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Abstract

Background: Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have
been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In
this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among
cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and
convergent adaptive radiation, which has led to extensive ecological diversity.

Results: The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22
African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were
comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids.
The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being
the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites
ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome.
Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies
of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes
were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the
FISH analysis that detect only clustered copies of rRNA genes.

Conclusions: The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary
pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA
gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper
reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete
picture for understanding the organization of repeated sequences in the genome.
Background
Ribosomal RNA (rRNA) multigene families are orga-
nized into two distinct classes that are tandemly arrayed
in eukaryotic genomes. The major class is formed by an
external transcribed spacer followed by the transcribing
regions of the 18S, 5.8S and 25S/28S rRNAs, which are
separated from each other by two internal transcribed
spacers (ITS), ITS1 and ITS2. The minor class (5S rRNA
genes) consists of multiple copies of a highly conserved
120 bp transcribing region that is separated by a variable
non-transcribed region (NTS) [1,2]. These sequences are
characterized by a flexible organization at both the
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(i) chromosomal level, varying in both number and pos-
ition in the karyotypes even within species (for example,
[3-5]), and (ii) the nucleotide sequence level, with differ-
ences occurring mostly in the spacers of 45S and 5S
rDNA [1,2,6]. Moreover, some cases of co-localization/
interspersion between these two multigene families have
been reported, in addition to their association with other
multigene families such as histones and small nuclear
RNA (snRNA) genes [7-13].
With more than 3,000 living species, Cichlidae is one

of the most species-rich families of Perciformes. This
group is separated into four monophyletic lineages: Etro-
plinae (Indians), Ptychrominae (Malagasy), Cichlinae
(Neotropicals) and Pseudocrenilabrinae (Africans). The
evolutionary history of cichlids is in accordance with the
fragmentation of the Gondwana landmass [14]. Cichlids
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from Madagascar and India constitute the most basal
group to diverge from ancestral African–Neotropical
cichlids, and their divergence coincides with the separ-
ation of the India-Madagascar subcontinent close to 150
million years ago (MYA) [15]. More recently (approxi-
mately 65 MYA), Neotropical and African cichlids
diverged following the separation of Africa and South
America [16]. Cichlinae and Pseudocrenilabrinae contain
the majority of the described species. Cichlinae represen-
tatives are divided into seven tribes: Cichlini, Retroculini,
Astronotini, Chaetobranchini, Geophagini, Cichlasoma-
tini and Heroini. Pseudocrenilabrine is composed of
three major groups that are not recognized as valid taxo-
nomic units, pelmatochromine, haplochromine and tila-
piine, with great diversity in the Great Lakes of East
Africa, Tanganyika, Malawi and Victoria [17-21]. Among
vertebrates, cichlids, especially the African representa-
tives, have been used as models to study evolutionary
mechanisms due to their rapid and convergent evolution-
ary radiation [20,22,23].
To date, 135 species of cichlids have been cytogeneti-

cally analyzed, the diploid number of which is predom-
inantly 2n = 48 (more than 60% of the studied species),
although variations ranging from 2n= 38 to 2n = 60
have been described. For African species, the modal
diploid number is 2n = 44, and in Neotropical cichlids,
the most common chromosome number is 2n = 48,
which is considered to be the ancestral characteristic
for this family [24]. The understanding of cichlid kar-
yotypes has advanced after fluorescence in situ
hybridization (FISH) technology was applied to the
chromosomal physical mapping (cytogenetic mapping
or FISH mapping) of DNA sequences. FISH mapping
identifies useful chromosomal markers that can be ap-
plied to studies of genome organization and species
evolution and can also identify specific chromosomes,
homologous chromosomes, chromosome rearrange-
ments and sex chromosomes, among others. Among
cichlids, FISH mapping has mostly used repeat DNA as
probes, involving multigene families for rRNA [24-30]
and U1 snRNA genes [31], transposons [28,32-37], and
satellite DNA [36,38-40]. Besides using repeat DNA for
mapping, single-copy sequences have also been mapped
to the chromosomes of cichlids [31,41-43]. With the
availability of completely sequenced cichlid genomes
(see Cichlid Genome Consortium at www.bouillabase.
org) and the genomes of other fish species, advances
have also been made in integrating cytogenetic map-
ping data and genomic data [31,43].
To obtain a better understanding of the genomic

organization of rRNA genes and the chromosomal evo-
lution of cichlids, we used FISH to map the 5S rRNA
genes from 41 species of representative cichlids of Etro-
plinae, Cichlinae and Pseudocrenilabrinae (tilapiine and
haplochromine groups) and the 18S rRNA gene from 3
species of Pseudocrenilabrinae. In addition, the cytogen-
etic mapping data of both gene-carrying repeats (5S and
18S rDNA) were recovered from previously published
data, and a genomic analysis was conducted for both
gene classes from the recently available genome of the
Nile tilapia, Oreochromis niloticus. The relationship be-
tween the variability of 5S and 18S rDNA clusters was
discussed in light of the possible mechanisms that have
played a role in the diversification of both rDNA clusters
during cichlid fish evolution.

