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CpG islands under selective pressure are enriched
with H3K4me3, H3K27ac and H3K36me3 histone
modifications
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Abstract

Background: Histone modification is an epigenetic mechanism that influences gene regulation in eukaryotes. In
particular, histone modifications in CpG islands (CGIs) are associated with different chromatin states and with
transcription activity. Changes in gene expression play a crucial role in adaptation and evolution.

Results: In this paper, we have studied, using a computational biology approach, the relationship between histone
modifications in CGIs and selective pressure in Homo sapiens. We considered three histone modifications: histone
H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 27 acetylation (H3K27ac) and histone H3 lysine 36
trimethylation (H3K36me3), and we used the publicly available genomic-scale histone modification data of thirteen
human cell lines. To define regions under selective pressure, we used three distinct signatures that mark selective
events from different evolutionary periods. We found that CGIs under selective pressure showed significant
enrichments for histone modifications.

Conclusion: Our result suggests that, CGIs that have undergone selective events are characterized by epigenetic
signatures, in particular, histone modifications that are distinct from CGIs with no evidence of selection.
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Background
CpG islands (CGIs) are unmethylated segments of a gen-
ome that have an increased level of CpG dinucleotides
and a high GC content [1,2]. In the human genome,
most CGIs are either inside or close to the promoter re-
gions of genes [3]. Typically these CGIs occur at or close
to transcription start sites (TSSs) [4]. It is well estab-
lished that CpG sites in promoter CGIs are underme-
thylated in expressed genes, while hypermethylation of
promoter CpG sites is associated with gene silencing [5].
Others CGIs that are distant from known TSSs have
been found in intergenic, 3’ and intragenic regions [6].
There is an extensive literature demonstrating that

structural modifications to chromatin, along with CGI
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methylation, contribute to the functional output of re-
lated genes [7]. The N-terminal tails of histone proteins
can be modified covalently by small molecules (for ex-
ample, phosphorylation, acetylation, methylation) and by
macromolecules (for example, ubiquitination, sumoyla-
tion etc.). The precise environment of the CGI chro-
matin that controls gene regulation is not definitively
established. The general understanding is that by altering
the state of the CGI chromatin, histone modification can
regulate access of the transcription machinery to par-
ticular DNA sequences [8]. Of all the possible histone
modifications, methylation of the lysine or arginine re-
sidues has received the main attention. These modi-
fications can activate or repress the associated genes
depending on which lysine or arginine residues are
methylated [9]. Methylation of histone H3 at lysine 9
(H3K9) or lysine 27 (H3K27) is considered to be a re-
pressive mark [9]. In contrast, H3K4me3, perhaps the
best established epigenetic marker, is robustly associated
with activation of transcription [9]. In mammals, the
trimethylation of H3K4 can be catalyzed by different
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histone methyltransferases, such as MLL1 or ASH1L
[10,11]. The majority of H3K4me3 sites overlap with the
5’ ends of annotated human genes [12] and several stu-
dies have reported the inverse correlation between
two epigenetic marks, DNA methylation and H3K4me3
[13,14]. The H3K4me3 mark also plays a crucial role in
mammalian development [15], and its alteration has been
found to be associated with cancer and other diseases
[16-18]. In addition, both H3K27ac and H3K36me3,
which are known as a promoter mark [19] and a gene
body mark [20], respectively, are associated with transcrip-
tional activation [19,21].
Alterations in gene regulation are thought to play an

important role both in adaptation and evolution [22]. A
recent report proposed that differences in gene ex-
pression levels among primates are associated with the
changes in H3K4me3 [23]. Moreover, another recent
study identified human-specific changes in H3K4me3
levels at TSSs and related regulatory sequences in com-
parison with chimpanzees and macaques [24]. Besides,
the Encyclopedia of DNA Elements (ENCODE) project
is studying different functional elements of human gen-
ome including regions of histone modifications. In par-
ticular they assayed chromosomal locations for 12
histone modification in 46 different cell types [25]. In a
previous study [26], we demonstrated that CGIs under
selective pressure are hypomethylated compared to the
CGIs in other regions of the genome. In this study, we
explored the relationship between selective pressure
signatures of and histone modification (H3K4me3,
H3K27ac and H3K36me3) enrichment in CGIs. We used
the genome-wide histone modification data of thirteen
human cell lines produced by the ENCODE consortium
[27,28]. To define regions under selective pressure we
used three distinct methods [26] that are able to detect
both recent and ancient selective pressure events [29].

