Wang et al. BMC Evolutionary Biology 2012, 12:158

http://www.biomedcentral.com/1471-2148/12/158
P BMC

Evolutionary Biology

RESEARCH ARTICLE Open Access

Indehiscent sporangia enable the accumulation
of local fern diversity at the Qinghai-Tibetan
Plateau
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Abstract

Background: Indehiscent sporangia are reported for only a few of derived leptosporangiate ferns. Their evolution
has been likely caused by conditions in which promotion of self-fertilization is an evolutionary advantageous
strategy such as the colonization of isolated regions and responds to stressful habitat conditions. The Lepisorus
clathratus complex provides the opportunity to test this hypothesis because these derived ferns include specimens
with regular dehiscent and irregular indehiscent sporangia. The latter occurs preferably in well-defined regions in
the Himalaya. Previous studies have shown evidence for multiple origins of indehiscent sporangia and the
persistence of populations with indehiscent sporangia at extreme altitudinal ranges of the Qinghai-Tibetan Plateau
QTP).

Results: Independent phylogenetic relationships reconstructed using DNA sequences of the uniparentally inherited
chloroplast genome and two low-copy nuclear genes confirmed the hypothesis of multiple origins of indehiscent
sporangia and the restriction of particular haplotypes to indehiscent sporangia populations in the Lhasa and
Nyingchi regions of the QTP. In contrast, the Hengduan Mountains were characterized by high haplotype diversity
and the occurrence of accessions with and without indehiscent sporangia. Evidence was found for polyploidy and
reticulate evolution in this complex. The putative case of chloroplast capture in the Nyingchi populations provided

further evidence for the promotion of isolated but persistent populations by indehiscent sporangia.

Conclusions: The presented results confirmed the hypothesis that indehiscent sporangia promote the
establishment of persistent population in different regions of the QTP. These results are consistent with the
expectations of reproductive reassurance by promotion of self-fertilization that played a critical role in the assembly
of populations in isolated locations and/or extreme habitats.

Keywords: Chloroplast capture, Chloroplast DNA, Himalaya, Incongruent phylogenetic hypotheses, Lepisorus
clathratus, Phylogenetic analyses, Reticulate evolution, Self-fertilization, Low-copy nuclear genes, PgiC, LFY

Background

Several recent studies suggested that environmental con-
dition enforced the evolution of self-fertilization in
plants, especially as a strategy to adapt to extreme habi-
tats [1] and along the trailing edge [2]. For example, evi-
dence was reported for indirect selection of mating
system during the evolution of drought resistance in the
angiosperm genus Mimulus evolution [3]. These studies
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add alternative aspects to the well-established hypothesis
of reproductive assurance as a cause for the establish-
ment of self-fertilizing populations in plants [4]. Recent
studies on the biology of fern dispersal, in particular
long-distance dispersal emphasized evidence for a cor-
relation of colonization of new locations and the cap-
acity of self-fertilization [5-7].

The majority of ferns appear to reproduce either via
out-crossing or mixed mating systems [6,8-11], but sev-
eral mechanisms exist to promote inbreeding in ferns
[12]. The catapult mechanisms of the sporangia, as
found in the vast majority of species belonging to Poly-
podiales [13], are one of the most prominent features
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among derived ferns promoting dispersal [14] and subse-
quently out-crossing. However, a handful or so excep-
tions, which lack such catapult mechanisms, have been
reported among derived ferns, e.g. some European
spleenworts such as the tetraploid Asplenium lepidum
[15,16] and the diploid Asplenium jahandiezii [17].
These sporangia are called throughout this paper ‘in-
dehiscent sporangia’ whereas regular sporangia are called
‘dehiscent sporangia’. Very little is known about the ori-
gin of the evolutionary processes supporting the estab-
lishment of indehiscent sporangia. Here, we explore the
hypothesis that indehiscent sporangia promote self-
fertilization coinciding with geographical isolation, local
survival, and adaptation to extreme environmental
conditions.

