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Abstract

Background: The Solanaceae is a plant family of great economic importance. Despite a wealth of phylogenetic
work on individual clades and a deep knowledge of particular cultivated species such as tomato and potato, a
robust evolutionary framework with a dated molecular phylogeny for the family is still lacking. Here we investigate
molecular divergence times for Solanaceae using a densely-sampled species-level phylogeny. We also review the
fossil record of the family to derive robust calibration points, and estimate a chronogram using an uncorrelated
relaxed molecular clock.

Results: Our densely-sampled phylogeny shows strong support for all previously identified clades of Solanaceae
and strongly supported relationships between the major clades, particularly within Solanum. The Tomato clade is
shown to be sister to section Petota, and the Regmandra clade is the first branching member of the Potato clade.
The minimum age estimates for major splits within the family provided here correspond well with results from
previous studies, indicating splits between tomato & potato around 8 Million years ago (Ma) with a 95% highest
posterior density (HPD) 7–10 Ma, Solanum & Capsicum c. 19 Ma (95% HPD 17–21), and Solanum & Nicotiana c.
24 Ma (95% HPD 23–26).

Conclusions: Our large time-calibrated phylogeny provides a significant step towards completing a fully sampled
species-level phylogeny for Solanaceae, and provides age estimates for the whole family. The chronogram now
includes 40% of known species and all but two monotypic genera, and is one of the best sampled angiosperm
family phylogenies both in terms of taxon sampling and resolution published thus far. The increased resolution in
the chronogram combined with the large increase in species sampling will provide much needed data for the
examination of many biological questions using Solanaceae as a model system.
Background
Divergence times are of major interest for studies of evo-
lutionary biology and historical biogeography, but also
to researchers who focus on understanding various types
of trait evolution, such as the development of chemical
and genetic pathways, climatic niche and geographic
range sizes, and morphological, ecological and behav-
ioural characters. With the recent publication of fully
annotated genomes in the Solanaceae [1-3], genomic
tools now exist for unravelling genetic mechanisms that
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control such traits and their development. What is lack-
ing, however, is a robust phylogenetic framework that
encompasses species and generic diversity across the
family in order to maximise the potential of these new
data sources in a wider evolutionary context. Although
several studies have focused on understanding evolution
of particular characteristics in Solanaceae in a phylogen-
etic context, including analyses of genome and chromo-
some evolution [4-6], life history and polyploidy [7-9],
floral and fruit morphology [10,11], gene family evolu-
tion and sub-functionalization [12-15], and broad-scale
biogeographic patterns [16], only a single study has ex-
amined character evolution through time [8]. A central
problem has been the lack of a robust, densely sampled,
dated molecular phylogeny for the entire family.
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Solanaceae are a particularly interesting angiosperm
family, not only because they include many major crop
species (e.g., potato - Solanum tuberosum, tomato - S.
lycopersicum, eggplant - S. melongena, sweet and chili
peppers - Capsicum spp., tobacco – Nicotiana spp.) and
ornamentals (e.g., Petunia spp., Solanum spp.), but also
a number of taxa used as biological model systems (e.g.
Nicotiana spp., Solanum spp., Petunia spp., Datura spp.)
[17-20]. A taxonomic and phylogenetic framework is
now available for the family at the generic level (see
www.solanaceaesource.org) [21,22]. Separate studies
have explored relationships at tribal [23-26] and gen-
eric levels [27-33], and many phylogenetic studies have
focused on Solanum, a genus that comprises nearly
half of the species within the family [34-40]; see [21]
for references prior to 2006]. Some of these studies
have resulted in taxonomic changes, such as re-
circumscription of the previously distinct genera
Lycopersicon, Cyphomandra, Normania, and Triguera
as parts of a monophyletic Solanum [35,41,42]. Such
changes, although sometimes disruptive in the short
term, have helped to both stabilise names and provide
a better evolutionary context for future studies.
Although a relatively robust understanding of the

major clades within Solanaceae exists, a densely sampled
species-level phylogeny is still lacking. The most recent
molecular systematic study focused on establishing
major relationships within the family, but lacked depth
in terms of sampling as it only included 190 (c. 7.3%) of
a total c. 2,700 Solanaceae species [22]. A larger phylo-
genetic analysis with 995 species by Goldberg and
colleagues [8] focused on the evolution of breeding sys-
tems, and did not discuss details of topology or implica-
tions for family-wide systematics. For Solanum itself, the
most recent phylogeny included only 102 (7.7%) of the
total c. 1,325 species in the genus [43]. Because several
phylogenetic studies at various taxonomic levels across
Solanaceae have since been published (see above), there
is now a large quantity of new sequence data available
for a wider family-level analysis.
Molecular divergence time analyses do not only depend

on the availability of a robust, well-sampled phylogeny, but
also require robust fossil calibration points [44,45]. The
Solanaceae fossil record has never been fully reviewed, and
only a few fossils have been used in molecular studies
[8,46,47]. These studies used fossils as calibration points
without a careful comparison of fossil morphology in
relation to extant diversity. A recent survey of the earliest
fossil record of the Asterid clade, including Solanaceae,
highlighted the need to re-assess the earliest putative
Solanaceae fossils that could provide robust calibration
points for the crown or stem node of the family [48].
This study is part of a collaborative approach to study-

ing the taxonomy and phylogeny of the Solanaceae. Here
we present a densely sampled phylogenetic study of the
family coupled with a molecular dating analysis with fos-
sil calibrations. We review all known seed fossils in the
family, and assess them for identity, age, and phylogen-
etic position. We then use all available sequences for
seven DNA loci found in GenBank with nearly all genera
and 1,075 species represented. A dating analysis is run
using an uncorrelated relaxed molecular clock model
within a Bayesian framework with direct fossil calibra-
tions. The resulting time-calibrated phylogeny offers
important insights into the evolution of the family at dif-
ferent taxonomic levels, and a robust platform for future
evolutionary studies.

