
on the ocean floor, indicating a benthic ancestor. The
subsequent transition to a demersal lifestyle in the cir-
rate/incirrate ancestor (33% of bootstrapped trees favor-
ing the demersal state compared to zero favoring
a pelagic state) represents the sole case of a pelagic-to-
demersal transition that we recovered. The ancestral
cirrate lineage also underwent a secondary transition to
the pelagos, a scenario consistent with previous hypoth-
eses based on morphology [30]. The ancestral decapodi-
form squid was likely demersal in nature, with recent
transitions to the pelagic realm in some sepiolid lineages
as well as an ancient transition to the pelagic environ-
ment occurring in the ancestor of the pelagic orders
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Hapalochlaena maculosa
Octopus ocellatus    
Amphioctopus aegina
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Bathypolypus arcticus
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Enteroctopus dofleini
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Benthoctopus yaquinae
Benthoctopus eureka
Benthoctopus johnsonianus
Benthoctopus sp JMS 2004
Vitreledonella richardi
Bolitaena pygmaea
Japetella diaphana   
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Velodona togata
Thaumeledone peninsulae
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Metasepia tullbergi
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Euprymna hyllebergi
Euprymna berryi
Euprymna tasmanica
Euprymna scolopes
Sepiola atlantica
Sepiola affinis
Sepiola intermedia
Sepiola robusta
Sepietta neglecta
Rondeletiola minor
Sepietta obscura
Sepiola ligulata
Sepioteuthis australis
Sepioteuthis lessoniana
Loligo forbesii
Loligo vulgaris
Uroteuthis sp JMS 2004
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Ommastrephes bartramii
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Megalocranchia sp 2008
Galiteuthis sp JMS 2004
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Galiteuthis armata
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Brachioteuthis sp 2
Brachioteuthis sp 3
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Pterygioteuthis gemmata
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Watasenia scintillans
Abraliopsis pacificus
Onykia robusta
Kondakovia levimana
“Onkyia” knipovitchi
Onykia carriboea
Ancistroteuthis lichtensteinii
Notonykia africanae
Onychoteuthis banksii
Onychoteuthis sp JMS 2004
Selenoteuthis scintillans
Lycoteuthis lorigera
Neoteuthis thielei
Architeuthis sp ARL 2008
Architeuthis dux
Architeuthis sp JMS 2004
Psychroteuthis glacialis 
Histioteuthis hoylei   
Histioteuthis reversa
Histioteuthis bonellii
Histioteuthis corona
Histioteuthis miranda
Histioteuthis oceanica
Discoteuthis discus
Discoteuthis laciniosa
Lepidoteuthis grimaldii
Octopoteuthis sicula
Octopoteuthis nielseni
Taningia danae
Octopoteuthis megaptera
Pholidoteuthis adami
Joubiniteuthis portieri
Mastigoteuthis agassizii
Mastigoteuthis magna
Mastigoteuthis hjorti
Magnapinna sp 2008
Batoteuthis skolops
Asperoteuthis nesisi
Planctoteuthis levimana
Grimalditeuthis bonplandi
Chiroteuthis mega
Chiroteuthis veranyi 
Chiroteuthis calyx

Cirrata

Incirrata
Incirrata
(Octopodidae)

Incirrata
(Octopodidae)

Incirrata (Vitreledonellidae)
Incirrata (Bolitaenidae)

Sepioidea (Sepiadariidae)

OCTOPODIFORMES
octopuses and vampire squid

DECAPODIFORMES
cuttlefish and squid

Figure 1 Maximum-likelihood topology of the dataset containing taxa represented by more than three loci. Support values of nodes
were generated via 1000 bootstrap replicates and nodes are labeled as follows: black circle (100%), grey circle (90-99%), grey square (80-89%),
white square (70-79%), white triangle (51-69%). Nodes lacking symbols represent bipartitions recovered in less than 50% of the bootstrapped
topologies. The presence of sequence data for a particular locus is indicated by a black square following the terminals.
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Figure 2 Character state analyses on the 188-taxon tree summarized at the family-level. Ancestral states for habitat type and six
morphological traits were reconstructed and tested for correlation on each of 1000 bootstrap replicates of our 188-taxon dataset. Extant
morphological state presence for the six characters examined is shown in tip boxes as follows: accessory nidamental gland (yellow); branchial
canal (pink); corneas (violet); right oviduct (teal); autogenic photophore (green); and bacteriogenic photophore (orange). The taxa found in
pelagic habitats are shaded in grey while demersal taxa are white in the tree at right. More detail on character states and coding can be found
in Additional file 2. Internal branches are shaded with: trait color, when ASR tests significantly favored the presence of the trait; white, when
ASR tests significantly favored an absent state; black, when neither state fit significantly better.
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Oegopsida and Bathyteuthoidea, the latter finding rein-
forced by fossil data [31].

Convergent evolution in Cephalopoda
Ancestral state reconstruction of six morphological char-
acters on the 188-taxon dataset suggests that convergent
evolution is a common phenomenon across cephalo-
pods, as all six morphological characters we examined
showed evidence of convergence (collapsed to family in
Figure 2, see Figure 1 for complete topology). However,
these characters were chosen based on a hypothesis
that habitat has shaped their evolution, and therefore
may not represent overall rates of convergent evolution
in cephalopods.