Methods
Biological samples and chromosome preparation
Animal samples were obtained from four sources (see
Additional files 1 and 2): African cichlids were obtained
from (i) wild stocks (mainly from Lake Malawi, East Af-
rica) maintained at the Tropical Aquaculture Facility of
the University of Maryland (TAF-UMD, USA), from
(ii) Brazilian rivers (introduced tilapia species), and from
(iii) aquarium shops in Botucatu, SP, Brazil; Neotropical
cichlids were collected from (iv) several Brazilian and
Venezuelan rivers (see Additional file 2). In total, 18
South American, 22 African and one Asian species were
analyzed (see Additional files 1 and 2). The animals were
collected from Brazilian rivers according to Brazilian laws
for environmental protection (wild collection permit,
SISBIO/15729-1). The experimental research on the
animals was conducted according to the international
guidelines of Sao Paulo State University (Protocol no.
34/08 - CEEA/IBB/UNESP). Mitotic chromosomes were
obtained from kidneys as described by Bertollo et al. [44].

DNA extraction, isolation of 5S and 18S rRNA gene
sequences, and FISH
Genomic DNA from O. niloticus and Neotropical
cichlids was extracted from the liver using the phenol-
chloroform procedure described by Sambrook and Russel
[45]. Partial sequences of 5S rDNA (including the gene
plus NTS region) were obtained through polymerase
chain reaction (PCR) using the primers A (50TAC GCC
CGA TCT CGT CCG ATC) and B (50CAG GCT GGT
ATG GCC GTA AGC), as described by Martins and
Galetti [46]. Copies of the 18S rRNA gene from O. niloti-
cus were amplified using the primers 18Sf (50 CCG CTT
TGG TGA CTC TTG AT) and 18Sr (50CCG AGG ACC
TCA CTA AAC CA), which were designed based upon
the sequence of the catfish Ictalurus punctatus to amplify
an approximately 1,400 bp DNA segment of the 18S
rRNA gene [35].
PCR products were labeled by nick translation using

biotin-14-dATP (Invitrogen, San Diego, CA, USA)
according to the specifications of the manufacturer. For
FISH on the African and Asian cichlid samples, the 5S
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rDNA and the 18S rDNA obtained from O. niloticus
were use as probes. For the Neotropical representatives,
5S rDNA obtained from each species was used as the
probe because heterologous probes obtained from
Astronotus ocellatus and Cichla kelberi did not produce
satisfactory FISH results.
The FISH procedure was performed as described by

Pinkel et al. [47] with modifications based on Martins
and Galetti [46] and Cabral-de-Mello et al. [31]. Images
were captured with an Olympus DP71 digital camera
coupled to a BX61 Olympus microscope and were opti-
mized for brightness and contrast using Adobe Photo-
shop CS2.

Analysis of 5S and 18S rRNA genes in the Oreochromis
niloticus genome
The 5S rRNA (accession numbers AF478461 and
AF478462) and 18S rRNA (accession number GU289229)
Figure 1 Fluorescence in situ hybridization of 5S rDNA sequences to
rDNA sequences were detected with FITC (green), the chromosomes were
grayscale. (a) Etroplus maculatus, (b) Oreochromis niloticus, (c) Tilapia mariae
(g) Astatotilapia latifasciata, (h) Melanochromis auratus, (i) Pseudotropheus tr
Bar = 5 μm.
gene sequences from Oreochromis aureus were used as
queries in a BLASTn search against the O. niloticus gen-
ome (Tilapia_broad_v1 genome), annotated in the Bouilla-
Base database (www.bouillabase.org) (searches conducted
in Jan 2012). The putative 5S and 18S rRNA gene
sequences of O. niloticus were analyzed using Geneious
Pro 4.8.5 software [48]. The cutoff length for the hits was
≤103 nucleotides for the 5S rRNA and ≤87 nucleotides for
the 18S rRNA genes; the cutoff lengths were determined
from the average length of the sequences recovered. The
cutoff length yielded E values of ≤9e-14 for 5S and ≤ 3e-17
for 18S rDNA.
The 1,000 bp upstream and 1,000 bp downstream

