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Abstract

Background: Altruistic behavior is defined as helping others at a cost to oneself and a lowered fitness. The lower
fitness implies that altruists should be selected against, which is in contradiction with their widespread presence is
nature. Present models of selection for altruism (kin or multilevel) show that altruistic behaviors can have ‘hidden’
advantages if the ‘common good’ produced by altruists is restricted to some related or unrelated groups. These
models are mostly deterministic, or assume a frequency dependent fitness.

Results: Evolutionary dynamics is a competition between deterministic selection pressure and stochastic events
due to random sampling from one generation to the next. We show here that an altruistic allele extending the
carrying capacity of the habitat can win by increasing the random drift of “selfish” alleles. In other terms, the fixation
probability of altruistic genes can be higher than those of a selfish ones, even though altruists have a smaller fitness.
Moreover when populations are geographically structured, the altruists advantage can be highly amplified and the
fixation probability of selfish genes can tend toward zero. The above results are obtained both by numerical and
analytical calculations. Analytical results are obtained in the limit of large populations.

Conclusions: The theory we present does not involve kin or multilevel selection, but is based on the existence of
random drift in variable size populations. The model is a generalization of the original Fisher-Wright and Moran
models where the carrying capacity depends on the number of altruists.

Keywords: Frequency independent fitness, Genetic drif, Fixation probabilities, Non-structured populations
Background
Light production in Vibrio fischeri [1,2], siderophore
production in Pseudomonas aeruginosa [3], invertase en-
zyme production in Saccharomyces cerevisiae [4], stalk
formation by Dictyostelium discoideum, [2,5] are but a
few examples of individuals in a community who help
others at their own cost by devoting part of their
resources to this task. This behavior has been termed
“altruistic”. From the evolutionary point of view, altruists
have a lower fitness than other individuals in the com-
munity who don’t help, but are recipient of the benefits
produced by altruists. Through this paper, we will call
these latter individuals ‘selfish’.
From the inception of evolution theory, the problem

of the existence of altruists has been puzzling: how can a
mutant with lower fitness prevail? And how does a com-
munity of altruists resist the spread of selfish allele (see
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[6] for a historical perspective)? In the last 40 years
many models have emerged to explain the apparent
contradiction between the smaller fitness of altruists and
their widespread presence in various communities (for a
review, see [7,8]). It is shown in these models that the
actual fitness of an altruistic gene can be increased by
other factors such as ‘common good’ restricted to kin
(inclusive fitness [9,10]), or advantages conferred at an-
other level of selection (group or multilevel selection
[11,12]). These models which can be formulated through
the Price equation have seen various generalizations and
they are sometimes widely debated (see [13] and the nu-
merous replies it has elicited).
The above models are either deterministic, i.e. popula-

tions change their size exactly according to their relative
fitness, or involve frequency dependent fitness [14,15].
We show here that another possibility exists: an altruis-
tic individual can produce a common good benefiting
everybody in the community regardless of its nature (al-
truistic or selfish) and therefore increasing the carrying
e BioMed Central Ltd. This is an Open Access article distributed under the terms
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.
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Figure 1 Variable carrying capacity. (a): A community where the
carrying capacity is an increasing function of altruist number, varying
from Ni when the population is composed only of selfish individuals
to Nf (Nf > Ni) when only altruists are present. (b) Two examples of
random walks describing the stochastic behavior a such a system
(transition probabilities 4–7), where m,n are the number of selfish
and altruistic individuals. Red line: loss of S’s; Blue line: loss of A. A
Moran process in this scheme corresponds to a random walk
constrained to remain on an anti-diagonal line.
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capacity of the habitat. Even though selfish individuals
have always a higher fitness, genetic drift effects can
favor the altruists.
It was established by the founding fathers of Popula-

tion Genetics that a mutation that confers a relative fit-
ness 1 + s does not automatically spread and take over
the whole community, but has only a higher probability,
called the fixation probability, to do so [16-18]. For a
community of fixed size N of haploid individuals, the
fixation probability π of a mutant appearing at one copy,
for small selection pressure Ns < <1, is