ANG
An accessory nidamental gland (ANG) is present in
squid families Idiosepiidae, Sepiolidae, Sepiidae, Spiruli-
dae, Loliginidae, and Chtenopterygidae (e.g. [20,32]).
The ANG is present solely in females where it is thought
to provide an additional protective coating of mucous
on eggs. Female nautiloids and octopodiforms lack the
accessory nidamental gland. Several octopods, as well
as some oegopsids, lack a primary nidamental gland
entirely, instead relying on oviducal glands on the ovi-
ducts that aid in egg secretion. Our reconstruction ana-
lysis finds the ancestral female decapodiform squid likely
possessed an ANG (76% of bootstraps yielding signifi-
cantly higher likelihoods for the present state). Although
gain/loss rates for this trait are relatively low (not
shown), losses likely occurred following transitions to
pelagic lifestyles in the squid lineage.

Corneas
Our results are consistent with the hypothesis that the
cornea is convergent between squids and octopods, a
finding also supported by developmental data [33]. The
decapodiform ancestor likely possessed a one-part cor-
nea, which was lost with the transition to a pelagic life-
style. In the octopod lineage, the basal pelagic groups
Vampyroteuthis and Cirrata both lack a cornea. In the
incirrate octopods, two pelagic clades possess reduced
corneas or have lost corneas altogether, while all benthic
octopods possess a fully formed two-part cornea.
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Autogenic and bacteriogenic photophores
Bioluminescent organs, or photophores, have been
acquired numerous times throughout Cephalopoda and
rates of gain and loss suggest a very dynamic history
(Figure 2). Of all characters tested, autogenic photo-
phores are the sole trait for which asymmetrical rates of
gain and loss significantly improve the fit of the charac-
ter model. Photophores appear to be lost at similarly
moderate rates regardless of habitat, but show significant
rates of gain in pelagic lineages, which is echoed by the
structural diversity seen in these organs. Autogenic
organs were likely present in the ancestor of the bathy-
teuthoids and oegopsids. If Spirulidae is sister to Bathy-
teuthoidea +Oegopsida, then autogenic bioluminescence
may be synapomorphic among all three lineages. How-
ever, if Spirulidae is more closely related to sepioids,
then we predict that autogenic photophores evolved sep-
arately in Spirulidae and in Bathyteuthoidea +Oegopsida.
Autogenic bioluminescence in the Octopodiformes likely
originated separately in Vampyroteuthis, the cirrate octo-
pod genus Stauroteuthis, and in both genera (Bolitaena
and Japatella) of the incirrate octopod family Bolitaeni-
dae. While both forms of bioluminescence were included
in subsequent habitat correlation analysis, bacteriogenic
organs are not known from pelagic taxa.
Bacteriogenic photophores are known only from some

demersal species from both sepiolid and loliginid lineages.
Bacteriogenic photophores (those harboring symbiotic
bacteria from the family Vibrionaceae, e.g. [34-36]) occur
in the demersal Loliginidae and Sepiolidae clades and ap-
pear to have evolved separately. Ancestral reconstruction
supports the hypothesis of convergence for this character,
as the MRCA of sepiolids and loliginids is predicted to
have lacked a photophore.
Branchial canal
The branchial canal is present at the base of the gill
lamellae of Vampyroteuthis, the incirrate octopods,
Loliginidae, Bathyteuthoidea, and Oegopsida. Our find-
ings suggest that this character is ancestral in the
Table 1 Results of Pagel’s correlation analysis

Character correlation tested Independent model (LnL)

Habitat x ANG −37.312

Habitat x Cornea −37.497

Habitat x Autogenic-photophore −90.043

Habitat x Bacteriogenic-photophore −51.143

Habitat x Branchial canal −38.952

Habitat x Right oviduct −37.813

Correlations between character transitions were evaluated against 1000 bootstrap M
BayesTraits, all characters were coded as binary (e.g., presence/absence). Median lik
were evaluated by pairwise comparison for each bootstrap tree.
Octopodiformes (lost in the cirrates) and evolved con-
vergently in the decapodiforms.

Right oviduct
Statistical analyses indicate that the right oviduct was
likely present in the octopodiform ancestor and subse-
quently lost in the ancestral cirrate and gained inde-
pendently within the decapodiform lineage. Ancestral
state reconstruction also suggests that the right oviduct
may have evolved convergently in the oegopsids and in
Idiosepiidae, where is it highly reduced [27].

Correlation between phenotypes and marine habitats
Of the six characters we examined, three show correl-
ation with marine habitat, supporting hypotheses that
these characters are adaptive. A demersal lifestyle is cor-
related with the presence of accessory nidamental glands
in females (p = 0.0147) and marginally correlated with
the presence of corneas (p = 0.0747). In addition, we find
a significant correlation between pelagic lifestyle and
autogenic photophore presence (p = 0.0089). In contrast,
branchial canal, right oviduct, and bacteriogenic photo-
phores show no correlation with habitat type (Table 1).