To study this hypothesis, we explore the evolution of
indehiscent sporangia in ferns occurring at the high alti-
tudes of the Qinghai-Tibetan plateau (QTP), also called
the “roof of the world”. Specimens with indehiscent
sporangia belonging to the Lepisorus clathratus complex
were first reported as the segregate genus Platygyria
[18,19]. However, recent studies confirmed that these
specimens belong to the Lepisorus clathratus complex
[20-22]. Thus, this complex comprises not only speci-
mens with regularly formed, dehiscent sporangia that
open with the above mentioned catapult mechanism,
but also specimens with irregularly formed, indehiscent
sporangia. Besides, existing records show evidences for
predominant occurrence of specimens with indehiscent
sporangia at high altitudes >3,000 meter in contrast to
specimens with dehiscent sporangia occurring at lower
altitudes [19,22,23]. Indehiscent sporangia promoting
self-fertilization may be an adaptation to the isolation of
suitable habitats, extreme climatic windy conditions, and
short vegetation periods in the extreme altitudes of the
QTP. Consequently, several authors suggested an origin
of Platygyria, = specimens with indehiscent sporangia,
from Lepisorus clathratus complex, = specimens with
dehiscent sporangia, during the uplift of the Himalaya
[18,19,23]. Indehiscent sporangia are assumed to be ad-
vantageous to secure sexual reproduction, = reproduct-
ive assurance, in conditions of strong isolation of
putative habitats. Thus, adaptive advantages of self-
fertilization may explain multiple origins of indehiscent
sporangia in the Lepisorus clathratus complex [22]. To
avoid taxonomic confusion, the complex is treated as a
single species, L. clathratus, throughout this paper. Pla-
tygyria is treated as a synonym of Lepisorus [20,21].

This study is carried out in the context of previously
reported evidences suggesting multiple origins of in-
dehiscent sporangia [22]. The previous report was based
exclusively on maternally inherited chloroplast genome
sequences (cpDNA) [24,25] and thus it was unable to ac-
count for introgression, reticulation, and polyploidy [26-
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28]. Polyploidy and the indication for reticulate evolu-
tion have been recorded for the genus Lepisorus [29]
and the most recently also for the L. clathratus complex
[30]. Thus, we explore the evolution of indehiscent spor-
angia by using sequence data of two cpDNA markers
and two nuclear low-copy genes, LFY and PgiC, plus
flow cytometry to determine the DNA ploidy level [31].
Finally, we expanded our sampling by including speci-
mens with indehiscent sporangia collected in the Nying-
chi prefecture, located in the southeastern part of Tibet
Autonomous Region of China. The specimens will be
named throughout this paper as Nyingchi Platygyria.
The study is designed to provide a more comprehensive
insight in the spatial-phylogeographic origin of indehis-
cent sporangia in the Lepisorus clathratus complex and
the ecological-evolutionary consequences. Together with
the Lhasa region, the Nyingchi region is known for the
abundance of specimens with indehiscent sporangia
compared to the Hengduan Mountains where specimens
with indehiscent sporangia are less common than those
with dehiscent sporangia.

Methods
Samples were obtained via fieldwork by members of the
research team in various parts of China and neighboring
countries. Materials for DNA extraction were dried and
stored in silica. Some plants were collected as living col-
lections and cultivated at the conservatory of Institute of
Botany, Chinese Academy of Sciences (IBCAS). Taxon
sampling was guided by recently reported phylogenetic
analyses [20-22] to include the resolved clades within
Lepisorus, but particular care was taken to cover the
geographic range of all morphologically distinct forms of
Platygyria [19]. The two genera Neocheiropteris and Tri-
cholepidium were sampled to have a glimpse of the
phylogenetic relationships of Lepisorus and its allies.
Whole genomic DNA was extracted using a modified
CTAB approach [32]. These DNA extracts were used to
amplify two chloroplast regions rps4-trnS and trnL-trnF
(consisting of rps4 + rps4-trnS intergenic spacer and trnL
intron plus trnL-F intergenic spacer) as described in
Wang et al. [20]. The DNA was also used to amplify two
nuclear genes, the low-copy gene PgiC using the primers
and protocol of Ishikawa et al.[33] and the low-copy
gene LFY using newly designed LFY primers for the
introns located between exonl to exon 3: FLFYEI1dF:
5-GGCAACGCCTRCAACTACT-3; FLFYE3dR: 5-CT
TTGGYTTGTTGATRTACT-3’; FLFYE3eR: 5-GCRTGT
CGAAAAACYTGRTTGGT-3. To separate the different
allele copies, we performed cloning experiments using
pGEM T-easy vectors (Promega Corp.) with a Pharmacia
purification kit (Amersham Pharmacia Biotech) follow-
ing the manufactures’ protocols. Four to seven clones of
LFY gene were sequenced for the selected 12 specimens.
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Cloning and sequencing were applied on PgiC gene of
25 specimens (2-7 clones) which represented the key
genotypes resolved in our previous study [22]. PgiC gene
of the remaining 23 specimens was directly sequenced
in order to reduce experimental expense. Sequencing
reactions were carried out using the DYEnamic™
ETDye Terminator Cycle Sequencing Kit (Amersham
Pharmacia Biotech). Sequences were analyzed using
MegaBACE™1000 DNA Analysis Systems, following
the manufacture’s protocols.