flanking regions (FRs) of each rRNA gene copy were
searched against the Repbase database [49] at the Gen-
etic Information Research Institute (GIRI) (http://www.
girinst.org/repbase/) using CENSOR software [50] to
check for the presence of transposable elements (TEs).
metaphasic chromosomes of Asian and African cichlids. The 5S
counterstained with DAPI, and the images were converted to
, (d) T. mamfe, (e) Hemichromis bimaculatus, (f) Gephyrochromis moorii,
opheus. The arrowheads indicate the 5S rDNA-bearing chromosomes.
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Results
Cytogenetic analysis
Basic cytogenetic data, including the diploid number
and the chromosomal morphology of the analyzed spe-
cies, were consistent with previously published informa-
tion [24, for review]. Cytogenetic maps of 5S rDNA were
obtained for 18 South American, 22 African and one
Asian cichlid species, and the data are presented in the
Additional files 1 and 2. Taken together with the previ-
ously published cytogenetic information for this family,
the number of species investigated thus far has been
updated to 23 African, 1 Asiatic and 23 Neotropical (see
Additional files 1 and 2). Representative hybridized
metaphasic chromosomes are shown in Figures 1 and 2.
The number of sites per diploid genome ranged from 2
to 15, with the most common pattern being the presence
of 2 chromosomes bearing 5S rDNA clusters. This
Figure 2 Fluorescence in situ hybridization of 5S rDNA sequences to
sequences were detected with FITC (green), the chromosomes were count
(a) Retroculus lapidifer, (b) Astronotus ocellatus, (c) Cichla piquiti, (d) Geophag
(g) Laetacara dorsigera, (h) Heros efasciatus, (i) Mesonauta festivus. The arrow
mark the chromosomes bearing two sites. Bar = 5 μm.
pattern occurred in 38 species, which corresponded to
~79.0% of the samples analyzed. The highest numbers of
sites were observed in the African species Astatotilapia
latifasciata (15 sites, Figure 1g) and in the Neotropical
species Laetacara dorsigera (14 sites, Figure 2g). These
two species were excluded from the statistical analyses
presented below due to their abnormally large number
of 5S rDNA clusters in comparison to the other cichlid
species studied.
The present data and the previously published results

revealed an average of 2.7 sites of 5S rDNA per genome, in
which ~31.7% were located in meta/submetacentric (m/sm)
chromosomes and ~68.3% were in telo/acrocentric (t/a)
chromosomes. With regards to the chromosomal position
of these sites, ~42.9% had a proximal location (p),
~47.6% had an interstitial location (i), and ~9.5% had a
terminal location (t). When examining the location of 5S
metaphasic chromosomes of Neotropical cichlids. The 5S rDNA
erstained with DAPI, and the images were converted to grayscale.
us proximus, (e) Satanoperca jurupari, (f) Aequidens tetramerus,
heads indicate the 5S rDNA-bearing chromosomes, and the asterisks



Table 1 Characteristics of the chromosomal distributions
of 5S rDNA sites in diploid genomes of cichlids*

African Neotropical Asiatic Total

Number of genomes analyzed 24** 22 01 47**

Number of sites 74 50 02 126

Average per genome 3.1 2.3 2.0 2.7

Telo/acrocentric (t/a) 42 42 02 86

Meta/submetacentric (m/sm) 32 08 00 40

Proximal (p) 50 04 00 54

Interstitial (i) 20 38 02 60

Terminal (t) 04 08 00 12

Long arm (L) 20 42 02 64

Short arm (S) 08 08 00 16

Closely associated to
centromeric regions (CC)