π � 1
N

þ s
2

ð1Þ

The fixation probability is composed of two terms:
even in the absence of selection, the population will be-
come homogenic; in this neutral case, all individuals at
generation zero have an equal probability 1/N of becom-
ing fixed. When a beneficial mutation is present, the fix-
ation probability of its carrier is increased by the relative
excess fitness.
For populations of fixed size, as can be seen from ex-

pression (1) or the more precise expression (10)
obtained by Kimura [19] and Moran [20], the fixation
probability is a monotonically increasing function of the
sole relative fitness. In the competition between alleles,
arguments based on fitness parameter alone or the fix-
ation probability lead to the same conclusions . How-
ever, if population size is not fixed, the fixation
probability π, which takes into account both randomness
due to finite size and selection, can lead to other conclu-
sions than the fitness parameter alone.
Consider an altruistic gene that by some means (pro-

duction of a ‘common good’, limited grazing of natural
resources, . . .) allows the carrying capacity to increase: if
the community were composed only of altruists its
population size would be Nf; if it were composed only of
selfish individuals the population size would be Ni (Ni <
Nf ) (Figure 1a). The production of common good
decreases the relative fitness of altruists by s.
Consider now the fixation probability πA of one altru-

ist mutant appearing in a community of Ni selfish in-
dividuals. A crude use of expression (1) shows that
πA ¼ 1=Nið Þ � s=2. On the other hand, the fixation prob-
ability πs of one selfish individual appearing in a commu-
nity of Nf altruists is πS ¼ 1=Nf

� �þ s=2. We see that if

s <
1
Ni

� 1
Nf

ð2Þ

i.e. the cost to the altruist is smaller than the benefits
in term of relative population increase, then an altruist
has a larger fixation probability than a selfish one, even
though its relative fitness is smaller. The relative
advantage of a selfish mutant is compensated by the
increased ‘random noise’ to which it is exposed. Note
that in a deterministic model of the above process, the
A always lose, since S individuals always increase their
proportion.
The above argument will be refined in the following.

In the next section, we formulate precisely the stochastic
process of altruism outlined above by generalizing the
Moran model for non-structured, well mixed popula-
tions and we show that altruists can indeed be favored
in their competition with selfish individuals. We outline
the amplification of this advantage in geographically
structured, viscous populations in the third section. The
final section is dedicated to concluding remarks.

Results and discussion
Stochastic model for altruism
The fundamental aspects of population genetics were
clarified in the framework of the classical Fisher-Wright
(FW) stochastic model of non-overlapping generations
or its continuous time alternative introduced by Moran
[20]. Moran and FW are equivalent in the limit of large
populations, where both are well approximated by the
same diffusion equation [21]. These are the simplest
models that capture the key elements of population gen-
etics (genetic drift, fixation probability, fixation time,. . .)
with the fewest possible ingredients.
In the Moran model, a population of size N is com-

posed of two types of individual, say A and S. Empty
spots are created randomly with fixed rate α, increasing
the carrying capacity by unity. Once an empty spot has
been created, it will be colonized by the progeny of ei-
ther an A or an S individual according to their propor-
tion in the community. In order to keep the population
constant, Moran added the constraint that the col-
onization of a new spot be followed immediately by the
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death of an individual in the community, restoring the
population size to N. Moran is therefore a simultaneous
model of duplication and annihilation; the transition
probability densities for the A to increase or decrease
their number n by one individual are

Wþ n ! nþ 1ð Þ ¼ αnm ;

W� n ! n� 1ð Þ ¼ cαnm

ð3Þ

where m is the number of S individuals and c is the
‘cost’: 1/c is the relative fitness of the A and c > 1 indi-
cates a selective disadvantage. W+ stands for the prob-
ability density that the new spot is colonized by an A
and death occurs among the S. In principle, a similar
set of equations must be written for the S individuals;
however, as the population size is fixed, nþm ¼ N ,
the quantity m in eq.(3) can be replaced by N-n and
the whole stochastic process treated as a one dimen-
sional random walk for the A.
We generalize this model by including two ingredients.