Results
We analyzed thirteen cell lines from the ENCODE/Broad
Institute, derived from nine normal and four cancer tis-
sues, respectively. A list of features for each considered
cell line is presented in Additional file 1: Table S1. For
each cell line, we downloaded histone modification data
for H3K4me3, H3K27ac and H3K36me3 marks.
We used the “Peaks Signal” (PS), representing regions

of statically significant enrichment of a specific histone
modification (see Materials and Methods). We down-
loaded genomic coordinates of 27718 unique CGIs de-
fined according to criteria described in the University
of California Santa Cruz Genome Browser (UCSC GB)
(http://genome.ucsc.edu/) (see Materials and Methods).
For each cell line, we estimated the number of CGIs
containing at least one PS of histone modification
and found, on average, 15478, 11903 and 10182 CGIs
containing PSs of H3K4me3, H3K27ac and H3K36me3,
respectively.
To identify genomic regions that may have undergone

selective pressure we used three different approaches
that are sensitive to selective pressure events that oc-
curred in distinct evolutionary epochs.
The first method uses the per-continent “integrated

Haplotype Score” (iHS) [30] and marks recent positive
selection (see Materials and Methods). Using the iHS we
identified 586 genomic regions that have putatively
undergone recent selective pressure. We denoted these
regions as “high iHS regions” (HIRs). Within the HIRs
regions we found 2545 CGIs.
The second approach is based on a comparison be-

tween Homo sapiens and Neanderthal genomes (see
Materials and Methods). The selective sweep scan score
(S score) was used to identify regions of the human gen-
ome with a strong signal for depletion of Neanderthal-
derived alleles. This score, when negative, may indicate
an episode of positive selection in early humans [31].
We found 212 genomic regions with a significant nega-
tive score (5% lowest S regions, hereafter denoted as
5LSRs) containing 348 CGIs.
In the third approach, we looked for sequences that

were conserved across ten primate genomes. These se-
quences are the so-called “Conserved Elements” (CEs)
(see Materials and Methods) and they mark ancient se-
lective pressure events. We downloaded 725627 CEs and
used them to search for CGIs that contain CEs [32].
We identified 13288 unique CGIs that contained at
least one CE.
We, then, computed the fraction of CGIs containing

histone modification marks that show signatures of nat-
ural selection (HIRs, CEs and 5LSRs), and compared it
with an analogous quantity computed for CGIs shown
to have no signals of selective pressure. The presence of
a possible enrichment/diminishment, defined as the ratio
of the percentages of the above two groups, was assessed
by means of a hypergeometric test (see Material and
Methods).

Overall Analysis
We found a significant enrichment of H3K4me3 and
H3K27ac markers for all three signatures of selection in
almost all cell lines (Figure 1, Figure 2 and Additional
file 2: Table S2) while for H3K36me3 the enrichment
reached significance only for the CE signature (Figure 3
and Additional file 2: Table S2).
In order to understand if the results are due to the

same CGIs identified by the three different methods, we
estimated the overlaps among the corresponding CGIs
lists (see Additional file 3). As shown in the figure, the
different sets of CGIs identified are not essentially in-
cluded one in the other.

http://genome.ucsc.edu/


Figure 1 Enrichment of H3K4me3 modification in CpG islands under selective pressure. Black bars represent the fraction of CGIs
containing histone modification marks within regions that show signatures of natural selection (HIRs, CEs and 5LSRs). Grey bars represent the
fraction of CGIs containing histone modification marks within regions that do not show signatures of selective events. The X-axis indicates the
analyzed cell lines. An asterisk (*) above a bar indicates a statistically non-significant difference.