Results
Fossil review
A total of 50 fossil records previously assigned to
Solanaceae were found in the literature (Table 1, see
Additional file 1 for full details). These included 39 seed
fossils, one leaf fossil, five flowers, two wood and three
pollen fossils (Table 1). None of the leaf or flower fossils
showed any distinct morphological characters that
allowed us to definitely assign them to the family. Of the
two wood fossils, Solanumxylum paranensis can be
clearly assigned to Solanaceae based on a large number
of anatomical characters such as para- and apotracheal
axial parenchyma that is diffuse in aggregates, simple
perforation plates, bordered and alternate intervessel
pits, homocellular rays, fibres that are polygonal and
quandrangular in section, and the presence of septate fi-
bers (Table 1) [49]. The other wood fossil shows no spe-
cific characters of Solanaceae except those common to
Solanaceae and Asteraceae and lacks axial parenchyma;
we do not consider this a member of Solanaceae
(Table 1) [50]. Of the two pollen records, the classifica-
tion of Datura cf. discolor awaits further examination,
since no description or illustration of the fossil was
provided in the original publication (Table 1). A pollen
fossil-taxon from California, based on two poorly preserved
specimens of 3-colporate, 5-colpate, prolate shaped grains
with striate ornamentation, resembles pollen grains of
Lycium, Nolana, and Hyoscyamus [51,52]. Similar charac-
ters appear in the pollen of the unrelated genera Brucea
(Simaroubaceae) and Skimmia (Rutaceae) [51,53], and
hence we have not assigned this pollen fossil-taxon to
Solanaceae for our analysis (Table 1).
The putative Solanaceae seed fossils were analysed

using a combination of characteristics known from
clades within the family [54]: (1) Seeds flattened, (2) cir-
cular to reniform in shape, (3) hilum sub-laterally or lat-
erally positioned, and (4) testa cells sinuate-margined.
We assigned seeds with all four of these characters to
the subfamily Solanoideae (N = 28), while those with
some but not all of these were assigned to the family as
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Table 1 Fossil records of Solanaceae

Name Age (Mya) Epoch Organ Fossil strata Country Solanaceae Phylogenetic
positioning

Datura cf.
stramonium

3.6 - 2.6 Pliocene: Piazencian seed Kholmech, Dnieper river Belarus Yes Solanoideae

Hyoscyamus sp. 5.3 - 2.6 Pliocene seed Kroscienko Poland Yes Solanoideae

Hyoscyamus
niger

3.6 - 2.6 Pliocene: Piazencian seed Pont-de-Gail, Cantal France Yes Solanoideae

Physalis
alkekengi

7.3 - 3.6 Mio/Pliocene: Messinian-
Zanclean

seed Saugbagger Flora France Yes Solanoideae

Physalis
alkekengi

3.6 - 2.6 Pliocene: Piazencian seed Kholmech, Dnieper river Belarus Yes Solanoideae

Physalis
alkekengi

3.6 - 2.6 Pliocene: Piazencian seed Bezirk Halle Germany Yes Solanoideae

Physalis
pliocenica

28.4 - 23.0 Oligocene: Chattian seed Zentendorf Germany Yes Solanoideae

Physalis
pliocenica

5.3 - 2.6 Pliocene seed Kroscienko Poland Yes Solanoideae

Physalis
pliocenica

11.6 - 7.3 Miocene: Tortonian seed Stare Gliwice Poland Yes Solanoideae

Physalis
pliocenica

13.7 - 11.6 Miocene: Serravallian seed Tongrube Forst Neukollm Germany Yes Solanoideae

Physalis
pliocenica

13.7 - 11.6 Miocene: Serravallian seed Klettwitz Germany Yes Solanoideae

Physalis
alkekengi

7.3 - 3.6 Mio/Pliocene: Messinian-
Zanclean

seed Nochten-Ost Germany Yes Solanoideae

Physalis aff.
alkekengi

5.3 - 3.6 Pliocene: Zanclean seed Baldevo Formation Bulgaria Yes Solanoideae

Scopolia
carniolica

3.6 - 2.6 Pliocene: Piazencian seed Bezirk Halle Germany Yes Solanoideae

Solanispermum
reniforme

48.0 - 46.0 Eocene: Late Ypresian/Early
Lutetian

seed Lower Bagshot (Arne), Poole
Formation

UK Yes Solanaceae

Solanispermum
reniforme

48.0 -
46.0

Eocene: Late Ypresian/
Early Lutetian

seed Bournemouth Freshwater Beds,
Poole Formation

UK Yes Solanaceae

Solanispermum
reniforme

44.0 - 40.0 Eocene: Late Lutetian seed Boscombe Sand Formation UK Yes Solanaceae

Solanispermum
reniforme

40.4 - 37.2 Eocene: Bartonian seed Highcliffs sands/Cliff End Beds,
Barton Formation