All newly generated sequences were assembled and
edited using ContigExpress program from the Vector
NTI Suite 6.0 (Informax Inc., North Bethesda, MD).
BlastN searches were carried out for all newly generated
sequences [34]. Alignments were generated using CLUS-
TAL X [35], and further adjusted manually in BioEdit
[36] and MacClade 4.0 [37]. Ambiguously aligned
regions were detected visually and excluded from further
analyses. Only two small ambiguously aligned fragments
were detected in the cpDNA (<3% of the total base
pairs) sequences and none in the nuclear regions.
Searches for sequence inversions were negative. For the
two nuclear genes, we took into consideration of PCR
bias, the putative occurrence of chimaeric sequences,
and variation due to polymerase error by checking the
sequences very carefully and blast sequences in NCBI
(www.ncbi.nlm.nih.gov). The copy numbers of the two
nuclear genes (PgiC and LFY) in each specimen were
not identified because the ploidy levels of most studied
samples are uncertain. However, all analyses were car-
ried out including all cloned sequences and with a
reduced dataset including only sequences found in more
than one clone per specimen. Besides newly generated
sequences (all nuclear gene sequences and minority of
chloroplast sequences), we used sequences that were
generated for previous studies [20-22] and all newly gen-
erated sequences were deposited in GenBank (see Add-
itional file 1). In total, we analyzed four datasets
independently. The first dataset includes all ¢cpDNA
sequences, whereas the second and third datasets corres-
pond to the two low-copy gene datasets LFY and PgiC,
and the fourth dataset is constituted of the reduced PgiC
sequences as mentioned above.

Gene-trees were reconstructed using standard phylogen-
etic methods such as maximum parsimony in PAUP
4.0b10 [38], maximum likelihood in Garli 1.0 [39] and
PHYML 3.0 [40], and Bayesian inference in MrBayes 3.1.2
[41]. jModeltest 0.1.1 [42] was used to determine the
model of sequence parameters for model-based approaches
as maximum likelihood and Bayesian inference. Non-
parametric bootstrap values were calculated for maximum
parsimony with 1,000 bootstrap replicates and maximum
likelihood with 500 replicates. All analyses were carried out
using standard protocols as described in our previous
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studies [20-22] and the phylogenetic trees were visualized
using FigTree 1.3.1. (http://tree.bio.ed.ac.uk/software/fig-
tree). Convergence of MCMC runs from Bayesian analyses
were also studied using Tracer 1.5 (http://tree.bio.ed.ac.uk/
software/tracer). The burn-in phase was defined manually
by studying carefully the output of TRACER. The esti-
mated burn-in phase comprised fewer generations than
the default 10% cut-off implemented in this software.
Phylogenetic network analyses [43,44] were carried out
using SPLITSTREE 4.10 (www.splitstree.org) and DEN-
DROSCOPE  3.0.13beta  (http://ab.inf.uni-tuebingen.de/
softwar/dendroscope). These methods were used to
visualize and infer alternative hypothesis of reticulate evo-
lution in combination with established procedures (SH-
test) and collapsing multiple trees (in DENDROSCOPE)
and z-closure consensus networks (in SPLITSTREE).
These methods were applied to distinguish between phylo-
genetic uncertainties and reticulate evolution; in particular
we compared very carefully the signals given by different
phylogenetic trees either visually in DENDROSCOPE or
by calculating z-closure networks in SPLITSTREE. These
analyses were carried out for three kinds of tree sets
obtained by individual analyses of each of the three regions:
(1) all most parsimonious trees recovered in maximum
parsimony analyses, (2) all most likely trees recovered in
maximum likelihood analyses, and (3) 100 bayesian trees
recovered in Bayesian inference of phylogeny. Node sup-
port was further investigated using additional tests as
implemented in PAUP, e.g. SH-test [45]. Regional diversity
was evaluated by considering specimens and sequences
used in this study and previous studies on the Lepisorus
clathratus complex [20-22].