Akhtar et al. BMC Evolutionary Biology 2013, 13:145 Page 3 of 9
http://www.biomedcentral.com/1471-2148/13/145
Position analysis
We investigated whether or not these differences were
dependent on the position of the CGIs in various gen-
omic regions. To do this we followed the same approach
described by Medvedeva et al. [6] dividing the CGIs into
four groups according to their positions with respect to
genes: at the 5’ end of a gene, in the intragenic region, at
Figure 2 Enrichment of H3K27ac modification in CpG islands under s
the 3’ end of a gene, and in the intergenic region. Results
of this analysis are presented as additional information
(see Additional file 4: Table S3) and summarized below.
Analysis of 5’ CGIs demonstrated the same signifi-

cant enrichment pattern as seen in the overall analysis
with significant enrichment of H3K4me3 and H3K27ac
(Additional file 5 and Additional file 6), in almost all cell
elective pressure. Same notation as in Figure 1.



Figure 3 Enrichment of H3K36me3 modification in CpG islands under selective pressure. Same notation as in Figure 1.
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lines for all signatures of selection, and significant en-
richment of H3K36me3 in all cell lines for the CE signa-
ture only (Additional file 7).
Both intragenic and 3’ CGIs were significantly

enriched for H3K36me3 in the majority of cells lines
(nine and ten out of the thirteen, respectively) for the
CE signature (Additional file 8 and Additional file 9),
while analysis of the other markers did not reach sig-
nificance in almost all other cases (Additional file 10,
Additional file 11, Additional file 12 and Additional
file 13).
Finally, regarding intergenic CGIs we found a signifi-

cant enrichment in all cell lines for all considered mar-
kers for the CE signature and in twelve out of thirteen
cell lines for H3K4me3 in the HIR signature (Additional
file 14, Additional file 15 and Additional file 16).

Evolutionary forces analysis
Two major evolutionary forces result in enriched CpG
content: one is based on low levels of DNA methyla-
tion and, consequentially, deamination; and the other is
biased gene conversion (BGC), which acts to repair
TG mismatches caused by the deamination of methyl-
cytosine [33]. According to the role that these two
forces play in CGI maintenance, CGIs can be classi-
fied as hypo-deaminated CGIs or BGC CGIs. We ex-
amined whether or not the relationship that we found
between selective pressure and histone mark enrich-
ment was present in both classes.
We found that both hypo-deaminated and BCG CGIs

showed an enrichment of all markers in the CE signa-
ture in all cell lines, while only BGG CGIs showed
significant enrichment of H3K4me3 and H3K27ac in
the HIR signature in all cell lines (Additional file 17,
Additional file 18, Additional file 19, Additional file 20,
Additional file 21, Additional file 22 and Additional
file 23: Table S4).

Expression divergence between humans and chimps and
histone modifications
Cain et al. [23] have identified genes whose expression
levels differ between species. In particular, by using their
approach we have classified 1888 genes as Differentially
Expressed (DE) between humans and chimpanzees, at a
FDR of 0.050 (see Materials and Methods) among the
whole set of 12559 genes considered in their study [23].
Inside this class, and by applying a GREAT analysis [34]
we associated corresponding sets of genes to CE CGIs
(7436), HIR CGIs (1190) and 5SLR CGIs (214) (see
Materials and Methods). As shown in Additional file 24:
Table S5, the CE CGI genes are significantly enriched for
DE, while HIR CGI genes, even if they do not match our
conservative threshold for statistical significance of
0.001, show a p-value = 0.008. No significant signal is
present in 5SLR CGI genes. In the Additional file 25:
Table S6 we presented the histone modification enrich-
ments referred to the different classes of genes labeled
by their selective signal (present or not), and by their
possible membership to the class of DE. As clear from
the table, we found a significant enrichment of histone
modifications in DE + CE genes, with respect to DE –
CE class (defined as the set of elements in DE not be-
longing to CE), and this is independent of the histone
modification chosen. The same is not true when we
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compare the enrichment in DE + CE genes, with respect
to CE – DE. This suggests that CE plays the central role
for the enrichment. The same is true for HIR if we only
consider H3K4me3, whereas we get at most a marginal
statistical significance if we take H3K27ac and H3K36me3.
No significance at all is found for 5SLR.
As discussed in Materials and Methods, we assumed