46 00 00 46

*The species Astatotilapia latifasciata and Laetacara dorsigera were excluded
due to their atypical number of 5S rDNA clusters; **Includes the polymorphic
conditions detected.
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rDNA on the chromosomal arms, we found that ~50.8%
of sites were associated with the long arm (L) and
~12.7% were associated with the short arm (S). In
addition, ~36.5% were closely mapped to the centromeric
region (C), but it was impossible to distinguish the
chromosomal arm on which they were positioned (see
Additional files 1 and 2; Table 1; Figure 3).
Three African species were investigated for their 18S

rDNA mapping (Tilapia mamfe, Placidochromis electra
and Pseudotropheus zebra) in this study, which updates
the total cichlid species analyzed to 32 (Additional files
Figure 3 Distribution of the number and percentage of 5S (green bar
respectively. The species with polymorphic conditions were considered m
sites in chromosomes with distinct morphology: telo/acrocentric (t/a), meta
interstitial (i) and terminal (t) sites; (d) distribution of number/percentage o
centromeric (C) regions. The species Astatotilapia latifasciata and Laetacara
clusters.
1 and 2). The number of 18S rDNA sites varied from 2
to 6, averaging ~2.9 sites per diploid genome. The modal
condition was the presence of 2 sites on one homolo-
gous chromosome pair (~63.4%). Most of the 18S rRNA
gene clusters (~68.3%) were found in t/a chromosomes,
and ~31.7% were located in m/sm elements. The 18S
rDNA was present at the terminal location in ~93.3% of
the mapped sites; only ~6.6% were interstitial, and none
were present in the proximal region. Another remark-
able characteristic was the association of 18S rDNA with
the short arm of the chromosomes (~97.5%); only ~2.5%
of the sites located on the long arm, and none associated
with the centromeric regions (see Additional files 1 and
2; Table 2; Figure 3).
The individual analysis of the data for the two major

groups studied, the African and Neotropical cichlids,
revealed particular characteristics for each group (see
Additional files 1 and 2; Table 1). For the 5S rDNA, the
characteristics were as follows: the average number of
sites per diploid genome was 3.1 and 2.3 sites in the Af-
rican and Neotropical representatives, respectively;
56.8% of sites were located in t/a chromosomes, and
43.2% of sites were located in m/sm chromosomes in
the African lineage; 84% of the sites were located in t/a
chromosomes, and 16% of sites in m/sm chromosomes
in the Neotropical cichlids; the preferential location of
the sites was proximal (67.6%) in Africans and interstitial
in Neotropical cichlids (76.0%); in the Africans, most of
the sites were closely mapped to the centromeric region
(71.9%), while for Neotropicals, the 5S rDNA was mostly
mapped to the long chromosomal arms (84.0%). For the
s) and 18S (red bars) rDNA clusters in 48 and 41 cichlid genomes,
ore than once. (a) Total number of sites, (b) number/percentage of
/submetacentric (m/sm); (c) number/percentage of proximal (p),
f sites in the distinct chromosomal arms: short (S), long (L), and in the
dorsigera were excluded due their atypical number of 5S rDNA



Table 2 Characteristics of the chromosomal distributions
of 18S rDNA sites in diploid genomes of cichlids

African Neotropical Asiatic Total

Number of genomes analyzed 16** 24** 01 41**

Number of sites 59 59 02 120

Average per genome 3.7 2.5 2.0 2.9

Telo/acrocentric (t/a) 59 23 00 82

Meta/submetacentric (m/sm) 00 36 02 38

Proximal (p) 00 00 00 00

Interstitial (i) 00 08 00 08

Terminal (t) 59 51 02 112

Long arm (L) 00 03 00 03

Short arm (S) 59 56 02 117

Closely associated to
centromeric regions (CC)

00 00 00 00

**Includes the polymorphic conditions detected.
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18S rDNA, the characteristics were as follows: the aver-
age number of sites per diploid genome was 3.7 and 2.5
sites in the African and Neotropical representatives, re-
spectively; all of the sites observed for the 18S rDNA in
the African cichlids were located in the terminal regions
of the short arms of t/a chromosomes (see Additional
file 1; Table 2); in the Neotropical species, a more vari-
able pattern for the position of this marker was observed
with locations in both the m/sm and t/a chromosomes;
the precise location was primarily in the terminal region
of the short arm (see Additional file 2; Table 2).
Figure 4 Synthetic view of the most frequent chromosomal locations
was based on the phylogeny proposed by Sparks and Smith (2004).
Besides the general differences between the two cich-
lid lineages, in African species, variations in the distri-
bution of 5S rDNA were observed among tilapiines
and haplochromines. In tilapiines (Figure 1b-d), the 5S
rDNA sites were generally located on small t/a chro-
mosomes. In haplochromines (Figure 1f-i), these gene
copies were located on the largest m/sm chromosome
pair in all of the species analyzed (see Additional file
1; Table 2) with additional sites observed in Astatotila-
pia latifasciata (Figure 1g) and Gephyrochromis moorii
(Figure 1f ). A synthetic view of the possible modal
number and chromosome locations for 5S and 18S
rDNA clusters in the distinct lineages of cichlids is
shown in Figure 4.