First, the fixed size constraint can be relaxed and we let
N vary between two bounds Ni and Nf : empty spots are
created-colonized and individuals die, without these two
events necessarily succeeding each other. More import-
antly, in order to include the effects of altruists, we sup-
pose that the rate of creation of empty spots is
proportional to the number of altruists and is equal to
αn; in contrast, the death rate is proportional to the
number of S individuals and is equal to αm. This is the
simplest hypothesis that implies that the increase in the
carrying capacity of the habitat is proportional to the
number of altruists (see also Methods, mean field
approximation).
The stochastic model that captures all these features is

a two dimensional random walk with the following tran-
sition probability densities (Figure 1b):

W n;mð Þ ! n;mþ 1ð Þð Þ
¼ Nf � nþmð Þ� �

αnð Þm ð4Þ
W n;mð Þ ! nþ 1;mð Þð Þ
¼ Nf � nþmð Þ� �

αnð Þn ð5Þ
W n;mð Þ ! n;m� 1ð Þð Þ
¼ mþ n� Nið Þ αmð Þm ð6Þ

W n;mð Þ ! n� 1;mð Þð Þ
¼ c mþ n� Nið Þ αmð Þn ð7Þ

Consider for example the first two lines of the above
equations, which are about birth events: the factor
Nf � n�m
� �

is the relaxation of Moran constraints and
insures that population size remains below Nf ; the factor
αn accounts for the fact that empty spot creations are
proportional to the number of A; finally, once a birth
event has occurred, the probability for it to be an A or
an S is proportional to the number of the corresponding
sub-populations present at this time. The last two lines,
which govern population decrease, are similar: the factor
mþ n� Nið Þ ensures that population size remains above
Ni; the factor αm is the death rate (population decrease)
for everybody due to the presence of selfish individuals.
The cost of altruism is included in these equations: the
proportion of A is n= mþ nð Þ , but once a death event
has occurred, the probability for it to be an A is:

cn
mþ cn

>
n

mþ n

if c > 1. The results below don’t change significantly if
the cost of altruism is included in other rates. For ex-
ample, a higher probability for an S to reproduce, or any
combination that favors S over A. Note that if the in-
crease/decrease rates were independent of m and n, we
recover the Moran model by setting Nf ¼ Ni þ 1 , in
which case each birth/death is succeeded by a death/
birth event (see Methods, relation to Moran model).
The above rates ensure that if A are lost (n= 0), the

population size tends toward Ni and if S are lost (m= 0),
it tends toward Nf. Note that in the mean field approxi-
mation of the above process where fluctuations are
neglected and the deterministic limit is taken, the A are
always eliminated if c > 1 (see Methods, mean field
approximation).
In finite size populations however, fluctuations play an

important role. The focus of this paper is the computa-
tion of the fixation probability of the above process and
the probability that altruists or selfish mutants take over
the community. The fixation probability π(k) of a gen-
eral stochastic process beginning with the initial state k
and fixing either to k0 or k1 is the solution of Kolmo-
gorov backward equation which is a linear set of equa-
tions [22]

X
q

π kð Þ � π qð Þð ÞW k ! qð Þ ¼ 0 ð8Þ

π k0ð Þ ¼ 0 ; π k1ð Þ ¼ 1 ð9Þ

where the sum is over all the states q attainable from
the state k with transition probabilities W k ! qð Þ . For
one dimensional, one step processes such as Moran,
k = n and the solution of the linear system is easily
obtained [22]:

π nð Þ ¼ 1� cn

1� cN
� e�Nμs � 1

e�Ns � 1
ð10Þ

where μ ¼ n=N is the proportion of the A. The approxi-
mation corresponds to the Kimura solution obtained
through a backward diffusion equation [19] and c ¼
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1= 1þ sð Þ . Expression (1) is the first order expansion of
the above expression in s.
For the two dimensional process (4–7) where k ¼
m; nð Þ is the initial number of the S and A, no closed
form solution can be obtained. We can however solve
equation (8) numerically by standard linear solvers or
else resort to a Gillespie algorithm [23] to solve the sto-
chastic equations (4–7) directly. Both these methods are
used in this paper and the analytical approximations
obtained below are compared to them.
For large populations, we use the usual diffusion equa-

tion approximation of eq.(8) [19,22]. For weak selection
pressure, the diffusion approximation error for the sim-
ple Moran process is O 1=Nð Þ [24]; for more general
cases, the validity of the approximation has been dis-
cussed by Zhou and Qian [25]. Setting x ¼ m=Nf ; y ¼
n=Nf ;k ¼ Ni=Nf ; and denoting π(x, y) the fixation prob-
ability for the initial composition (x, y), the diffusion
equation reads:

F x@xπ þ y@yπ
� �þ

1=2Nf
� �

G x@2
xxπ þ y@2

yyπ
� �

þ
c� 1ð ÞH �@yπ þ 1=2Nf

� �
@2
yyπ

� �
¼ 0

ð11Þ
Figure 2 Fixation probabilities. Comparison of analytical solution (12) (so
pressure indicated by the arrows: Nf�s ¼ 0:02; 0:05; 0:1; 0:2; 0:5; 1; 2. Nf= 10
where

F ¼ yþ kx� xþ yð Þ2
G ¼ y� kxþ x2 � y2ð Þ
H ¼ xy xþ y� kð Þ

and π x; 0ð Þ ¼ 0, π 0; yð Þ ¼ 1. This is a complicated ellip-
tic partial differential equation. In the absence of selec-
tion (c= 1) however, the trivial neutral solution is
π x; yð Þ ¼ y= xþ yð Þ which as expected, is just the propor-
tion of altruists. Building upon this solution, and denot-
ing μ ¼ y= xþ yð Þ for the proportion of altruists and
η ¼ xþ y , we can check that to the first order of per-
turbation �s ¼ c� 1ð Þ, the solution reads

π μ; ηð Þ ¼ eNf�sμg ηð Þ � 1

eNf�sg ηð Þ � 1
ð12Þ

where

g ηð Þ ¼ γ 1� 1=ηNf
� �

and γ is a numerical coefficient: γ ¼ 1=Nf þ 1þ kð Þ=2.
The first order perturbation solution (12), which was
derived for small selection pressures Nf�s≪1, proves in
fact to be an excellent approximation for selection pres-
sure as high as Nf�s ¼ 2, (Figure 2).
lid lines) to numerical solution of eq.(8) for increasing selection
0, Ni= 90.
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The general solution (12) allows for the computation
of the fixation probability of one individual introduced
into a community of the other type. To the first order of
perturbation in �s , the fixation probabilities πA of one A
introduced in a community of S reads:

πA ¼ π m ¼ Ni � 1; n ¼ 1ð Þ

¼ 1
Ni

� γ

2
Ni � 1ð Þ2Nf

N3
i

�s ð13Þ

and the fixation probabilities πs of one S introduced in a
community of A is

πS ¼ 1� π m ¼ 1; n ¼ Nf � 1
� �

¼ 1
Nf

þ γ

2

Nf � 1
� �2

N2
f

�s ð14Þ

Figure (3a) shows the evolution of these probabilities
as a function of selection pressure for various Ni and Nf.
Equations (13,14) show that the condition for the altruist
to be favored, πA > πS , is simply

�N�s < �N�s∗ ¼ ΔN
�N

ð15Þ

where ΔN ¼ Nf � Ni and �N ¼ Nf þ Ni
� �

=2 and we have
kept only the leading terms. �s∗ is the equilibrium relative
excess cost of altruism at which A and S individuals
Figure 3 Criterion for Altruists selection. (a) fixation probabilities πs (red
for Nf= 100 and Ni ¼ 85; 87; 90; 93; 95; 97. Values are obtained by numeric
Increasing Ni are indicated by the arrow. (b) equilibrium selection pressure
and Ni 2 85; 148½ �, as a function of relative population increase, obtained n
become equivalent. Figure 3b shows the excellent agree-
ment between the above results and exact numerical
results. Altruists have a selective advantage if the selec-
tion pressure against them, i.e. the combined effect of fit-
ness and population size, is smaller than the relative
increase in population size. Unlike a Hamilton rule, cri-
terion (15) is a finite size effect and is of purely stochas-
tic nature : because of the demographic effect, selfish
mutants are submitted to a higher stochastic noise than
altruist; this can be sufficient to prevent them from pre-
vailing. Note that the above computations were per-
formed for the limiting case of weak selection (Nfs < <
1), which is considered by most, but not all, scientists, to
be the relevant limit of evolutionary dynamics [26,27].
Direct numerical resolution of eq. (8) shows however
that an equilibrium excess fitness exists even at high se-
lection pressure, given a high enough relative increase in
population size.