the conservative approach to define as PS genes the ones
associated to the list of PS CGIs that were simultan-
eously present in all cell lines. In order to understand if
our results depend on such choice we have also consid-
ered the other extreme case, namely labeling as PS genes
the ones associated to a PS CGIs in at least one cell line.
This approach confirms the previous finding (data not
shown).

Discussion
In this study, we investigated the hypothesis that CGIs
under selective pressure are enriched with histone modi-
fications that are associated with gene activation. To do
this, we analyzed data from thirteen human cell lines for
three well-known histone modifications (H3K4me3,
H3K27ac and H3K36me3) to explore their relation-
ship with both recent and ancient events of selective
pressure.
H3K4me3 and H3K27ac are epigenetic marks that are

generally associated with gene activation [9,19] while
H3K36me3 is associated with transcriptional elongation
[8]. Moreover, H3K4me3 and H3K27ac are evolutionarily
conserved among species [35] and negatively correlated
with DNA methylation [13,14,36,37]. Also H3K36me3
in exons is found to be conserved between human
and mouse [38].
Using the entire set of human CGIs we found that the

CGIs associated with signatures of selective pressure
were significantly enriched with H3K4me3 and H3K27ac
in almost all considered cell lines. H3K36me3, on the
other hand, showed a significant enrichment in global
CGIs only in CE regions: this could be due to a small
sample size effect (Additional file 2). These findings sup-
port a previous study in which we found that CGIs
located in regions under selective pressure are more
protected from DNA methylation compared the CGIs in
other genomic regions [26]. In the same study, we found
that CGIs under selective pressure show a lower SNP
content as well. Here we checked two parameters more:
C+G content and CGIs’ length, and we found that CE
CGIs have a slight but statistically higher G+C content
compared with the remaining CGIs (mean = 0.689 vs.
0.683, t-test p < 2.2 10-16), and (adopting the classification
described by Elango and Soojin [39]) an enrichment of
long (>2000 bp) CGIs (Fisher’s Exact Test p < 2.2 10-16).
We did not find significant differences in length and G+C
content for HIR and 5LSR CGIs.
When we divided CGIs according to their positions
with respect to the genes, we found that the statistical
differences between CGIs with and without signatures of
selective pressure were clearest for CGIs located in the
5’ regions for both H3K4me3 and H3K27ac. This result
is intriguing in the light of the well established evidence
that CGIs at the 5’ ends of genes are involved mainly in
the control of gene expression [40]. It is also possible
that the small sample size led to a lack of statistical con-
fidence in the results for CGIs in other positions. We
noticed a different behavior for H3K36me3. H3K36me3
was the only mark to be enriched in 3’ and intragenic
CGIs in CE regions for majority of cell lines; this finding
is again intriguing considering that H3K36me3 is re-
ported to be a gene body mark [8,20]. In a recent study,
H3K36me3 mark was found to be significantly asso-
ciated with alternative splicing [41]. It is well known
that, alternative splicing is a key reason for protein di-
versity in higher eukaryotes [42]. It has been a fun-
damental question in evolutionary study, how species
having the similar repertoires of protein-coding genes
differ strikingly at the phenotypic level. A very recent
study proposed a link between alternative splicing and
species-specific phenotypic differences among vertebrate
species [43].
Two different evolutionary processes, namely hypo-