UK Yes Solanaceae

Solanispermum
reniforme

33.9 - 28.4 Oligocene: Rupelian seed Bovey Tracey UK Yes Solanaceae

Solanum arnense 48.0 - 46.0 Eocene: Late Ypresian/Early
Lutetian

seed Lower Bagshot (Arne), Poole
Formation

UK Yes Solanaceae

Solanum cf.
persicum

3.6 - 2.6 Pliocene: Piazencian seed Kholmech Belarus Yes Solanoideae

Solanum
dulcamara

7.3 - 3.6 Mio/Pliocene: Messinian-
Zanclean

seed Saugbagger Flora France Yes Solanoideae

Solanum
dulcamara

3.6 - 2.6 Pliocene: Piazencian seed Bezirk Halle Germany Yes Solanoideae

Solanum
dulcamara

3.6 - 2.6 Pliocene: Piazencian seed Nordhausen Germany Yes Solanoideae

Solanum
dulcamara

3.6 - 2.6 Pliocene: Piazencian seed Rippersroda Germany Yes Solanoideae

Solanum
dulcamara

5.3 - 2.6 Pliocene seed Tegelen-Sur-Meuse Holland Yes Solanoideae

Solanum
dulcamara

3.6 - 2.6 Pliocene: Piazencian seed Pont-de-Gail, Cantal France Yes Solanoideae
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Table 1 Fossil records of Solanaceae (Continued)

Solanum
dulcamara

3.6 - 2.6 Pliocene: Piazencian seed Pont-de-Gail, Cantal France Yes Solanoideae

Solanum
dulcamara

5.3 - 2.6 Pliocene seed Kroscienko Poland Yes Solanoideae

Solanum nigrum 11.6 - 5.3 Miocene: Tortonian-
Messinian

seed North Rhine, Hambach Germany Yes Solanoideae

Solanum sp. 5.3-2.6 Pliocene seed Limburg & Prussian border Holland Yes Solanoideae

Cantisolanum
daturoides

55.0 –
50.0

Eocene: early Ypresian seed London Clay Formation UK No -

Unknown
Solanaceae

5.3-2.6 Pliocene seed Limburg & Prussian border Holland No -

Physalis sp. 5.3 - 0.0 Plio/Pleistocene seed Torre Picchio section (P11 & P12),
Santa Maria di Ciciliano Formation

Italy ? 1 -

Solanum sp. 1.7 - 1.2* Pleistocene seed Olduvai Gorge Tanzania ? 1 -

Physalis sp. 23.0 - 16.0 Miocene: Aquitanian-
Burdigalian

seed Kireevsky Village, Ob River Russia ? 2 -

Solanum sp. #1 3.6 - 2.6 Pliocene: Piacenzian seed Chernoluch Village, Irtysh River Russia ? 2 -

Solanum sp. #2 16.0 - 11.6 Miocene: Langhian-
Serravallian

seed Novonikolsky Village, Irtysh River Russia ? 2 -

Solanum sp. #2 16.0 - 11.6 Miocene: Langhian-
Serravallian

seed Ebargulsky Village, Irtysh River Russia ? 2 -

Solanumxylon
paranensis

16.0 - 11.6 Miocene: Langhian-
Serravallian

wood Paraná Formation Argentina Yes Solanaceae

Solanaceae or
Asteraceae

70.6 - 65.5 Cretaceous: Maastrichtian wood Panoche Formation, Del Puerto USA No -

Pollen forma C 72.0 - 68.0 Cretaceous: Campanian-
Maastrichtian boundary

pollen San Joaquin Valley (D-1 & D-2),
Great Valley Sequence

USA No -

Datura cf.
discolor

37.2 - 33.9 Eocene: Priabonian pollen Florissant Basin USA ? 1 -

Solanum sp. 5.3 - 0.0 Plio/Pleistocene pollen Olduvai Gorge Tanzania ? 1 -

Solandra
haeliadum

55.8 -33.9 Eocene leaf Salcedo Italy No -

Solanites
brongniartii

33.9 - 23.0 Oligocene flower Aix-en-Provence France No -

Solanites crassus 55.8 - 40.4 Eocene: Lutetian-Ypresian flower Claiborne USA No -

Solanites pusillus 55.8 - 40.4 Eocene: Lutetian-Ypresian flower Claiborne USA No -

Solanites
saportanus

55.8 - 40.4 Eocene: Lutetian-Ypresian flower Claiborne USA No -

Solanites
sarachaformis

55.8 - 40.4 Eocene: Lutetian-Ypresian flower Claiborne USA No -

List of all known fossil records of Solanaceae. Fossils highlighted in bold were scanned using high-resolution X-ray computed tomography [T.Särkinen, M.Collinson,
P.Kenrick, F.Ahmed, unpublished observations]. For full details of the fossil and references to primary sources, see Additional file 1.
1 No description nor illustration or proper reference to specimen.
2 Reference not located.
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a whole (N = 6) (Table 1) [10]. The currently recognised
earliest fossils assignable to Solanaceae include two seed
fossils from Eocene Europe: Solanispermum reniforme
recorded from various beds from southern England
[55,56], and Solanum arnense, a fossil-taxon described
based on a few specimens found from the Lower
Bagshot (Table 1) [55]. Neither of these shows the com-
bination of flat seeds with sinuate-margined testa cells, a
unique combination that could tie them to the tribe
Solanoideae. The flattened seeds of Solanispermum
reniforme lack sinuate margined testa cells, and Solanum
arnense seeds show the characteristic testa cells but
seeds are round rather than flattened. Hence, we con-
sider these fossils as earliest evidence of Solanaceae and
the presence of the family in Eocene Europe, but do not
assign them to any particular clade within the family.
Seeds of the fossil-taxon Cantisolanum daturoides [57]
have previously been cited as the oldest known
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Solanaceae fossil by some authors [10] but doubtfully a
member of the family by others [48]. Results from a CT-
scanning study have shown that this Cantisolanum seed
is anatropous and does not belong to Solanaceae, but
has likely affinities to the monocot family Philydraceae
[T. Särkinen, M. Collinson, P. Kenrick, F. Ahmed,
unpublished observations].
Solanaceae phylogeny
Our final supermatrix had a taxon coverage density
of 0.45, and included 1,075 species of Solanaceae,
representing all but two genera (the monospecific
Darcyanthus and Capsicophysalis) and 40% of total spe-
cies within the family, including 34% sampling of species
within the large genus Solanum. Two plastid regions,
ndhF and trnL-F, were available for all genera except
Darcyanthus and Capsicophysalis and the plastid and
nuclear regions ITS, waxy and trnL-F were the most
densely sampled regions at the species level (Table 2).
The matrix included a total of 4,576 variable characters,
with an aligned length of 10,672 bp (Table 2). A total of
1,902 bp were excluded from analyses due to ambiguous
alignment (see Methods section) resulting in a matrix of
8,770 bp (Table 2). Proportionately, waxy (33.9%) and
ndhF (20.6%) contributed most PI (parsimony inform-
ative) characters (Table 2). The relatively little-used plas-
tid region trnS-G showed a surprising number of PI
characters (13.5% of total), considering it had relatively
poor taxon coverage density (0.23), compared to trnL-F
which had a coverage of 0.66 but only 6.6% of total PI
characters (Table 2). The final matrix included 54.7%
missing data (Table 2). At the species level, there was an
average of 58.7% missing data, as measured by number
of base pairs, but only 49.9% when measured in terms of
PI characters expected from the missing regions.
Table 2 Supermatrix details