Four samples, representing the main distribution range
of L. clathratus complex [22] and including the special
“Nyingchi Platygyria”, were selected to explore ploidy
levels because existing chromosome counts suggest the
occurrence of diploids and tetraploids in the L. clathra-
tus complex [30,46]. In the absence of materials suitable
for additional chromosome counts, we employed flow
cytometry [47,48] to determine the DNA ploidy level
[31]. These values were determined using silica dried leaf
material analyzed together with the internal standard
consisting of leaf material of a specimen that was
reported to be tetraploid [30]. The leaf material was
chopped together with the internal standard, = tetraploid
Lepisorus clathratus s.., in 0.5 ml ice-cold general-pur-
pose buffer with the addition of 3% PVP-40 [49]. The
nuclear suspension was filtered through a nylon mesh
and then incubated after adding a solution containing
ribonuclease A (RNase A; Sigma-Aldrich, St. Louis, MI,
USA). Finally, samples were stained with propidium iod-
ide (Sigma-Aldrich, St. Louis, Missouri, USA) and incu-
bated on ice for 30 minutes before analyzed using a BD
FACSCalibur™ flow cytometer (BD Bioscience, Franklin
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Lakes, NJ, USA). For each specimen, we counted about
40,000 nuclei per run. Only measurements were consid-
ered with a clear signal. The DNA ploidy level was
recorded as relative to the internal tetraploid standard: <
4x, = 4x, > 4x.

Results

Information concerning the total length of nucleotides,
number of variable sites, number of parsimonious in-
formative sites and the selected models by jModeltest
[42] in three aligned datasets was given in Additional file
2. No chimaeric sequences were identified within the
two nuclear gene datasets. Phylogenetic hypotheses
obtained by phylogenetic analyses of the cpDNA se-
quence data recovered all specimens of Platygyria nested
within the Lepisorus clathratus clade with the exception
of the specimens of Platygyria collected in the Nyingchi
region (Figure 1). These specimens, Nyingchi Platygyria,
possessed a haplotype that was not found in any other
species of the tribe Lepisoroideae. In fact, the cpDNA
was not found to be part of the genus Lepisorus in the
optimal ML, MP trees and in the consensus Bayesian
phylogeny. Very little sequence variation, 99.5% identical
base pairs, was found among the six specimens sampled
in the Nyingchi region (Figure 1).

Phylogenetic hypotheses obtained by independent
phylogenetic analyses of the two nuclear coding genes,
PgiC (Figure 2) and LFY (Figure 3), found all specimens
of Platygyria were nested within the Lepisorus clathratus
complex clade, including also the Nyingchi Platygyria
specimens.