Geographically structured populations
The altruists’ advantage can be enhanced for large struc-
tured populations [28-31]. Geographically structured
populations can be modeled as divided into colonies that
exchange migrants [32]. The Moran model on graph is a
non trivial problem [33]; we restrict our treatment here
to the simplest case where the migration time scale is
small compared to fixation time of one mutant (viscous
squares) and πA (blue circles) as a function of selection pressure Nf�s,
ally solving eq.(8). Solid lines are theoretical values (eqs. 13,14).
Nf�s∗ for which πA = πs for multiple combinations of Nf 2 100; 150½ �
umerically. The solid line is the theoretical value (eq.15).



Figure 4 Geographically structured populations. Geographically
structured population where patches can exchange migrants. For
low migration rates, the border between A and S domains can be
modeled as a biased random walk.

Houchmandzadeh and Vallade BMC Evolutionary Biology 2012, 12:61 Page 6 of 9
http://www.biomedcentral.com/1471-2148/12/61
populations): a migrant is either lost or fixed before a
new migration event happens. The argument we develop
below is similar to the two level model of Traulsen and
Nowak [34]. Consider a one dimensional community
subdivided into M colonies (Figure 4), exchanging mi-
grants with neighboring patches at rate m. As the migra-
tion event is rare, these colonies are fixed either into an
A or S state. The probability density per unit time pSA
for an S colony on the border to become an A colony is
to receive one migrant from the neighboring A colony
multiplied by the probability that this mutant gets fixed:

pSA ¼ mNf
� �� πA

Similarly the probability density for an A colony on
the border to become S is

pAS ¼ mNið Þ � πS

Therefore, the movement of the border itself can be
considered a biased random walk. The probability ΠA

for an altruist mutant to take over the whole community
is thus the probability for a mutant to take over one col-
ony and then for this colony to take over the whole
community:

ΠA ¼ πA
1� r

1� rM�1

where r ¼ pAS=pSA . If the criterion (15) is satisfied, then
obviously r < 1 and for large number of communities
M >> 1,

ΠA � πA � Ni

Nf
πS > 0

On the other hand, the probability Πs for a selfish mu-
tant to be fixed is

ΠS ¼ πS
1� 1=rð Þ

1� 1=rð ÞM�1

and ΠS ! 0 for M > > 1: once altruists dominate, the
chances for a selfish mutant to invade the community is
close to zero! Increased random noise due to production
of common good and a small migration rate are an effi-
cient way of keeping selfishness in check.
The above computation concerns the low migration

limit. In the high migration limit, the community is non-
structured and its effective size is� M � Nf. Criterion (15)
shows that in this regime, altruists cannot emerge; this is
indeed equivalent to the deterministic case where emer-
gence of altruists calls for other mechanisms. Between
these two regimes of high and low migration rate, there
is a rich interval where migration rate is a key ingredient
in the competition between altruists and cheaters.
Conclusions
The main concepts of Population Genetics were clarified
in the framework of the original model of Fisher-Wright
and Moran (FWM). These models introduced the key
ingredient of population size and its role in the random-
ness of selection. It became clear in the 1920-30’s that a
beneficial mutation does not spread automatically to the
whole population, but has to overcome the “random
noise” of population sampling over generations. The idea
that random noise plays also a role for the selection of
altruism has been introduced in two kind of models,
which have a marked difference with the model we
present here. The first class of models, formulated
mostly through evolutionary game theory formalism,
concerns fixed size populations, where the transition
rates are frequency dependent [14]: the fitness of an A
individual can be superior to the fitness of an S individ-
ual if the number of A individuals already present is high
enough. It can then be shown, upon very general condi-
tions, that the fixation probability of altruists can be-
come superior to that of selfish ones. These models can
be seen as the generalization of Hamilton’s original idea,
where “altruistic” help is restricted to genetically related
individuals, even though Traulsen [35] has argued that
the underlying mathematics is fundamentally different.
The second class of models concerns group (or multi-
level) selection. It has been shown [34] that the fixation
probability of altruists can be higher than those of selfish
ones, if the population is structured into groups and the
splitting of one group leads to the elimination of an-
other. It has also recently been noticed that random
noise in a growing population can favor altruists during
a transient period [36].
The model we present here is not frequency depen-

dent: an A individual has always a lesser chance of repro-
ducing than an S individual; the mean field description of
this model has only one stable fixed point which corre-
sponds to the disappearance of altruists. Moreover, The
mechanism we propose is for non-structured popula-
tions, even though the altruist effect can be amplified
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when the population is structured into groups with
small migration rate between groups. Imagine a group of
M islands composed only of altruists and another group
of M islands composed only of selfish individuals. Intro-
duce one S mutant in each island of the first group and
one A mutant in each islands of the second group. After
some time, the number of islands in the first group is
increased if the criterion (15) is satisfied.
In summary, we have shown, by a slight generalization