Region Genome Genera Species Aligned
length1

Variable
characters

%

ITS Nuclear
ribosomal

51 765 585 461 78.8

matK Plastid 44 287 1027 419 40.8

ndhF Plastid 90 472 2109 960 45.5

psbA-
trnH

Plastid 30 223 698 340 48.7

trnS-G Plastid 15 246 1329 694 52.2

trnL-F Plastid 90 707 905 353 39.0

waxy Nuclear 41 708 2085 1349 64.7

Total 90 1075 8738 4576 52.4

List of the seven regions used for building the Solanaceae mega-phylogeny, showin
proportions of parsimony informative (PI) and variable sites per region. Values have
1ingroup only, excluded regions omitted.
The resolved Maximum Likelihood topology shows
strong support for all previously identified major clades
within Solanaceae [22], and increased node support is
observed particularly within Solanum (Figure 1). Only
major clades and their relationships are discussed here
due to the fact that our analyses only accounted for in-
congruence issues amongst data sets between major
clades rather than at shallow taxonomic levels. We en-
courage readers to refer back to available clade-specific
studies for detailed species-level phylogenies (see refer-
ences cited here and in ref. [21] for studies prior to
2006); these studies have incorporated larger sets of
markers than used here, incorporate methods that test/
account for gene tree – species tree incongruence, and
discuss issues that could have led to any detected incon-
gruences between gene trees such as polyploidy and/or
hybridisation, and incomplete lineage sorting.
The branching order at the base of Solanaceae is not

well defined, similar to the findings of Olmstead et al.
[22], and four groups are identified as the first branching
taxa: Schizanthus, Duckeodendron, the previously unplaced
Reyesia, and the tribe Goetzeoideae (Figure 1). Reyesia has
been previously associated with Salpiglossis [54], but is here
placed with Goetzeoideae and Duckeodendron (Figure 1,
Additional file 2). The previously unsampled genera
Heteranthia, Trianaea and Schraderanthus are placed
within Schwenckieae, Juanulloeae, and Physalinae, respect-
ively (Figure 1, Additional file 2). The informally named
X = 12 clade is here recovered with strong support and
Nicotianoideae is resolved as sister to the rest of the clade
(Figure 1). Within the Physalinae, work is clearly needed
to delimit monophyletic genera (Figure 1, Additional file
2, see [58,59]). Two closely related genera, Larnax and
Deprea, are resolved as sister to Withaninae, in agreement
with morphology (Figure 1, Additional file 2). These genera
have been linked with Iochrominae in some molecular
PI characters % PI of combined
matrix (%)

Missing
data (%)

Taxon
coverage
density

345 59.0 10.6 28.8 0.71

262 25.5 8.1 73.3 0.27

670 31.8 20.6 56.1 0.44

227 32.5 7.0 79.3 0.21

439 33.0 13.5 77.1 0.23

206 22.8 6.3 34.2 0.66

1104 52.9 33.9 34.1 0.66

3253 37.2 100 54.7 0.45

g level of sampling at specific and generic levels, aligned length, and
been calculated without outgroups.



Figure 1 (See legend on next page.)
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Figure 1 Solanaceae phylogeny. Phylogenetic relationships between major clades of Solanaceae based on a Maximum Likelihood analysis of
a 1076 taxon supermatrix (ITS, waxy, ndhF, matK, psbA-trnH, trnS-G, trnL-F) with 10,672 bp of sequence data. Major clades recovered by previous
phylogenetic studies [22,43,64] are labelled, as is the M Clade identified for the first time here. Clades with low bootstrap support (60-79%)
are shown in pink, while strongly supported clades (boostrap support 80-100%) are in black. A. Major clades of Solanaceae. B. Relationships
within Solanum.
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analyses [22], but considered distant outgroups of
Iochrominae by others [58,59]. The molecular data sup-
port the treatment of Schraderanthus as distinct from
Leucophysalis [60], and Schraderanthus is here found as sis-
ter to Brachistus +Witheringia (Figure 1, Additional file 2).
Within Solanum, all 12 major clades identified by