deamination and BCG, are involved in the generation
and maintenance of CGIs [33]. The majority of hypo-
deaminated CGIs are usually unmethylated while most
BGC CGIs are constitutively methylated and clustered
in subtelomeric regions. We found H3K4me3, H3K27ac
and H3K36me3 enrichment in CGIs in CE regions, inde-
pendently of the evolutionary process involved in their
generation. Since CGIs belonging to these two groups
differ in their DNA methylation levels, our finding seems
to suggest that the difference we found was quite inde-
pendent of the DNA methylation status.
The impact of natural selection on functional elements

in human genome is also addressed in the last report
from ENCODE project [25]. In that case the authors fo-
cused their attention mainly on the relationship between
negative selection and a subset of functional elements
but they did not specifically address histone modifi-
cations. Positive selection, on the other hand, was ad-
dressed in a recent work by Vernot et al. [44] who
studied the impact of this kind of selective pressure on
DNase I peaks.
Cain et al [23] identified a list of genes that were dif-

ferentially expressed between humans and other pri-
mates. They proposed that epigenetic changes could be,
at least in part, involved in these differences. When we
compared this list with the list of genes associated to the
CGIs, we found a significant enrichment of differentially
expressed genes in the CE CGI genes list, while the HIR
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CGI genes showed a p-value (0.008) near our conserva-
tive threshold for statistical significance (0.001). This
seems to suggest that genes transcriptionally different
between species are more likely located near CGIs with
signature of selective pressure. In literature it is growing
the evidence that epigenetic mechanisms provide a sig-
nificant source of phenotypic variation that, in turn, can
cause evolutionary novelty and potentially influence
adaptation and evolution. Although the exact evolution-
ary significance of our results need further experiments
to be completely defined, our data seem to support the
idea of a close connection between adaptation, evolution
and epigenetic mechanisms.
It has been hypothesized that CGIs are fundamental

regulatory structures that have evolved under selection
in genomes where DNA methylation plays a regulatory
role [24,45]. In particular, CGIs act as a platform where
chromatin modifications and additional signaling help to
define the functional output of the respective genes.
The present analysis concerning H3K4me3, H3K27ac

and H3K36me3 enrichment in CGIs under selective
pressure, supplements the findings of a previous paper
by Cocozza et al. [26]. In that study, we demonstrated a
DNA undermethylation of CGIs under selective pres-
sure. It is well established that a complex, perhaps bidir-
ectional, crosstalk exists between DNA methylation and
histone modification [45] suggesting that these two epi-
genetic mechanisms are, at some extent, dependent one
each other. The overall picture emerging from the two
studies is that CGIs under selective pressure seem to
share definite epigenetic features.
To our knowledge, the present study is the first report

addressing the relationship between histone modifica-
tions and natural selection and the overall framework
emerging from our analyses support the hypothesis that
CGIs that have experienced selection could be characte-
rized by distinct epigenetic signatures.

Conclusion
Analyzing thirteen human cell lines, we found H3K4me3,
H3K27ac and H3K36me3 enrichment in the CGIs that ex-
perienced selective events. Further studies using other epi-
genetic marks could help to clarify the relation between
epigenetic modification and selective pressure in human
genome.

Methods
UCSC CGIs
CGIs coordinates were downloaded from the
“CpgIslandExt” track of the UCSC GB (http://genome.
ucsc.edu/). The CGIs in this track were predicted by
searching the human genome assembly (GRCh37/
hg19) sequence, scoring each dinucleotide and iden-
tifying maximally scoring segments. In this dataset, a
CpG island was defined according to the following
criteria: i) GC content of 50% or greater, ii) length
of at least 200 bp, and iii) observed CpG / expected
CpG ratio greater than 0.6. The CGI set that we
obtained consisted of 27718 CGIs (this excluded the
CGIs in the data related to the alternative haplotype
sequences).