Discussion
Convergence occurs frequently in the marine environ-
ment. In cases where distantly related taxa inhabit
similar, or sympatric habitats, the presence of similar
characteristics may be indicative of adaptation: in the
open ocean, features such as a fusiform (or thunniform)
body and silvering are present in a breadth of organisms
to aid in hunting and predator avoidance (e.g. [16]).
However, in cases where taxa are more closely related,
it can be difficult to distinguish between phylogenetic
and environmental influences. Comparative methods
enable scientists to infer adaptations in the context of
phylogeny, which provides insight into the interplay be-
tween phenotype and environment (e.g. [37-41]) although
some argue that these methods only take into account
current usage and therefore cannot accurately represent
historical processes [42,43]. Martins [39] summarized
Dependent model (LnL) Model LnL difference P(Xdf=4
2 )

−31.123 −6.190 0.0147

−33.551 −4.253 0.0747

−79.445 10.598 0.0003

−47.450 3.693 0.1169

−38.915 −0.075 0.9973

−34.861 −2.952 0.2062

L topologies to correct for phylogenetic bias. To carry out correlations in
elihood scores under each model are shown, although likelihood differences
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the two general approaches that incorporate phylogeny
when attempting to classify characters as adaptations:
reconstructing ancestral character states (e.g. [42,43] and
testing for statistical correlation between habitat and
morphology in a phylogenetic context (e.g. [38]). Both
approaches have pitfalls: a large number of taxa are
required for calculating statistical correlation, and a thor-
ough understanding of single traits is required to
reconstruct their ancestral states. Here, we overcome
both of these challenges with a new, much larger, phylo-
genetic data set and a thorough examination of a small
number of morphological characters, illustrating that
cephalopods are an attractive group for testing hypo-
theses of convergence and adaptation in the marine
environment. Modern cephalopods, not unlike extinct
ammonoids [44] likely have also undergone several major
habitat shifts and presently occupy a plethora of habitats,
ranging from the intertidal, to the open ocean, to the
hydrothermal vents. Transitions to such a diverse array
of niches are echoed in the presence of a myriad of mor-
phological characteristics, many of which appear to be
convergent. Here, we explicitly tested hypotheses of mor-
phological convergence in taxa living in similar marine
environments, which required large-scale reconstruction
of cephalopod phylogeny.

Phylogenetic relationships
Historically, the high rates of evolution evident in cepha-
lopods coupled with their radiation into numerous habi-
tats has confounded our ability to recover consistent
phylogenetic relationships using either morphological
[22,27,45,46] or molecular [22-24,47-53] data. Our ana-
lyses include the most comprehensive taxon sampling to
date and provide a more rigorous assessment of phylo-
genetic relationships. Here, we recover the two major
coleoid lineages with higher support values than in
any previous study: Octopodiformes (all octopuses and
Vampyroteuthis) and Decapodiformes (bobtail squids,
cuttlefishes, pygmy squids, and true squids), as well as
several lower-level relationships, discussed below.
Within Octopodiformes, we recovered monophyly for

the higher-level groups Cirrata (the pelagic, finned octo-
pods) and Incirrata (the benthic and pelagic octopods
that lack fins), the pelagic octopod super-family Argo-
nautoidea, and the pelagic octopod families Vitrellidonel-
lidae and Bolitaenidae. The benthic family Octopodidae,
which contains the majority of octopod species, was ren-
dered non-monophyletic due to the internal placement
of the pelagic vitrelledonellid + bolitaenid clade. The lack
of monophyly for the family Octopodidae is not surpris-
ing. Although some morphological studies have sug-
gested the Octopodidae to be monophyletic (e.g. [46]),
current molecular and combined analyses have demon-
strated that neither the family Octopodidae, nor the
genus Octopus, are monophyletic (e.g. [48,54]), suggest-
ing a very dynamic evolutionary history. Our study finds
support for the division of Octopodidae into several sep-
arate families, although more rigorous morphological
and molecular examination is warranted before taxo-
nomic changes can be made.
Within Decapodiformes, we recovered several import-

ant relationships, such as the monophyly of the pelagic
lineages, Bathyteuthoidea, Oegopsida, Spirulida, and
Myopsida, while the benthic lineages formed several dis-
tinct clades. While support values for the clade contain-
ing Bathyteuthoidea and Oegopsida are higher than in
any previous study, the position of Spirulida (the ram’s
horn squid) and Myopsida has low bootstrap support
(56%). The benthic pygmy squids (Idiosepiidae) was the
sister group to the rest of the Decapodiformes (with low
support), while the benthic bobtail squids (Sepiolidae
and Sepiadariidae) and cuttlefishes (Sepiidae) formed
separate clades. Previous morphological analyses suggest
that the sepioid orders are likely monophyletic (e.g.
[26,27,55,56]), but molecular data has been unable to re-
cover consistent monophyly (e.g. [22-24,47,49,51, 53,57]).
The lack of resolution at the base of the decapodi-
form clade could also be due to the lack of a close living
outgroup. The two coleoid lineages, Octopodiformes
and Decapodiformes, are known to exhibit a substantial
degree of genetic differentiation in their ribosomal
genes [58,59], which likely causes difficulties in rooting
the Decapodiformes clade. The ambiguity in terms of
clade placement among the benthic squids and Myop-
sida is not a new phenomenon. Naef [26] discussed the
difficulties in placing myopsids relative to other squids,
eventually placing loliginids (Myopsida) as the sister
group to the pelagic oegopsids in the order Teuthoidea,
citing characters such as the branchial canal, and gladius
(the modified internal shell) as potential synapomor-
phies. Previous analyses have been ambiguous; some
have placed myopsids near the sepioids (e.g. [22,55])
and others as sister to the oegopsids/bathyteuthoids
[24,25]. It is possible that increased gene or taxon
sampling could remedy the ambiguity over the place-
ment of the loliginids. In particular, the inclusion of a
second myopsid family, Australiteuthidae, which has yet
remained uncollected for molecular data, could provide
additional insight.