Weese & Bohs [43] are recovered, with nearly fully
resolved relationships among them (Figure 1). The
Thelopodium clade is resolved as the first branching
group, and the remaining Solanum species are divided
into two strongly supported clades. Clade I comprises all
non-spiny, often herbaceous (e.g., tomatoes, potatoes)
species without stellate hairs, but also includes woody
climbers (e.g., Dulcamaroids) and some shrubby species
(e.g., Morelloids). Clade II comprises species that are
often shrubs or small trees (although some are only
weakly woody), many with prickles and/or stellate hairs
(Figure 1). Within Clade I, which includes a total of c.
525 known species, two clear clades are resolved: (1)
the Potato clade, with Regmandra clade as the first
branching group, and (2) Clade M, including Morelloid,
Dulcamaroid, Archaesolanum, Normania, and the African
Non-Spiny clades (Figure 1). Relationships within Clade M
are well resolved and highly supported, revealing the pos-
ition of the African Non-Spiny clade as distinct from and
not closely related to the Dulcamaroid clade, despite their
morphological similarities such as a twining habit and
twisting petioles [61]. Within the Potato clade, relationships
are equally well resolved: section Petota is resolved as sister
to a group comprising the Tomato clade plus a set of
smaller early-branching clades (Figure 1). The Regmandra
clade, a group of 11 species whose centre of diversity is the
hyper-arid Atacama desert, is here resolved as part of the
Potato Clade for the first time (Figure 1), a result supported
by morphology [62,63].
Relationships within Clade II are less well-resolved.

The clade consists of c. 800 mostly woody species, and
includes the large Leptostemonum clade known as
“spiny solanums”. There is moderate support for S.
clandestinum + S. mapiriense as sister to the rest of Clade
II (Figure 1). Relationships within the large Leptostemonum
clade remain relatively unresolved, but all 14 major clades
found in previous analyses [64] are supported. A set of pre-
viously unplaced species, S. crotonoides, S. hayesii, and S.
multispinum, are resolved sequentially as sister to the Torva
clade (Additional file 2), although on morphological
grounds S. hayesii would be a member of the Torva clade.
Molecular dating
The general topology of the Bayesian maximum clade
credibility tree matched that of the best scoring Max-
imum Likelihood tree with similar levels of support for
major clades (Additional file 3). The only topological dif-
ference, although not a hard incongruence, was observed
at the base of Solanaceae: Bayesian analyses resolved
Schwenckieae as the first branching group within the
family, while the base of the tree remained largely unre-
solved in the maximum likelihood topology. Results
from PATHd8 gave generally similar ages as those from
the BEAST analysis (Table 3). A notable trend is that
BEAST ages were consistently younger especially to-
wards the early-branching nodes (Table 3). The younger
ages obtained from the BEAST analysis reflect that di-
versification rates across Solanaceae have been non-
linear especially towards the base of the tree, and/or that
extinction and speciation rates have varied across the
tree. We will focus our discussion on the BEAST results,
which we consider to be more robust due to the more
realistic model assumptions used, including the relaxed
molecular clock model that accounts for rate variation
across lineages, as well as Birth-Death tree model ac-
counting for extinction [65].
The BEAST results place the stem age of Solanaceae

at c. 49 Million years ago (Ma, 95% highest posterior
density (HPD): 46–54 Ma), and the crown node at c.
30 Ma (95% HPD 26–34) (Additional files 2 and 3). The
crown node of the x = 12 Clade, which is the split be-
tween Nicotiana and Solanum, was estimated to be c. 24
My old (95% HPD 23–26) (Additional files 2 and 3). The
Solanoideae began diversifying c. 21 Ma (95% HPD 19–
23) (Additional files 2 and 3). Solanum, a genus which
includes nearly half of the total species diversity in the
family, split from Jaltomata c. 17 Ma (95% HPD 15–19)
and started diversifying c. 16 Ma (95% HPD 13–18)
(Additional files 2 and 3). The Solanum – Capsicum
split, corresponding to the most common ancestor of
Solanum & Physalis, occurred c. 19 Ma (95% HPD 17–
21) (Additional files 2 and 3). Within Solanum, major
splits include tomato – potato c. 8 Ma (95% HPD 7–10)
and the eggplant –tomato/potato lineages corresponding
to the Clade I – Clade II split c. 14 Ma (95% HPD 13–
16) (Additional files 2 and 3). Crown node age estimates
show that section Petota, which includes all cultivated
potatoes, started diversifying c. 7 Ma (95% HPD 6–9),
section Lycopersicon, which includes the cultivated



Table 3 Molecular age estimates

Clade Group members Dating method

BEAST (uncorrelated lognormal relaxed
clock model)

PATHd8 (local clock
model)

Tomato-potato S. lycopersicon – S.
tuberosum

8.0 (6.6-9.5) 9.1

Eggplant-tomato/potato S. lycopersicon – S.
melongena

14.3 (12.5-16.3) 18.8

Section Lycopersicon S. lycopersicon – S.
peruvianum

2.0 (1.2-2.6) 2.9

Section Petota S. tuberosum – S. piurae 7.1 (5.9-8.5) 7.5

Eggplant clade S. melongena – S.
macrocarpon

3.4 (2.7-4.1) 2.8

Capsicum cultivated C. frutescens – C.
eximium

3.4 (2.7-4.3) 3.6

Solanum Clade I – Clade II S. melongena – S.
tuberosum

14.3 (12.5-16.3) 18.8

Solanum (crown) S. melongena – S.
thelopodium

15.5 (13.3-17.5) 22.0

Solanum (stem) Solanum – Jaltomata 17.0 (14.5-18.7) 23.6

Solanum-Capsicum Solanum – Capsicum 19.1 (17.0-21.0) 25.6

Solanoideae Solanum – Lycium 21.0 (19.0-23.3) 25.6

Solanum-Nicotiana (i.e., X = 12 clade)
(i.e., Solanoideae stem)