According to SPLITSTREE and DENDROSCOPE ana-
lysis, the phylogenetic hypotheses obtained using cpDNA
and nrDNA are incongruent (Figure 4). Firstly, the
cpDNA separated the Platygyria specimens collected in
the Nyingchi region from the Lepisorus clathratus com-
plex clade, whereas the nrDNA recovers them as part of
the Lepisorus clathratus complex clade (Figures 1, 2, 3).
Secondly, the nrDNA did not support the division of
Lepisorus versus the Neocheiropteris-Tricholepidium
clade with the latter nested within Lepisorus in both PgiC
and LFY based reconstructions (Figures 1, 2, 3). Thirdly,
Lepisorus marginatus had two distinct copies of PgiC.
One is found to be sister to L. affinis and the other sister
to L. kawakamii (Figure 2). The first and third of these
topological incongruences were recovered to be sup-
ported by bootstrap values and Bayesian posterior values
(Figures 1, 2, 3) although the two nuclear genes lacked
support for the deeper nodes. Thus, the second putative
conflict may be the result of low resolution of the nuclear
genes. The incongruence of the phylogenetic hypotheses
recovered by cpDNA and two ntDNA markers were also
supported by the SH-test, which found significant differ-
ences (p<0.01) in the fitness of the topologies to the

Page 4 of 12

datasets: ¢cpDNA =cpDNA based hypothesis is signifi-
cantly better than the nrDNA based hypothesis; nrDNA =
nrDNA based hypothesis is significantly better than the
cpDNA based hypothesis.

Within the Lepisorus clathratus complex, evidence for
reticulation was recovered by visual comparison of the
cpDNA and nrDNA (PgiC) based trees (Figure 5). The
two recovered phylogenetic hypothesis are highly incon-
gruent and several specimens show copies of PgiC
belonging to different clades in the obtained phylogeny
(Figure 5). Most specimens of haplotype group G5
showed PgiC sequences nested in a single clade (N2),
but this was not the case for specimens of the haplotype
groups G2, G3, G4. Specimens with ¢cpDNA belonging
to haplotype group G4 were found having very different
PgiC sequences (clades N1 and N4). Highly heterozygo-
tic specimens (Figure 5, PgiC) were found to be asso-
ciated with different chloroplast haplotypes: specimen 11
with haplotype group G4, specimen 48 with haplotype
G5, specimen 55 with haplotype group G1, and speci-
men 116 with haplotype group G3. All but one of the
PygiC sequences obtained from Nyingchi Platygyria spe-
cimens (purple branches in Figure 5) were nested within
one clade (N3) together with specimens sharing the G4
cpDNA (sister to a copy of PgiC obtained from speci-
men 40, Figure 5).

Specimens with indehiscent sporangia were found
mainly in three regions (Table 1). These regions are dis-
tinct in the context of the frequency of specimens with de-
hiscent and indehiscent sporangia and the observed
genetic variation of the chloroplast genome data. In two
regions, the Lhasa region and the Nyingchi region, all
studied specimens possessed indehiscent sporangia,
whereas the Hengduan Mts showed a slightly higher fre-
quency of specimens with dehiscent sporangia. The first
two regions showed low ¢cpDNA diversity and were domi-
nated by specimens with cpDNAs belonging to one haplo-
type group. The Lhasa and Nyingchi regions had
haplotypes that were exclusive to specimens with indehis-
cent sporangia occurring in this region. In contrast, most
specimens with indehiscent sporangia collected in the
Hengduan Mts shared the haplotypes recovered in speci-
mens with dehiscent sporangia. This region showed high
chloroplast genome diversity in both specimen groups
(Table 1).

Flow cytometry supported the hypothesis of differ-
ent ploidy levels (Figure 6). Nyingchi Platygyria speci-
mens had a higher DNA content in comparison to
the tetraploid internal standard (> 4x for specimens
28) whereas other Platygyria specimens had either
equal (= 4x, specimens 38 and 101, on the QTP) or
lower (< 4x, specimen 119, Kangding in Hengduan
Mts) DNA content in comparison to the tetraploid
standard.
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Discussion

Evidence for chloroplast capture

Strong conflicts were found between the phylogenetic hy-
potheses obtained using chloroplast and nuclear DNA se-
quence data (Figure 4). These conflicts can be sorted into
two categories. The first category, conflicts such as the pos-
ition of the genera Neocheiropteris and Tricholepidium may
be the result of insufficient information or saturated vari-
ation in one or both datasets (Figure 4). This argument
may especially apply to the highly variable regions used to