Character correlation and habitat
Habitat states were assigned based on the literature
descriptions, which generally reference taxa as occupy-
ing a coastal benthic or an oceanic pelagic habitat (see
the Methods section for details). Using this conservative
binary coding scheme has several benefits. First, since
habitat data are often limited to geographic coordinates
and depth, we are able to confidently assign habitat
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states to more taxa in the dataset than would have
been possible using multi-state habitat categories. For
example, in many cases for nearshore coastal taxa the
substantial data available in terms of their habitat and
depth makes coding discrete states more straightforward
(e.g. [60]). However, other groups were more challenging
to classify, such as some cirrate octopods, which spend
time in both the benthos and pelagos. Here, we con-
dense the wide array of marine habitats into two states:
neritic, bottom dwelling (demersal) and those inhabiting
the water column in the open ocean (pelagic) in order
to classify organisms as conservatively as possible to
generate new hypotheses on character evolution and test
for correlation.
Cephalopods possess numerous features that have

been considered at one time or another to be convergent
such as accessory nidamental glands, branchial canals,
corneas, fins, internal shells, photophores, the ability
to become transparent, egg brooding, and buoyancy.
Several of these characteristics are not presently quanti-
fiable due to a lack of data for living specimens or
material: for example, we know very little about egg
brooding in the true squids, although it has been known
to occur in some pelagic taxa [61]. Transparency is of
great interest to a multitude of researchers (e.g. [62]) but
new insights are hindered by the technical difficulties in
acquiring fresh specimens for most species. The pres-
ence of fins and internal shell morphology are also char-
acters that may also be influenced by habitat, but were
not quantified here, largely due to our inability to iden-
tify putative homologous structures. The fins of the
deep-sea cirrate octopods contain “fin supports” which
are one form of internal shell, while the fins of squids
are muscular and are completely independent of the in-
ternal shell, making it difficult to determine independ-
ence and test for correlation, particularly in octopods.
Furthermore, it has been extremely difficult to divide the
internal shell into distinctive character states as many
different morphologies exist: oegopsid, bathyteuthoid,
and loliginid squid all have an internal shell in the form
of a gladius, but its evolutionary history is unknown.
Cuttlefishes have a cuttlebone, and sepiolids have what
may be a highly reduced gladius in some species, but
again, more work is needed to determine if separate
character states are needed. The internal shell and fins
represent a common problem with linking morpho-
logical and molecular data in cephalopods: one has to
have a reasonable hypothesis of homology a priori. Here,
we chose to focus on six characters whose morphology
could be divided into distinct states with a substantial
degree of confidence based on the authors’ examination
of specimens and the literature. Of the six characters we
examined, three correlate to habitat: accessory nidamen-
tal glands, corneas, and photophores. These characters
are correlated when analyzed under alternate, pseudore-
plicated topologies, indicating the results are robust to
ambiguities in our phylogeny. Each character is dis-
cussed in detail below.

Accessory nidamental glands (ANG)
The importance to an individual’s fitness of protecting
its reproductive investment is evident in the number of
behavioral, chemical, and life history strategies that have
evolved. Common solutions to avoiding predation and
fouling on egg masses laid in benthic habitats include
maternal care (e.g. [63,64]), and chemical defenses (e.g.
[65]). While female incirrate octopods typically guard
and aerate egg masses they have deposited in dens, the
demersal bobtail squids and cuttlefishes typically attach
clutches, or festoons, of 50–400 eggs to a rocky or sandy
substrate and provide no post-spawning care. The
accessory nidamental gland, present in all demersal dec-
apodiform females, secretes an additional layer of mu-
cous on eggs prior to their attachment to the benthic
substrate (e.g. [32,66-68]). The dense and diverse micro-
bial community housed within the accessory nidamental
glands and transmitted to the eggs may contain strains
with antimicrobial properties, thus providing some
degree of protection for vulnerable embryos against foul-
ing organisms or egg predators [69,70]. An ANG is also
present the pelagic families Chtenopterygidae and Spiru-
lidae and although they differ slightly in position when
compared to the more benthic decapodiforms, Nesis
[20] indicated that this structure is likely homologous.
Adult chtenopterygids are meso- to bathypelagic, but it
is unclear whether their eggs are deposited on the sedi-
ment, released into the midwater, or brooded as seen in
some other pelagic squid groups [61]. We find evidence
that the presence of an ANG correlates with a benthic
lifestyle and was present in the ancestral decapodiform
squid. In contrast, female octopods (both benthic and
pelagic) lack a nidamental gland and an ANG, but pro-
vide substantial post-spawning care: females lay single
eggs or strings in a den or shell, and tend to them
constantly by maintaining a fresh, oxygenated, water
supply and staving off predators until shortly before
hatching, at which point the senescent female dies
quickly (e.g. [64]).