Solanum – Nicotiana 24.0 (23.0-25.7) 28.4

Solanaceae (crown) Solanum – Schizanthus 30.4 (26.3-34.0) 32.1

Solanaceae (stem) Solanaceae -
Convolvulaceae

49.2 (46.2-53.7) 54.8

Minimum age estimates produced based on both PATHd8 and BEAST analyses for Solanaceae and its major clades. Clades refer to crown nodes unless otherwise
indicated. Ages in brackets are 95% confidence intervals for BEAST. A densely sampled, time calibrated Solanaceae mega-phylogeny with associated confidence
intervals can be found in Additional file 2.
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tomato, c. 2 Ma (95% HPD 1–3), the group containing
all species of cultivated eggplants (S. melongena, S.
anguivi and S. macrocarpon) c. 3 Ma (95% HPD 2–4),
and the group (C. frutescens – C. eximium) including all
cultivated pepper species c. 3 Ma (95% HPD 2–4)
(Additional files 2 and 3).

Discussion
Phylogenetic relationships within Solanaceae
Although individual studies have contributed signifi-
cantly to a better understanding of the systematics and
evolution of the family at generic and tribal levels, our
results bring together data from a large number of stud-
ies into a single analysis, and present a coherent view on
the current systematic knowledge of this diverse family
and its major clades. Our analyses support all of the
major clades previously identified within Solanaceae
[22], Solanum [43] and the Leptostemonum clade of
Solanum [64]. All of these major clades within the family
are now strongly supported, and furthermore, our results
reveal strongly-supported relationships between the major
clades of the mega-diverse genus Solanum, strengthening
the backbone.
The increased resolution in the current phylogeny can
be attributed to both the increased sampling of markers
as well as species. In the quest for better resolved phy-
logenies, studies often seek large amounts of sequence
data, but it is now well established that increased species
sampling can have an equally positive effect on phylo-
genetic resolution and accuracy [66-68]. The addition of
more species to a data set has the effect of splitting long
branches and detecting multiple substitutions, as well as
resolving phylogenetic conflict, improving parameter es-
timation, and making inferences less dependent on par-
ticular evolutionary models [68]. In our approach we
chose to maximise species sampling, while minimising
missing data by choosing only the most densely sampled
markers available. This approach generally boosted reso-
lution without introducing any of the significant negative
effects that large amounts of missing data can have on
phylogeny estimation.
Our study presented here is a significant step forward

in working towards a fully sampled species-level phyl-
ogeny for Solanaceae. A previous study by Goldberg
et al. [8] included 995 species but did not present a fully
annotated molecular phylogeny that would allow an
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analysis of systematic relationships within the family.
With > 1,000 species now covered, the current phylogeny
includes 40% of known species and all genera of
Solanaceae, except the monospecific and recently segre-
gated Darcyanthus and Capsicophysalis. This is a substan-
tial improvement on previous studies, and our current
phylogeny is one of the best sampled family-level studies
in angiosperms e.g., [69-71].
The sampling is now adequate to test for generic

monophyly in previously poorly sampled groups. Al-
though the number of genera is becoming stable with
97 currently recognised genera in Solanaceae (recent
changes include those documented in refs. [26,60,72]),
our analyses support previous results in identifying a set
of groups where generic re-evaluation will be necessary, in-
cluding Lycianthes/Capsicum, the genera in the Physalineae
(especially Physalis) [59], Deprea/Larnax, the Iochrominae
[58], and the Australian endemics in the Anthocercideae
(see Additional file 2); many of these clusters of generic
problems have been identified by previous authors.
Broader level relationships within Solanaceae and

Solanum, as well as generic delimitations and problems
identified in previous studies are supported by our species-
rich dataset. Relationships between some of the major
clades remain unresolved, however, most notably those at
the base of the family and within the Solanoideae, and the
Leptostemonum clade of Solanum. Resolving these nodes
will be a priority in order to better understand evolution of
some particularly complex traits, such as chromosome evo-
lution. For example, resolving the sister group to the X = 12
clade, as well as the first branching taxa within Solanaceae,
would allow us to determine the ancestral base chromo-
some number in the family and to fully understand direc-
tionality of chromosome evolution. Despite the increased
resolution introduced by the use of more sequence data
and higher species-level sampling, our results do not show
any improvement in the resolution in these critical nodes.
More genes will be needed to resolve these relationships,
but the question remains which genes should be used.
Highly variable nuclear loci, such as COSII markers already
used in Solanaceae [73,74], and the PPR genes used in fam-
ilies within the related Asterid order Lamiales [75,76],
present the most promising candidates. The widely se-
quenced regions ITS, waxy, ndhF, and trnSG are the most
variable across the Solanaceae and species-level sampling
using these regions should be increased. The traditionally
used plastid marker trnT-F, which is relatively slowly evolv-
ing within Solanaceae, is known to include pseudogenes in
Solanum [77] and care should be taken when using this
region in phylogenetic studies.