reconstruct the phylogeny, as both LFY and PgiC markers
are mainly based on intron data. Thus, the high substitu-
tion rate of these non-coding regions may show effects of
sequence saturation. This argument is also consistent with
the low support values recovered for the majority of the
deep nodes using these markers (Figures 2, 3), but it also
applies to the cpDNA (Figure 1). The second category, the
conflict concerning the position of Platygyria specimens
from the Nyingchi region, cannot be explained by these
arguments. These specimens have LFY and PgiC sequences
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Lepisorus pseudonudus

identical or nearly identical to specimens found in the Lepi-
sorus clathratus clade (Figures 2, 3, 5), whereas the haplo-
types of chloroplast sequences recovered in the Nyingchi
Platygyria specimens are unique and have not been

detected in any studied species of Lepisorus or related gen-
era of lepisoroid or other ferns (Figure 1). In order to rule
out any issue of contamination or related experimental
errors, we performed additional independent DNA
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Figure 5 Reticulate pattern observed by comparing the phylogeny obtained using the cpDNA (left) and PgiC (right). Comparison based
on the independent analyses of the cpDNA excluding Nyingchi Platygyria and PgiC data including Nyingchi Platygryia (for comparison see
Figures 1 and 2). Numbers correspond to voucher numbers given in Additional file 1. Dotted lines connect cpDNA and PgiC copies of each
specimen. Circles indicate the kind of sporangium: filled black circles =indehiscent sporangium with L. clathratus cpDNA, filled grey
circles=indehiscent sporangium with non L. clathratus cpDNA (= Nyingchi Platygyria), open circles = dehiscent sporangium with L. clathratus
cpDNA. Colors are chosen to visualize the correspondence of haplotype groups, G1-G5 as defined in Wang et al. [22] and PgiC copies. Squares
indicate specimens with PgiC sequences belonging to highly divergent clades. Stars indicate the Bayesian inference P-values = 0.95.

extractions, amplifications and sequencing of several speci-
mens, using five specimens collected in the Nyingchi region
and one collected between Maizhokunggar and Gongbo’-
gyamda located between Lhasa and Nyingchi. .

Table 1 Genetic variation of chloroplast genome of
specimens with indehiscent sporangia for three core
distribution regions

Lhasa region * Nyingchi region * Hengduan Mts.

ISSDS  39/0 6/0 23/29
cpHG  3/0 1/0 3/4
cpHT  6/0 3/0 8/9

The table considers data presented in this study as well as previous studies
[19,21]. IS-DS = Number of specimens with indehiscent versus specimens with
dehiscent sporangia collected in this region. cpHG = cpDNA diversity measured
by the number of haplotype groups. cpHT = cpDNA diversity measured by the
number of haplotypes. The first number corresponds to the number of
haplotypes found in specimens with indehiscent sporangia, whereas the
second number represents the number of haplotypes found in specimens with
dehiscent sporangia. * One haplotype group is exclusive or nearly exclusive to
this region.

The cpDNA phylogeny suggests a long time isolation
of this chloroplast type found in the Nyingchi specimens
(Figure 1) and thus the results are not compatible with
the hypothesis of incomplete lineage sorting. In the max-
imum parsimony analyses, they were recovered as sister
lineage to Paragramma, but this may be the result of
long-branch attraction. Our results of the cpDNA and
nrDNA data suggest independent inheritance of the two
genomes. They are also contrast with other collections
of Platygyria (with indehiscent sporangia), which have
both ¢cpDNA and nrDNA nested within the Lepisorus
clathratus clade (Figures 1, 2, 3).

The hypothesis of chloroplast capture provides the
most likely explanation for the recovered conflict be-
tween the phylogenetic results of the cpDNA and
nrDNA inheritance. The origin of the Nyingchi genotype
is assumed to involve initial hybridization between indi-
viduals of the Platygyria type and an unknown species
of Lepisorus. In this scenario, this unknown parent con-
tributed the chloroplast because the cpDNA is
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Figure 6 Diagrams showing the result of flow cytometric determination of DNA ploidy levels of selected specimens. A tetraploid sample
belonging to the Lepisorus clathratus complex was used as the internal standard (IS, grey graph). X-axis shows the relative fluorescence, Y-axis the
number of nuclei. (A) Platygyria specimen 28 with cpDNA belonging to Nyingchi Platygyria (blue graph). (B) Platygyria specimen 10Twith cpDNA
belonging to G3 (green graph), (C) Platygyria specimen 38 with cpDNA belonging to G4 (red graph). (D) Platygyria specimen 119 with cpDNA
belonging to G5 (brown graph). Dashed lines indicate the divide of the genome size interpretation: 4x, <4x, and >4x based on the IS=4x.