Corneas
Our analyses indicate that the cephalopod cornea has
evolved separately in the decapodiform and octopod
lineages: all demersal bobtail squids, cuttlefishes, loligi-
nids, and octopods possess a cornea, with reductions
and/or complete loss occurring in pelagic forms. Young
et al. [30] argued that the cornea was convergent
and likely arose in response to similar selective pres-
sures in the benthos, a finding further supported by
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developmental data [33]. Corneas are thought to serve
several functions, ranging from keeping the eye socket
free of sediment, to providing protection against ultra-
violet light for taxa living in the photic zone (e.g. [71]).
While it is possible that protection from ultraviolet light
may play a minor role in corneal function, many benthic
taxa never occupy the photic zone but still possess a
fully formed cornea, indicating that a primary protective
function is more likely.
Our results indicate that the ancestor of the decapodi-

forms likely lived in the demersal zone and possessed
a cornea, which was lost as species shifted to a pelagic
lifestyle. The association between habitat and corneal
morphology is less clear in the octopod lineage because
members of the pelagic incirrate superfamily Argonau-
toidea possess a cornea. The results of the discrete
analysis suggest the origins of the octopod cornea corres-
pond to the transition to a benthic habitat in the lineage
ancestral to incirrates. The second pelagic octopod clade
contains two families (Bolitaenidae and Vitrellidonelli-
dae) wherein the cornea appears to be reduced or absent,
which further supports the correlation between cornea
and benthic habitat. One issue with evaluating corneal
morphology in this group is that the pelagic octopods
are extremely gelatinous animals, who deteriorate quickly
upon fixation, making it difficult to determine if the cor-
nea is simply reduced or completely absent.

Photophores
Bioluminescent organs throughout animals are extremely
morphologically diverse (for reviews, see [10,36,72]) and
can produce light via various endogenous biochemistries,
so-called ‘autogenic’ organs, or via symbiotic bacteria
harbored within specialized chambers, or ‘bacteriogenic’
organs [73,74]. Similar to other organisms, both forms of
photophores in cephalopods can be morphologically
complex, relying on optical features such as reflectors,
lenses and chromatophore-based light filters [75,76]. We
find that, in general, the ability to bioluminesce autogeni-
cally is highly correlated with pelagic existence in cepha-
lopods (p = 0.0089).
Autogenic organs are found in many pelagic species of

squids, octopods and in Vampyroteuthis (e.g. [36]). From
study of two oegopsid species, the mechanism of light
production appears to involve an intrinsic luciferase
photoprotein reacting with dietary coelenterazine [77-80].
The high variability in expression and morphology of
autogenic photophores across and within families histor-
ically has been interpreted as evidence of separate origins
[81,82]. While experimentally establishing the adaptive
value of these organs remains difficult owing to the chal-
lenges of sampling and maintaining deep-sea organisms,
hypotheses abound. For instance, photophores frequently
are located ventral to the eyes and opaque internal organs
such as the ink sac, or dispersed across the surface of
the skin, presumably serving to counter-illuminate the
shadow cast by organs or body and thus provide a means
of camouflage against deeper-dwelling predators [36,83].
However, photophores also are found along the arms or
encircling the mouth, allowing the animal to escape pre-
dation, attract or startle prey, or communicate with con-
specifics [84-87]. We find that autogenic photophores
were likely present in some form in the ancestor of pela-
gic squid, and have undergone considerable diversifica-
tion in terms of anatomical positioning, morphological
complexity, and emission properties. Bioluminescence in
octopod lineages appears to have evolved independently
in three separate lineages: in Vampyroteuthis, within the
cirrates, and in the incirrate family Bolitaenidae. The
rapid transition rates of this trait suggest that any num-
ber of evolutionary mechanisms could be in play such as:
selection acting either directly or indirectly on photo-
phore expression and/or stochastic processes varying
substantially through time and across lineages. Future
work investigating to what extent cephalopods might rely
on shared molecular mechanisms for bioluminescence
may provide clues as to how such a complex trait could
exhibit rapid rates of gain and loss.