5’, intragenic, 3’, and intergenic CGIs
We used the classification system that was described
previously by Medvedeva et al. [6] in which the CGIs
were classified according to their locations. Thus, the
CGIs were classified into four classes:

1. 5’ CGIs - located in the 5’ flank region
(3 kb upstream the TSS), the 5’ UTR-exon, the 5’
UTR-intron, the initial coding exon or the initial
intron.

2. Intragenic CGIs are located in the internal exons
and introns.

3. 3’ CGIs are located in the final exon, the final
introns, the 3’ UTR-exon or in the 3’ UTR-intron.

4. Intergenic CGIs are located at least 3 kb upstream
or downstream from any known gene.

Hypo-deaminated and biased gene conversion (BGC) CGIs
Two sets of CGIs were described by Cohen et al. [33]
using a new parameter-rich evolutionary model in com-
bination with high resolution DNA methylation data to
study the origin of the CpG repertoire in primate ge-
nomes (marmoset, rhesus, orangutan, chimp and hu-
man). Following a clustering analysis, they observed that
most CGIs were constitutively unmethylated and under-
went slow C-to-T deamination. They denoted this group
as hypo-deaminated CGIs. In contrast, another class of
CGI was constitutively methylated with a rapid deami-
nation rate and was termed as BGC CGIs. For our ana-
lysis, we considered the 9091 hypo-deaminated and 4782
BGC CGIs from the UCSC CGIs sample.

Histone modification data
The histone modification (H3K4me3, H3K27ac and
H3K36me3) data for thirteen human cell lines (HUVEC,
Monocytes-CD14+_RO01746 (CD14+), HMEC, HSMM,
HSMMtube, NH-A, NHDF-Ad, NHEK, NHLF, K562,
HeLa-S3, HepG2 and Dnd41) were downloaded from
the “Broad histone” track of the UCSC GB. This track
contains genome-wide histone modification data of differ-
ent cell lines, generated using ChIP-seq high-throughput
sequencing as a part of the ENCODE project [28]. In this
study, we used the “Peaks Signal” (PS), which identifies
discrete intervals of ChIP-seq fragment enrichment. In
particular, we considered the CGIs in our sample that
contained at least one PS.

http://genome.ucsc.edu/
http://genome.ucsc.edu/
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Integrated haplotype score (iHS)
The iHS belongs to the Extended Haplotype Homozy-
gosity statistic “family” [46] and is a marker of recent
positive selection [30]. The iHS measures the decay of
identity, as a function of distance, of haplotypes that
carry a specified “core” allele. We downloaded the iHS
normalized values from the “HGDP iHS” track of the
UCSC GB. The scores were calculated using SNPs geno-
typed in 1043 individual taken from 53 populations
worldwide by the Human Genome Diversity Project in
collaboration with the Centre d’Etude du Polymor-
phisme Humain (HGDP-CEPH). The 53 populations
were divided into seven continental groups: Africa
(Bantu populations only), Middle East, Europe, South
Asia, East Asia, Oceania and the Americas. For each
population group, the iHS was calculated and then nor-
malized [30]. Per-SNP iHSs were smoothed in windows
of 31 SNPs, centered on each SNP. The final score is -
log10 of the proportion of smoothed scores higher
than each SNP’s smoothed score. For our analysis, we
used the Batch Coordinate Conversion (liftOver) utility
(UCSC GB) to convert the genome coordinates from as-
sembly NCBI36/hg18 to assembly GRCh37/hg19. We
scanned the normalized iHSs across the whole genome
and selected the genomic intervals where the iHS was ≥ 2.
After these regions were identified, we extended their
boundaries to the nearest loci where the iHS exactly
vanished.