Analysis of 5S and 18S rRNA genes in the O. niloticus
genome
The results for the 5S rRNA gene BLASTn search of the
BouillaBase database retrieved 59 copies that were dis-
tributed on 42 scaffolds, and the search for the18S rRNA
gene retrieved 38 copies that were distributed on 31
scaffolds (see Additional file 3). For each result, the pu-
tative copy was ranked according to its sequence length
and E-value. Scaffold 6 was the only one to harbor puta-
tive 5S and 18S rRNA gene copies (Figure 5). Most of
the 18S rRNA sequences recovered were partial copies
of the gene (see Additional file 4). Although previous
studies detected two types of 5S rDNA repeats (type I
and type II) in the O. niloticus genome [25], only type I
copies were recovered in the present analysis (see
of rDNA plotted on the cladogram of the cichlid family. The tree



Figure 5 The organization of rRNA genes and TEs on scaffold 6 of the Oreochromis niloticus genome. The 5S and 18S rRNA genes,
putative TEs (SINE2-1_AFC, PIVE, Copia-53_MLp-1 and SINE_FR2), and the vasa gene are indicated by arrows. C1 and C2 represent conserved
repeats in the NTS of the 5S rRNA type I gene.
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Additional file 5). Moreover, the analysis of the FRs of
the rRNA genes (see Additional files 6 and 7) detected
the presence of transposable elements (TEs) that flanked
a high number of rRNA gene copies, with a predomin-
ance of SINEs in the FRs of 5S rRNA gene sequences
(Figure 5).

Discussion
Comparative cytogenetic mapping of rRNA genes among
cichlids
Although variations in the number of rRNA gene clus-
ters were frequent among the cichlid groups analyzed,
the presence of two clusters in homologous chromo-
somes was the most common condition observed in
79.0% and 63.4% of the 5S and 18S rRNA genes, respect-
ively. Furthermore, variations in the specific chromo-
some positions of the rRNA genes were observed in all
of the cichlid groups analyzed.
The presence of 5S rDNA clusters in the interstitial

or proximal position was frequently observed here for
tilapiines, haplochromines and cichlines, as has previ-
ously been observed in several other fish groups (for
review, [51]). These data support the hypothesis that
the presence of 5S rDNA sites that are non-terminally
located could represent the ancestral condition of the
chromosomal organization of 5S rRNA genes, espe-
cially in light of the distinct phylogenetic lineages and
sister groups that were studied. Among other verte-
brates, 5S rDNA in the interstitial position is also a
typical pattern, as seen in mammals and amphibians
[52-54]. In invertebrates, the location of 5S rDNA has
been well studied. For example, in some Acrididae
grasshoppers, most of the sites (96.6%) are located in
either the proximal or the interstitial position [5]. In
the African cichlid species, some clusters of 5S rDNA
were observed in the proximal position closely asso-
ciated with the centromere. This phenomenon was
seen most commonly in the haplochromine cichlid
samples, suggesting that it could be related to a spe-
cific chromosomal rearrangement in the largest m/sm
chromosomal pair that occurred before the diversifica-
tion of this group. In fact, it was reported that fusion
processes generated this chromosome in the African
cichlids, and at least one fusion occurred in haplochro-
mines [36] (Figure 4). In contrast, the 18S rDNA clus-
ters were mostly located at the terminal position in
cichlids and in fish as a whole. Exceptions were
observed in only four Cichlinae representatives belong-
ing to distinct tribes and seem to be related to the oc-
currence of specific chromosomal rearrangements.
Although two-color FISH for 18S and 5S rDNA was
not performed, it is clear that in general, these two
gene clusters are located on distinct chromosomes, as
has been commonly observed in other fishes [55].
The diversity of Cichlinae species is lower than that of