maternally inherited in ferns [24,25]. Consequently, the
nuclear genome is inherited paternally as required in
processes involving chloroplast capture [50,51]. Remark-
ably, the cpDNA of the Nyingchi Platygyria specimens
has not been recorded in any species of Lepisorus and
relatives despite a rather comprehensive sampling in
previous studies [20,21]. Morphological studies do not
suggest any unique species of Lepisorus or its relatives in
Nyingchi region. However, previous studies provided evi-
dence that the reproduction with indehiscent sporangia,
can result in populations with locality-persistent occur-
rences for considerably long time [22]. Thus, the com-
bination of geographic isolation and indehiscent
sporangia may have contributed to the origin and fix-
ation of the Nyingchi Platygyria genotype.

The presented results are only the second report of
putative chloroplast capture in ferns [52]. However, this
may not necessarily indicate that the probability of
chloroplast capture in ferns is low because only a small
number of phylogenetic studies on ferns have integrated
both chloroplast and low-copy nuclear genes so far
[53-59].

Evolution of indehiscent sporangia

Similar to the cpDNA, indehiscent sporangia are not asso-
ciated with a single copy or clade of copies of PgiC

(Figure 2), which provided further evidences for multiple
origin of indehiscent sporangia. However, the pattern is
also consistent with the hypothesis of indehiscent sporan-
gia caused by mutations through recombination, intro-
gression or hybridization between specimens with and
without indehiscent sporangia. The above discussed

chloroplast capture provided further evidence to this hy-
pothesis of introgression of specimens with and without
indehiscent sporangia. In addition, this study provides evi-
dences for ploidy level changes, which supports multiple
origins via hybridization combined with polyploidy as the
most likely scenario although one specimen (no. 119) of
Platygyria was found to be probably a diploid (see Fig-
ure 6). The argument on recombination is based on the
reproductive biology of specimens with indehiscent spor-
angia (Platygyria type). Sporangia without the catapult
mechanisms promote self-fertilization among the gameto-
phytes developed from spores formed by meiosis events
within a single sporangium. Actually, the mechanism
enhances the probability that egg cells of archegonia of
these gametophytes are fertilized by sperm cells developed
in antheridia formed by gametophytes originated from the
same sporangium. Thus, the self-fertilization may be ei-
ther inter-gametophytic or intra-gametophytic [13]. At the
same time, the sperm cells of gametophytes formed from
spores originated within a single indehiscent sporangium
may be able to fertilize gametophytes of individuals shed-
ding their spores via dehiscent sporangia. Thus, the char-
acter of indehiscent sporangia may be inherited by zygotes
that are formed by the fertilization of egg cells of gameto-
phytes originated from sporophytes with dehiscent spor-
angia and sperm cells of gametophytes originated from
sporophytes with indehiscent sporangia. This hypothesis
proposes a linkage between paternal inheritance and in-
dehiscent sporangia. The above discussed evidence for
chloroplast capture supports this hypothesis because
cpDNA is maternally inherited whereas the nuclear DNA
is paternally inherited.
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Previous studies on the allotetraploid Asplenium lepi-
dum [15,16] have provided evidence for the origin of
taxa with indehiscent sporangia via hybridization and
polyploidy. Our results are consistent with the hypoth-
esis that the origin of indehiscent sporangia involves
these processes. However, the current estimates of ploidy
levels are insufficient to prove that the reticulate pattern
observed between the cpDNA and nrDNA is the result
of hybridization and polyploidy, not caused by recom-
bination among specimens with the same ploidy level.