of the Moran model, that in finite size populations, the
fixation probability of altruists can be higher than that of
selfish ones, even though their fitness is lower and their
emergence is ‘forbidden’ by a Hamilton rule. We have
also shown that in large, structured populations, and in
the limit of small migration rate, the same arguments hold.
Production of the ‘common good’ and increase in the
carrying capacity of the habitat increase the random noise
for selfish individuals and can therefore favor altruists.
The aim of the present article is not to contest the

merits of kin/group selection models which have been
investigated during the last forty years with a large
number of case studies. We believe we are providing
an alternative way of thinking about altruism which is
complementary to the above models and which
restores the key ingredients of population genetic to
this topic.

Methods
Diffusion equation derivation
In the discrete backward Kolmogorov eq. (8) set k ¼
m; nð Þ and q all the states reachable from k, i.e. all states
of the form (m± 1, n) and m, n± 1. The equations read

W m; nð Þ ! mþ 1; nð Þð Þ π m; nð Þ � π mþ 1; nð Þð Þþ
W m; nð Þ ! m� 1; nð Þð Þ π m; nð Þ � π m� 1; nð Þð Þþ

. . . ¼ 0

For large populations Nf≫1 , we set x ¼ m=Nf , y ¼
n=Nf and develop the above expression to the second
order in dx ¼ dy ¼ 1=Nf (Kramers-Moyal expansion).
Combining all the resulting terms leads to the partial
differential equation (11). It is fruitful to express this
equation in terms of total relative population η ¼ xþ y
and proportion of altruists μ ¼ y= xþ yð Þ; the inside do-
main shown in Figure 1 then maps into the k; 1½ � � 0; 1½ �
rectangle, where k ¼ Ni=Nf . In these coordinates, the
diffusion equation reads:

Fη@ηπ þ 1
2Nf

G η2@ηηπ þ μ 1� μð Þ@μμπ
� ��

c� 1ð ÞH η@ηπ þ 1� μð Þ@μπ
� �þO c� 1

Nf

� �
¼ 0

where
F ¼ η k � ηþ 1� kð Þμð Þ
G ¼ �k þ η 1� 2μð Þ þ 1þ kð Þμð Þ

H ¼ η η� kð Þμ 1� μð Þ

Mean field approximation
In the deterministic approximation, fluctuations are
neglected. Denoting by m and n the ensemble average of
the number of S and A individuals, their deterministic
evolution equation reads:

dm
dt

¼ W m; nð Þ ! mþ 1; nð Þð Þ
�W m; nð Þ ! m� 1; nð Þð Þ

dn
dt

¼ W m; nð Þ ! m; nþ 1ð Þð Þ
�W m; nð Þ ! m; n� 1ð Þð Þ

It is more fruitful to write directly the evolution of the
proportion of A-individuals μ ¼ n= mþ nð Þ. Using the
expression for transition probabilities (4–7), we have

1
N2

f α

dμ
dt

¼ � c� 1ð Þη η� kð Þμ 1� μð Þ2 ð16Þ

where η ¼ mþ nð Þ=Nf and k ¼ Ni=Nf . It is then obvi-
ous that for c > 1 , dμ=dt < 0 . In the deterministic
model, A-individuals always disappear.
The equation for total population reads

1
N2

f α

dη
dt

¼ η2 1� kð Þμþ k � ηð Þ

� c� 1ð Þ η� kð Þμ 1� μð Þ ð17Þ
for c� 1ð Þ≪1, the stationary solution of this equation,
assuming that μ is held constant is

η ¼ k þ 1� kð Þμ� c� 1ð Þ 1� kð Þμ2 1� μð Þ
k þ 1� kð Þμð Þ2 ð18Þ

which shows that the increase in carrying capacity of the
habitat η - k, at small selection pressure, is mostly pro-
portional to the number of A-individuals. A closer look
at the above equations (16,18) shows that η ¼ k; μ ¼ 0 is
the only stable fixed point when c > 1.