Branchial canal, right oviduct, bacteriogenic photophore
Of the six characters examined, the branchial canal, right
oviduct and bacteriogenic photophores did not correlate
with habitat, although each has evolved multiple times
within cephalopods. A branchial canal is present at the
base of the gill lamellae in both benthic and pelagic
cephalopods (absent from Cirrata) and is used to allow
for passage of seawater into the gills [27]. Traditionally,
the branchial canal was thought to be a synapomorphy
uniting myopsids with the pelagic squids [27], but our
ancestral state reconstructions suggest this state is con-
vergent between Decapodiformes and Octopodiformes
and within Decapodiformes. A right oviduct is present
in both benthic and pelagic taxa, and ancestral state ana-
lysis predicts that this trait may be convergent between
squids and octopods due to a loss early in decapodiform
evolution. Also, if our prediction accurately reflects evolu-
tion, then the right oviduct found in Idiosepiidae and
Oegopsida is the result of convergent evolution. While
previous characterizations of the right oviduct in Idiose-
piidae have suggested a highly modified morphology is
due to a loss of function (e.g. [88]), our reconstruction
analysis offers an alternative hypothesis of homoplasy and
possible gain. Bacteriogenic photophores are far less com-
mon among cephalopods than compared to autogenic
organs, and are found only in some members of the more
benthic families Sepiolidae and Loliginidae. Although
homology among bacteriogenic organs has been debated
[89], our phylogenetic analyses indicate that bacteriogenic
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organs evolved separately in sepiolid and loliginid clades.
Bacteriogenic photophores in both lineages typically de-
velop on the ink sac as a bilobed structure, feature prom-
inent crystalline lenses, and can recruit and culture
related species of luminescent Vibrionaceae bacteria on
the organ’s epithelium lining [34,35,90]. Evidence from
the sepiolid Euprymna indicates that bacteriogenic organs
may be used for counter-illumination [91]. Understanding
both the molecular and ecological factors that have given
rise to such a remarkable parallel will yield tremendous
insight into how recurrent phenotypes evolve.

Conclusions
Convergent evolution occurs frequently in the marine
environment, and cephalopods are no exception. Here,
we identify convergent morphological characteristics in
Cephalopoda, using both phylogenetic and statistical
approaches and find correlation between habitat and
morphology. The diverse nature of cephalopod habitat
and morphology has interested researchers for hundreds
of years, and yet the evolutionary history of many key
characteristics has remained elusive. We provide conclu-
sive evidence that accessory nidamental glands, corneas,
and photophores are convergent and correlated with
habitat. The accessory nidamental gland likely protects
developing embryos from fouling microorganisms and is
generally present only in decapodiforms known to attach
eggs to the substrate. A cornea, one of the main compo-
nents of the camera-type eye found in cephalopods and
vertebrates, is present only in taxa that spend time asso-
ciated with the benthos, and has evolved separately in
the squid and octopod lineage albeit to serve similar
purposes of protection against sediment and in some
cases, ultraviolet light. Photophores, present in numer-
ous marine phyla, are gained and lost many times
throughout the cephalopod lineage, but are most com-
monly found in pelagic taxa.
The findings presented here in phylogenetics and char-

acter evolution create a foundation for understanding
convergent evolution in the marine environment. The
numerous biotic and abiotic factors that influence spatial
and temporal expression for a given trait make studying
convergence challenging, particularly in cephalopods
where experimental studies linking function and habitat
are often intractable. However, the advent of high-
throughput transcriptome sequencing provides new
means for generating hypotheses concerning the mo-
lecular basis for morphologically convergent evolution in
experimentally challenging organisms like cephalopods.
Future work utilizing these tools to study how conver-
gent characters originate will provide us with new
insight into how molecular processes such as gene dupli-
cation, gene sharing, and co-option can result in the
evolution of similar morphological novelties.
Methods
Data assembly and alignment
Of the roughly 750 valid cephalopods species, sensu [92],
many are rarely observed and poorly known to science,
which has limited taxon sampling for molecular data.
Here, all sequence data available for six nuclear genes
(Histone H3a, octopine dehydrogenase, pax6, opsin, 18 S
rRNA, and several regions of 28 S rRNA) and four
mitochondrial genes (cytochrome c oxidase subunit I,
cytochrome B, 12 S rRNA, and 16 S rRNA) were down-
loaded from GenBank and compiled into a local MySQL
database yielding 409 taxonomic units with varying
degrees of gene coverage (Additional file 3). Each locus
was vetted for possible contamination: individual genes
were aligned in Muscle under default parameters (see
[93]) and analyzed in a maximum likelihood frame-
work in RAxML v.7.0.4 [94] by generating a single tree
under the GTR+GAMMA distribution model. Putative
contaminants were identified as terminals with long
branches relative to their sister taxa and also fell into
incorrect clades (e.g. a squid in an octopus clade). These
potential “contaminants” were then subjected to add-
itional blast searches in GenBank, and the top 10 “hits”
were evaluated. Any sequence identified as highly similar
to another cephalopod was not considered to be a con-
taminant and was included in the final data matrix. Only
sequences identified as a non-cephalopod (most com-
monly bacteria) were excluded from the analyses (see
Additional file 4 for a list of identified contaminants).
Only one representative sequence for a given taxon was

included for each gene in the final data matrix. When
multiple copies of a gene were available on GenBank, as
was often the case with COI, we included either the long-
est read (if length variation existed in GenBank files) or
else the first read in the database. Sequences were aligned
using default parameters in MAFFT [95], except for COI,
which was aligned using MAFFT(−einsi) for improved
accuracy. To further improve alignment accuracy, protein-
coding sequences were then reverse transcribed using
dna2pep.py, [96] and codon-aligned using TranslatorX
[97] and RevTrans [96] to generate final DNA align-
ments that reflected codon positions. Lastly, we visually
inspected each alignment for frame shift errors.