However, the establishment of indehiscent sporangia is
not necessarily linked to these processes as illustrated by
the diploid Asplenium jahandiezii [17]. This taxon is en-
demic to a small region in southeastern France, the
Gorge du Verdon. The sister species, A. bourgaei is also
diploid but distinct by dehiscent sporangia and an occur-
rence in the eastern Mediterranean [18]. Both species
are considered Tertiary relicts and current range of
Asplenium jahandiezii is part of a region considered as
Pleistocene glacial refugia of ferns and other plants [60-
62]. Thus, indehiscent sporangia may have successfully
promoted local survival of this species in a rather small
and well-defined region of southeastern France.

Local survival through the last glacial maximum has
also been discussed for occurrences of Lepisorus clathra-
tus complex with indehiscent sporangia (Platygyria) at
the QTP [22]. The newly discovered evidence for an iso-
lated taxon in the Nyingchi region, Nyingchi Platygyria,
adds a further support for the emerging hypothesis that
self-fertilization promotes persistence of populations
despite isolation and environmental challenges [1,2].

Consequences for taxonomic research

This study sheds new light on the difficult taxonomy of
the Lepisorus clathratus complex and in particular the
treatment of Platygyria. The latter was recently reduced
to be a synonym of Lepisorus [20]. Here, we found fur-
ther support that the majority of Platygyria genotypes
are intermingled with Lepiosorus clathratus genotypes
[20,22]. However, the new results suggesting different
ploidy levels support the hypothesis that the complex
comprises at least two diploid entities that contributed
to the origin of polyploids via hybridization. Future stud-
ies will need to focus on the untangling of the reticulate
evolution that may be comparable to complexes such as
Asplenium lepidum and its diploid parents, A. aegeum
and A. dolomiticum [15,16].

Without doubt, the specimens treated here as Nying-
chi Platygyria form a separate taxonomic entity. Future
work will need to address the taxonomic implications of
this study, such as the identification of the species name
for these specimens from several names established for
species with indehiscent sporangia [18,19].
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Assembly of plant diversity on the roof-of-the-world

In the recent years, many studies addressed aspects of
the evolution of plants on the roof-of-the-world. Some
of these studies resemble our own results in pointing
out the remarkable evolution of unusual traits in adapta-
tion to the alpine environments such as colored bracts
[63] and the cushion growth forms [64] in various gen-
era of eudicots. In our opinion, indehiscent sporangia
may be such a selective advantageous character.

The report of the Nyingchi area as a putative mixture
zone and survival area is also highly relevant to the
current discussion on the history of plant diversity at
this region in the last 4—5 million years [65]. In particu-
lar, the documentation of the Nyingchi area as survival
area (refugia) is consistent with results on other plants
such as Cupressus and Mecanopsis [66,67]. Furthermore,
our result resembles the study on Mecanopsis in the
documentation of the establishment of hybrid taxa in
isolated locations along the southern border of the spe-
cies range [67]. Establishment of polyploid hybrids
appears to be a rather common process in the response
of alpine plants to glacial cycles not only in the
Himalaya but also in other areas such as the European
Alps [68].

Conclusions

The study found evidence that indehiscent sporangia
promote the persistence of circumstances despite isola-
tion and challenging climatic conditions in the Hima-
laya. Some of the evidence was based on the observation
of a unique chloroplast genome in specimens with in-
dehiscent sporangia collected in the isolated Nyingchi
region. The origin of this chloroplast is best explained
by chloroplast capture. Future research needs to focus
on two core approaches: 1) additional data are required
to reconstruct the contribution of reticulation and poly-
ploidy; 2) sampling of data should allow reconstructing
the population history of these taxa in three regions dis-
cussed: Hengduan Mts, Lhasa and Nyingchi regions. In
general, these results raise questions concerning the
contribution of shifts in the mating system to the origin
of the unique plant diversity of the Himalaya.

Additional files

Additional file 1: Information regarding collection number, taxon
names, collecting localities, voucher number and Genbank
accession numbers. IS: indehiscent sporangial type; DS: dehiscent
sporangial type. Specimens utilized for ploidy level estimation are also
included in the file, and the signs “A, B, C, D and IS" added after the
collection number of them are corresponding to the signs used in
Figure 6.

Additional file 2: Information concerning the length of nucleotides,
the number of variable sites, the number of parsimonious
informative sites and the models selected by jModeltest in the
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