Selective sweep scan (S): the 5% lowest S scores
The S score is based on a comparison between Homo sa-
piens DNA and Neanderthal DNA [31]. We downloaded
the regions with S scores from the “5% Lowest S” track
of the UCSC GB and denoted them as “5LSRs” (5% low-
est S regions). Green et. al.[31] identified polymorphic
sites among five modern human genomes and deter-
mined the ancestral or derived state of each SNP. The
states of the human alleles were used to estimate the
expected number of derived alleles in Neanderthal in a
100000-base window around each SNP. The S scores were
used to compare the observed number of Neanderthal al-
leles to the expected number in each window. A positive S
score indicates more derived alleles in Neanderthal than
expected given the frequency of derived alleles in human;
a negative S score, on the other hand, indicates fewer de-
rived alleles in Neanderthal, which might suggest positive
selection in the human lineage after divergence from
Neanderthal and before divergence in human populations.
The 5LSRs represent the regions in the 5% lower percen-
tile of the S score.

Conserved elements (CEs)
CEs are sequences in the genome that are conserved
across species [47]. Conserved regions have a reduced
rate of evolution compared to the expected rate under
neutral drift. The CEs used in this study were down-
loaded from the “Conservation (cons46way)” track of the
UCSC GB. This track shows measurements of evolution-
ary conserved elements using two phylogenetic methods,
phastCons and phyloP. The CEs used in this study were
predicted using ten primates, Homo sapiens (reference
species), Pan troglodytes, Gorilla gorilla, Pongo pygmaeus
abelii, Macaca mulatta, Papio hamadryas, Callithrix
jacchus, Tarsier syrichta, Microcebus murinus and Oto-
lemur garnettii.

Gene expression data
The complete list of the 12559 genes expressed in
lymphoblastoid cell lines LBEG (LymphoBlastoid Ex-
pressed Genes) and studied in [23] has been obtained
from supplementary data (FileS2.xls) available on “Gen-
etics” journal web site. From this list we selected the
subset of 1888 genes differently expressed (DE genes)
between H. sapiens and P. troglodytes using an FDR cut-
off of 0.050.
We associated each group of CGIs (CE, HIR, 5SLR)

with their putative target genes trough Genomic Regions
Enrichment of Annotations Tool (GREAT) by using the
default association rule [34] obtaining: 10867 CE CGIs
genes, 1726 HIR CGIs genes and 275 5SLR CGIs genes.
We then restricted each set of genes to the intersection
with LBEG, retaining 7436 CE CGIs genes, 1190 HIR
CGIs genes and 214 5SLR genes.
We tested the enrichment of DE in each set of genes

associated with the considered signatures of selection by
using Fisher’s Exact Test.
To be conservative, we have intersected the list of PS

CGIs identified by considering each cell line and each
particular histone modification. Hence, the previous
GREAT analysis allows labelling as PS the associated
genes. We have tested with a Fisher’s Exact Test the en-
richment of PS genes inside the classes obtained by
overlapping selective signatures and DE.

Statistical analysis
We used a hypergeometric-based approach to test the null
hypothesis that the possible enrichment of H3K4me3,
H3K27ac and H3K36me3 is independent of the presence
of signals of natural selection. In particular we considered:
k, the observed number of CGIs containing both PSs and
signatures of selective pressure, as the number of success
in the sample; n, the number of CGIs characterized by sig-
natures of selective pressure only, as the sample size; M,
the total number of CGIs with PS, as the number of
successes in the population; and N, the total number of
CGIs, as the population size (see Additional file 2:
Table S2, Additional file 4: Table S3 and Additional
file 23: Table S4). For statistical significance we set
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the threshold for the Bonferroni corrected p-value at
10-3. All the statistical analyses were performed with
R ver. 2.14.2 (R Foundation for Statistical Computing,
Vienna, Austria; http://www.r-project.org/).
Additional files

Additional file 1: Table S1. Characteristics of cell lines used in this study.

Additional file 2: Table S2. Raw data used to calculate CGIs enriched
with H3K4me3, H3K27ac and H3K36me3 in different cell lines.
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