Molecular phylogenetic analysis
Taxon versus data coverage
To test for correlation between morphology and habitat,
we required a well-sampled, robust phylogeny. The lar-
gest dataset with 408 taxa may not be optimal in this
case because many terminals are represented by only
a few genes and may be placed incorrectly due to the
heterogeneity of the data matrix rather than to phylo-
genetic history [98,99]. To identify the dataset that was
both taxon-rich and relatively robust, nine datasets were
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generated and subjected to phylogenetic analyses. The
largest dataset included all taxa with one or more genes
present (408 taxa), while the smallest included only taxa
that had at least nine loci present (17 taxa). The dataset
we chose as the best topology to test for subsequent char-
acter evolution and correlation is comprised of 188 taxa
represented by at least four genes (see Additional file 3 for
taxa list). This dataset allows the inclusion of the greatest
taxonomic diversity while maintaining robust support for
all higher-level clades (greater than 75%). Furthermore,
bootstrap support values for these clades evaluated on
datasets with greater data matrix density (i.e., more genes,
fewer taxa) were never less than 75% (Table 2).
Prior to formal analyses, ModelTest [100] was used to

determine which model best fit the data for each partition.
Each dataset was analyzed in RAxML 7.2.8 [94] under the
GTR+GAMMA model (−N 10), and support was calcu-
lated with 1,000 replicates of bootstrap resampling. To
identify the dataset to use for tests of character correlation,
we measured clade support and compared values (Table 2)
for eight nodes commonly examined in taxonomic and
molecular studies: Octopodiformes (V. infernalis and all
octopods), Octopoda, Incirrata, Cirrata, Decapodiformes,
Loliginidae, Bathyteuthoidea+Oegopsida, and Oegopsida.
The data set that contained at least three representative
taxa in each node and support values above 80% was used
for all subsequent analyses.

Data partitions and analyses
Given the diverse nature of the genes in our data matrix,
using the same likelihood parameter values for the entire
dataset is unlikely to provide a good fit (e.g. [101,102]).
To reduce the risks associated with both over- and
Table 2 Bootstrap support for key nodes across
increasingly refined datasets

# loci Clade ≥ 1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9

Octopodiformes 76 9 78 85 2 96 – – –

Octopoda 80 96 87 93 87 – – – –

Cirrata 99 100 100 100 100 – – – –

Incirrata 94 98 95 100 100 100 100 100 100

Decapodiformes 98 99 99 99 100 95 – – –

Myopsida 88 89 100 100 100 100 – – –

Bathy +Oeg 60 86 99 99 100 73 77 82 87

Oegopsida 46 77 99 100 97 93 96 99 99

# taxa 409 301 242 188 130 61 28 18 17

% missing data 86.3 82.6 80.0 77.3 74.5 69.8 61.8 57.5 57.3

ML trees were inferred from datasets varying in sparseness to assess the
trade-off between taxon sampling and data sampling. Datasets ranged from
species-rich/data-sparse (409 species represented by at least one of 10 loci)
to species-limited/data-rich (17 species contributing at least 9 of 10 loci).
The column representing the optimal dataset selected for additional analyses
is indicated in bold. (‘–‘indicates loss of outgroup or ingroup species required
to evaluate support).
under-parameterization, we tested partitioning schemes
most likely to represent groupings of genes that may
have evolved under similar conditions (Table 1). We
computed log-likelihoods for each of the sixteen parti-
tion strategies using a 100 replicate maximum likelihood
search (RAxML v. 7.2.8) and identified the partitioning
strategy that best fit the data by comparing the log-
likelihoods from each of the lesser-partitioned analyses
to the most heavily partitioned (sixteen) scheme using a
modified BIC test [103] as implemented by McGuire
et al. [104]. This modified version of the BIC test holds
the number of branch lengths constant across alternative
partitioning strategies, therefore returning identical esti-
mates to the standard BIC calculations [104].
We analyzed the final data matrix (188 taxonomic units,

each represented by four or more loci) under a likelihood
setting in RAxML 7.2.8 with 300 replicate tree searches
under GTR+GAMMA. Each gene and the 3rd posi-
tion codon sites were treated as separate partitions (16-
partition scheme, Table 1). All species of Nautilus were
listed as outgroup taxa. We then evaluated support using
1000 nonparametric bootstrap replicates (−f b) in RAxML.
For comparison, the above tree search was also conducted
on the complete data set (Additional file 1, Figure 1).
The partitioning strategy that best fit the data (16-part,

Additional file 1 Table S1) allowed for rate parameters
for the sites of each ribosomal gene as well as the non-
synonymous (1st/2nd codon positions) and synonymous
(3rd codon positions) sites for each coding gene to be
estimated independently [105,106]. It is worth noting
that the 6-partition strategy (in which nuclear, mito-
chondrial genes, ribosomal, 1st/2nd coding positions
and 3rd codon positions are differentiated) yielded likeli-
hoods that were close to, but still less likely than the
fully partitioned scheme and the BIC evaluation con-
firmed that the additional parameters in the 16-part
scheme significantly improved the fit of this data set.
While additional phylogenetic analyses (not shown) were

carried out in PhyloBayes (v2.3) using a heterogeneous-
site model (GTRCAT), our dataset failed to converge after
surpassing the recommended maximum of 10,000 MCMC
cycles on each of 6 chains and running for over 60 days
[106]. Due to the lack of convergence in the posterior
distribution, we carried out likelihood-based character
analyses using our best ML tree (Figure 1) and ML boot-
strap pseudoreplicates.