Relation to Moran model
In a simple model where population size is variable,
but birth and death rates are independent of the num-
ber of altruists and selfish individuals, a constant α will
replace (αn) and (αm) in equations (4–7). In the case
where Nf ¼ Ni þ 1 , the stochastic movement pictured
in Figure 1b reduces to a movement on the anti-
diagonal staircase: births and deaths occur only when
the total population N ¼ mþ n is respectively equal to
Ni and Nf. The analog of the Moran process is



Figure 5 Tensor reindexation. (a) To each 2 d index (m,n), a new
1 d index k is associated by scanning sequentially the anti-diagonal
lines. (b) The re-indexation transforms the tensorial equation (8) into

a normal linear system Wk
k′π

k′ ¼ Bk , where πk are the unknowns.

Houchmandzadeh and Vallade BMC Evolutionary Biology 2012, 12:61 Page 8 of 9
http://www.biomedcentral.com/1471-2148/12/61
obtained by computing the two steps transition prob-
abilities WM n;m ! n� 1;m� 1ð Þ . If mþ n ¼ Ni , this
implies first the birth of one individual of one type and
then the death of an individual of the other type. Com-
bining the rates given by eqs.(4–7) where birth and
death rates are constant, we obtain

WM n;mð Þ ! nþ 1;m� 1ð Þð Þ ¼ α2mn
WM n;mð Þ ! n� 1;mþ 1ð Þð Þ ¼ cα2mn

The same expression is obtained if mþ n ¼ Nf .

Numerical resolution of fixation probabilities
Two different kinds of numerical resolution were used
to check the validity of our analytical results on the fix-
ation probabilities: A Gillespie stochastic algorithm and
direct resolution of eq. (8).

Gillespie algorithm
The stochastic equations given by the rates (4–7) can be
seen as 2 chemical reactions for the species Ai ¼ A; Sf g:

Ai !
kþi 2Ai ; Ai !

k�i
�

which we solve by the classical Gillespie algorithm [23]
written in C++. We are interested here only in the fix-
ation probability and not in the fixation time; the pro-
gram can therefore be accelerated by computing only the
nature of the event that occurs at each turn (and not its
time of occurrence). In general, to solve for the fixation
probability, R= 106 stochastic trajectories are generated.

Direct resolution
Equation (8) constitutes a linear system and can there-
fore be solved by standard numerical packages. For the
present case however, the unknowns, i.e. the fixation
probabilities π(m,n) don’t constitute a vector but a sec-
ond rank tensor; the tensor formed from the rates W is
of rank 4. To adapt our linear system to standard linear
solvers, we have to re-index the unknowns and decrease
their rank by one: m; nð Þ↦k . We have chosen the follow-
ing scheme, which corresponds to a sequential scanning
of the anti-diagonal lines (Figure 5a):

k m; nð Þ ¼ δ Ni � 1þ δ � 1ð Þ=2ð Þ þ n ð19Þ
where δ ¼ mþ n� Ni . The m; nð Þ points belong to the
interior of the trapezoid Ni≤mþ n≤Nf , n ≥ 1, m ≥ 1.
The re-indexation transforms the equation (8) into a

normal linear system
X

k′2I kð Þ
π k′
� �� π kð Þ� �

W k ! k′
� � ¼ 0

where I(k) designates the 1 d indexes of the four nearest
neighbors of the point (m,n), where k ¼ k m; nð Þ. The
above equations can be written in standard matrix
notation

Wk
k′π

k′ ¼ Bk ð20Þ

where πk′ are the unknowns. Wk
k′ is a sparse matrix,

which apart from the diagonal elements, has at most four
non-zero elements per line: if k is the image of element
(m,n), then Wk

k′ 6¼ 0 only if k′ is the image of one of the
four nearest neighbors of (m,n), in which case its value is
given according to rates (4–7). The right hand side vector
Bk is a sparse vector provided by the limit conditions
π m ¼ 0; nð Þ ¼ 1: if k′, one of the 4 nearest neighbors of

the element k belongs to the border m= 0, then πk′ ¼ 1
and the corresponding Wk

k′ is transferred to the right
hand side to constitute the vector Bk. Note that because
we index the interior of the trapezoid, the index k itself
can never belong to the border.
Once the linear system (20) has been constituted, it

can be solved by any linear solver. We have used the
commercial package matlab for these manipulations.
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