Solanaceae fossil record
A few fossils have been used in previous molecular dat-
ing studies of Solanaceae, but without re-evaluation of
fossil morphology and hence their placement within the
phylogeny [29,46]. As revealed by our literature review, a
relatively large record for the family exists. The most
usable evidence comes from fossil Solanaceae seeds, the
oldest of which are from Eocene Europe (c. 48–40 Ma),
with a sharp increase in the number of seed morphotypes
observed towards the Pleistocene. The fossil seeds can be
divided into two sets: (1) seeds showing four morphological
characters present in the extant members of the
Solanoideae, and (2) seeds that bear resemblance to the
family in general but cannot be assigned to more specific
clades within it because they lack the unique combination
of seed flattening and presence of sinuate-margined testa
cells. Although some of these fossils have been described
with names associated with extant species and/or genera,
our morphological review shows that none of them show
unique morphological characters that can be used to place
them to any extant genera. We consider the placement of
these fossils on terminal nodes as has been done by previ-
ous authors [29,46] unjustified.
All of the fossils we were able to unambiguously iden-

tify as Solanaceae are from Eocene Europe, where none
of the first branching lineages of the family occur. South
America is the centre of diversity of extant Solanaceae,
and all of the early diverging lineages are exclusively
found in the New World. This suggests that the fossil
record of the family is still far from complete, and that
further studies on South American fossils might reveal
crucial evidence with respect to the timing of diversifica-
tion in Solanaceae. A promising avenue for future fossil
studies would be to carefully evaluate wood fossil records,
especially Cretaceous-Eocene material from the area in
which the early-branching lineages all now occur [16,22].

Dates for Solanaceae
Our study is the largest Bayesian molecular dating
analysis executed to date in terms of taxon sampling.
Most previous studies have used Bayesian dating
methods after pruning their original, large phylogen-
etic datasets largely due to an a priori assumption that
Bayesian methods cannot cope with datasets with >500
terminals e.g., [78-80]. Our study with 1,075 species
and >10,000 bp of sequence data demonstrates that
large matrices with >500 terminals can be analysed
using Bayesian dating methods. Further studies are
needed, however, to fully explore best methods for ana-
lysing large datasets with the currently available dating
methods that implement relaxed molecular clock
models required for analyses of diverse clades where
rates are expected to vary [81,82]. Such studies should
focus on exploring trade-offs between number of
taxa, complexity of models and partitions used in order
to fully understand limitations and potential error
sources in large scale analyses.



Särkinen et al. BMC Evolutionary Biology 2013, 13:214 Page 10 of 15
http://www.biomedcentral.com/1471-2148/13/214
In our dating analysis, we followed the recent
recommended best practice guidelines for fossil calibra-
tion [83] and placed fossil calibrations at stem nodes of
the most inclusive extant groups using apomorphy-
based morphological assignment. Morphological evi-
dence from the seed fossils only allowed assignment to
the broad groups Solanoideae or Solanaceae as a whole.
Fossils provide only minimum age estimates for the
nodes they are assigned, and hence results from our dat-
ing analysis where fossil calibrations were used should
be considered as minimum age estimates. We further
biased our results towards younger ages by assigning the
oldest known fossils of Solanaceae to the stem node of
the family rather than to more specific nodes within
Solanaceae due to lack of morphological and anatomical
characters that could be used to assign them to more
specific nodes. There is always a possibility, however,
that these seeds represent more specific clades within
Solanaceae, which would push back age estimates for
the family. Currently, the earliest fossil evidence for the
family comes from Eocene Europe, but based on biogeo-
graphic analyses, the crown group of Solanaceae is
thought to have originated and first diversified in South
America [16,22,84]. Total evidence analysis, where fossils
are placed as terminal taxa in the dating analysis using
both molecular and morphological data matrix, could
help in exploring the robustness of fossil placement [85],
but as pointed above, the lack of characters in the
Solanaceae seed fossils does not currently permit such
analyses. The most promising avenue in strengthening
the dating analysis would be in finding further fossil re-
cords (see Solanaceae fossil record above). This would
increase the number of fossil calibration points and
allow the use of cross-validation methods [86].
The rate of molecular evolution in plants has been

found to correlate with life history traits, whereby longer
living species show consistently lower substitution rates
compared to shorter living species [81]. Molecular clock
models should incorporate such rate variation, especially
in groups such as Solanaceae which include a range of
growth and life forms. Our dating analyses did not in-
corporate such models, although the model used in our
Bayesian analysis allows rates to vary between lineages
independently. The lack of such models in our analyses
implies that the age of herbaceous, shorter lived plants
(e.g., Schizanthus and the Tomato clade of Solanum) will
be systematically overestimated, while ages in domin-
antly woody clades (e.g. Solanum Clade II) will be con-
sistently underestimated. Future studies should explore
how molecular clock models that account for rate vari-
ation due to life history traits could be implemented.
Previous studies have produced a wide range of esti-

mates for the stem age of the family, ranging from 34–
85 Ma [48,87-89], but none of these studies included
dense sampling within the family nor used robust
Solanaceae-specific fossil calibrations. Paape et al. [90]
analysed divergence times within Solanaceae but with a
small dataset consisting of 29 species only. This study
was based on three fossil calibration points without re-
assessment or morphological study of the original fossils,
and estimated Solanaceae stem age to have diverged
62 Ma (95% HPD 54–70 Ma) [90]. The oldest estimates
for the family stem node age come from earlier molecu-
lar studies which used calibration points with more sim-
plistic dating methods (65–85 Ma) [87,88], while the
most recent molecular dating study of angiosperms by
Bell et al. [89] who used 36 fossil calibrations across the
tree and a relaxed molecular clock model, estimated the
Solanaceae stem node to have diverged c. 59 Ma (95%
HPD 49–68 Ma). Our results, which we consider as
minimum ages, are broadly consistent with Bell et al.
[89] in estimating the stem node of Solanaceae to date
back to c. 49 Ma (95% HPD: 46–54).
The age of the major splits within the family has been of