Character evolution and correlation with habitat
To attempt to identify characters that have arisen via
convergent evolution in response to similar selective
pressures, we performed ancestral states reconstructions
using our 188-taxon topology. We created a binary
character matrix for habitat (benthic or pelagic) and for
six features of presumed taxonomic importance (e.g.
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[26,27,30]) that can be putatively associated with either
demersal or pelagic lifestyles [30]: accessory nidamental
gland, branchial canal, cornea, right oviduct, autogenic
and bacteriogenic photophores. With the exception of the
accessory nidamental glands and bacteriogenic photo-
phores, the remaining characters are present in both
squid and octopod lineages, thus increasing our ability to
test for correlation. Character coding was done primarily
through literature, although all pelagic octopod taxa were
re-examined at the Santa Barbara Museum of Natural
History to confirm corneal morphology.
For the habitat data, we chose to cluster habitats into

two primary categories (demersal/pelagic) to be able to
conduct statistical tests of correlation, and to identify
broad patterns and hypotheses that can then be further
examined in on a much finer scale. All habitat data for
Decapodiformes was coded from the literature [60,107]:
all Octopodiformes data was coded by FGH. There is
some inherent risk in subdividing the expanse of the
marine environment into two discrete habitats, as each
macro habitat encompasses a number of smaller ecosys-
tems. There are numerous habitats that can fall within
this spectrum, and there is some inherent risk as each
macro habitat encompasses a number of smaller ecosys-
tems. Although there are many potential subdivisions
within the demersal/pelagic realms, there are still some
general trends seen across the entire habitat in terms of
selective pressures. For example, all taxa living in demer-
sal environments, must to some degree, compete for
space. Alternately, taxa inhabiting the pelagic realm are
more impacted by the three-dimensional nature of their
surroundings and must be able to respond to stimuli
from numerous directions.
Likelihood-based ancestral state reconstructions were

carried out in BayesTraits [108] on our 188-taxon top-
ology for habitat type (benthic/pelagic), and for characters
(present/absent): accessory nidamental gland, cornea, bac-
teriogenic photophore, autogenic photophore, branchial
canal, and right oviduct. Prior to ASR analysis, each trait
was fit to a single-transition rate and asymmetrical rate
model. The best-fitting model was determined with the
likelihood-ratio test.
We calculated the proportional likelihoods of either

ancestral state on each of the 1000 bootstrap ML trees
generated from our dataset to incorporate topological
uncertainty. We specifically evaluated character state
likelihoods for the high-level nodes of the best ML tree
recovered in at least 90% of bootstrap replicates. For
nodes that received low branch support (e.g., basal Deca-
podiformes), we evaluated ancestral state likelihoods
for their most recent common ancestor (MRCA), such
as for Oegopsida + Loliginidae. As it remains unclear
whether the MRCA of Oegopsida + Loliginidae lived
earlier or later than the MCRA of Sepiolida + Loliginidae,
we estimated the character state likelihoods for both
ancestors (Figure 2, Additional file 1 Figure S2). To de-
termine the extent to which one character state received
significantly more support over the other state at a par-
ticular node, we calculated the number of bootstrap
replicates for which the ratio between the two propor-
tional likelihood scores (e.g., L present/L absent) was greater
than 7.4 [109]. In addition, for each node of interest, we
calculated the likelihoods across 1000 bootstrap trees
fixed for either state using BayesTraits’ ‘fossil’ command.
State models which yielded log-likelihood scores having
two or more units higher than the other state model are
regarded as a significantly better fit [110,111].
To test whether certain cephalopod characteristics are

correlated with demersal or pelagic existence, we used
Pagel’s correlations as implemented in BayesTraits [108]
on our 188-taxon topology. We tested for the correla-
tion between habitat and each binary trait by compar-
ing the fit of a dependent and independent character
model on bootstrapped ML trees. Under the independ-
ent model, the number and timing of gains and losses
for each trait (e.g., habitat and the morphological trait)
occur independently, whereas the dependent model pro-
vides additional parameters that affect the probability of
a character’s transitioning on a branch depending on the
state of the other character. To account for the phylo-
genetic uncertainty in our dataset, we fit these models
for each character set on 1000 bootstrap ML topologies.
We then calculated median log-likelihoods for each
model and used the log-ratio test to determine which
characters are significantly correlated.
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the species name used in this manuscript are listed in bold. Checkmarks
denote taxa used in primary analysis (188-taxa), shown in Figure 1.

Additional file 4: Appendix 3. GI numbers for all contaminant
sequences.
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