Pseudocrenilabrinae species, but the cytogenetic analyses
have shown higher levels of chromosome variations in
cichlines than in Pseudocrenilabrinae species (for review,
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[24,25]). However, the comparative analysis of rDNA
cluster numbers between Cichlinae and Pseudocrenilab-
rinae clades revealed higher levels of variation in the Af-
rican cichlids, considering the number of clusters per
genome. Thus, the genomic dynamics for the spreading
of clusters seems to be greater in the African group. Al-
though Cichlinae has more dynamic karyotypes possibly
due to the occurrence of macro-chromosomal rearrange-
ments, the Pseudocrenilabrinae species exhibit greater
dynamism at microgenomic levels, at least with regards
to rRNA genes.
The average cluster number per genome is slightly

higher for 18S rDNA, and the more intense dispersion
of these genes seems to be related to their common
presence in the terminal regions of the chromosomes.
The amplification/dispersion of rDNA segments could
be mediated by extrachromosomal circular DNA
(eccDNA), transposable elements and/or heterologous
recombination [56,57], which cause the origin of new
loci either followed or not followed by the deletion of
the original sites. Additionally, the genomic dynamism
of terminal regions of the chromosomes could favor
transposition events, leading to the dispersion of seg-
ments. In contrast, the interstitial and proximal chroma-
tid environment occupied by the 5S rRNA genes seems
to be a more stable chromosomal region than the ter-
minal position, thereby avoiding major genomic changes
that could generate the dispersion of these copies.
Despite the intense and particular genomic dynamics

of rDNA repeats (see the next topic of discussion) that
masks most of the phylogenetic relationships of taxa,
some modal patterns based on the 5S rDNA chromo-
somal clusters of cichlids can be observed. This could
indicate a common origin, with the most remarkable ex-
ample being the clusters closely associated with the
centromere of pair 1 in haplochromines. Additionally,
the presence of one interstitial cluster in a t/a chromo-
some pair occurs in all Cichlinae members; this chromo-
some is also detected in some African species
(Pseudocrenilabrinae) and in the Asian E. maculatus
(Etroplinae) (Figure 4). However, the Perciformes Cichli-
dae sister families also include the presence of one inter-
stitial cluster in a t/a but have other diverse patterns of
5S rDNA chromosomal cluster distributions, as observed
in Haemulidae [58,59] and Pomacentridae [60], making
it difficult to identify plesiomorphic patterns.

Genomic organization of rRNA genes with a focus on
Oreochromis niloticus
The extensive variation in the number and chromo-
somal position of rDNA clusters that was observed
among the cichlids analyzed seems to be related to the
intense evolutionary dynamics of repeated units of
rRNA genes that generates divergent patterns of
chromosomal distribution even among closely related
species. Based on data from several organisms, includ-
ing fish, rRNA gene families seem to evolve according
to a combination of the evolutionary processes of birth-
and-death and concerted evolution [6,61], which could
explain the variability observed among related taxa.
The association of rRNA genes and transposable ele-

ments observed here in the O. niloticus genome has
been extensively reported among animals and plants
[56,62-66] and could be responsible for the chromo-
somal cluster variation observed. Drouin [67] shows that
some of the expressed 5S rRNA genes observed in the
mouse and rat genomes were derived from the retro-
transposition of 5S rRNA transcripts. It seems plausible
that the activity of TEs is one possible source for rRNA
gene movement that could generate the spreading of
rDNA clusters as was observed in the cytogenetic ana-
lysis. This is interesting because the cytogenetic mapping
of rRNA genes has been frequently discussed from a
phylogenetic perspective. Such assumptions should be
carefully addressed because the clustering of rRNA
genes seems to reflect their intense and particular evolu-
tionary pathway and not the evolutionary history of taxa.
Contrary to the cytogenetic mapping of the rRNA

genes that yielded major chromosomal clusters for these
genes, the analysis of the O. niloticus genome database
demonstrated only spread copies of both 5S and 18S
rRNA. The data obtained suggest that genome sequen-
cing data are not informative for clarifying the exact
copy number and the correct genomic organization of
repeat DNA. These results are the consequence of the
exclusion of many repeated sequences prior to genomic
assembly in an attempt to facilitate the assembly proced-
ure. However, the information collected provides a per-
spective on rRNA gene spreading in cichlids adding new
information about the organization of rDNAs, at least in
O. niloticus, not based only in chromosomal analysis.
Conclusions
The chromosomal distribution of rRNA genes seems to
reflect an intense and particular evolutionary pathway
that does not follow the evolutionary history of taxa in
most cases and seems to be influenced by the presence
of TEs in the FRs of the rRNA genes. Additionally, the
distinct patterns of organization/spreading of the two
multigene families indicate distinct evolutionary forces
acting in the diversification of these elements in cichlid
genomes, which could reflect the association of distinct
TEs. The organization of rRNA and other repeated
genes has been hindered in completely sequenced gen-
omes due to the difficulty of assembling them into a
genome. Thus, the integration of cytogenetic mapping
and genomic sequencing data, as reported here, leads to
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a better understanding of the genomic organization and
evolution of repeated sequences.
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