interest to various fields, including studies on chromosomal
[4] and genome evolution [5,6,91]. Our minimum age esti-
mates for the major splits between tomato – potato (c.
8 Ma, 95% HPD 7–10), eggplant – tomato/potato (c.
14 Ma, 95% HPD 13–16), Solanum – Capsicum (c. 19 Ma,
95% HPD 17–21), and Solanum – Nicotiana (c. 24 Ma,
95% HPD 23–26) are consistent with the age estimates pro-
duced in previous studies without fossil calibrations using
much sparser sampling and more simplistic molecular
clock models [4,6,91]. Our results for the Nicotiana –
Symonanthus split (c. 15 Ma, 95% HPD 11–20) corroborate
results obtained using island age (c. 15 Ma) [92] and those
calculated using paralogy-free subtree analysis (>15 Ma for
section Suaveolentes) [93]. Our results presented here sug-
gest that the rate of chromosomal and genome evolution
within Solanaceae has been marginally slower at least
within particular lineages than previously thought. With
the densely sampled chronogram presented in this study, a
more detailed analysis of chromosomal evolution at the
species level could now be performed in the Solanaceae to
study rate differences and drivers of chromosomal changes
such as environmental or life history factors. Similarly, mor-
phological characters such as fruit type [10] could be
analysed in relation to diversification rates to identify
whether particular morphological traits are associated with
speciation rate shifts in Solanaceae.

Conclusions
Despite much focus on character and trait evolution
within Solanaceae, little has been known about the ori-
gin of traits in the family in terms of time. We present
here minimum age estimates and associated confidence
intervals for the entire Solanaceae using a species-rich
dataset comprising almost half of the species diversity
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within the family. This densely sampled chronogram will
provide the basis for unravelling the tempo and mode of
evolution of many of the much-studied and complex traits
in this diverse and economically important family such as
self-incompatibility, fruit type, cold and salt tolerance, dis-
ease resistance, chromosomal re-arrangements, genome
size, and gene sub-functionalization.

Methods
Fossil study
References to fossil records were compiled from various
sources, including Yale Paleobotany Online Catalog (http://
peabody.yale.edu/collections/paleobotany), the Paleobio-
logy Database (http://paleodb.org), InsideWood Database
(http://insidewood.lib.ncsu.edu), Burke Paleontology Col-
lection Database (www.washington.edu/burkemuseum/col-
lections/paleontology), the Stratigraphy Database (www.
stratigraphy.net), Fossil Record 2 [94], and Google searches
on terms “Solanaceae” and “fossil”. The morphology of
two fossil specimens was analysed using high-resolution
X-ray computed tomography (Table 1) [T. Särkinen, M.
Collinson, P. Kenrick, F. Ahmed, unpublished observa-
tions]. The morphology of other specimens was evaluated
using descriptions and illustrations provided in original
publications. The numeric ages for fossils were derived by
matching the specific strata from which fossils were found
with the most recent geochronological stratigraphy found
in the literature (see Additional file 1). The oldest fossil
specimens assigned to Solanaceae and the Solanoideae stem
nodes were then used as calibration points (see below). The
younger age brackets of these oldest specimens were used
following best practise guidelines [83].

Supermatrix construction and analysis
Our supermatrix data harvesting and construction
largely followed the modified supermatrix method
termed ‘mega-phylogeny’ designed for larger datasets by
Smith et al. [95]. The mega-phylogeny method has
been designed for large datasets, where maximally dense
supermatrices are built based on BLAST searches of all
genebank sequences limited to the taxonomic rank of
interest [95]. This differs from traditional supermatrix
approach where no threshold to missing data or taxa is
set, and the resulting sparser matrices are built using
clustering techniques.
We looked for all orthologous sequence data available

in GenBank release 184 using the PhyLoTA Browser
[96]. PhyLoTA identifies available sequence clusters
based on BLAST searches, where all sequences for the
specified taxonomic group are blasted against each
other. We explored all phylogenetically informative se-
quence clusters identified by PhyLoTA for Solanaceae,
and chose seven clusters that had the highest taxon sam-
pling both in terms of genera and species. These seven
clusters included data from two nuclear (waxy and ITS)
and five plastid regions (matK, ndhF, trnS-G, trnL-F,
psbA-trnH) (Table 2). Gaps in generic sampling were
identified and sequences for three previously unsampled
genera, Trianaea, Heteranthia, and Archihyoscyamus,
were generated for ndhF, trnL-F, and ITS (Additional
file 4). Further sequences were generated for poorly
sampled genera (Reyesia, Benthamiella, Deprea, and par-
ticular clades of Solanum) (Additional file 4). The new
sequences were joined with the clusters downloaded
from PhyLoTA. Each region was aligned using the pro-
file alignment algorithms Muscle [97] and MAFFT
[98,99], after which all datasets were manually checked
and adjusted to assure high quality alignments. MAFFT
produced better quality alignments compared to Muscle
for the most complex alignments (ITS and waxy) based
on visual comparisons. Short multirepeats and ambigu-
ously alignable regions were excluded. For trnL-F, a vari-
able repeat region towards the 5’ end of the intergenic
spacer was removed; this is where putative pseudogenic
copies of trnF have been found in Solanum [77]. Taxon
names were checked for synonomy in all matrices. Dupli-
cate sequences for species were pruned out. Montinia
(Montiniaceae), Convolvulus and Ipomoea (Convolvulaceae)
were added as outgroups representing two of the closely re-
lated families of Solanaceae within the order Solanales
[100] Gene regions were analysed individually using
MrBayes v. 3.1.2 [101,102] via the Oslo Bioportal [103] in
order to visually check for topological incongruence, rogue
taxa, and presence of potentially misidentified sequences.
Ten potentially misidentified sequences were detected in

the individual analyses and removed prior to supermatrix
construction (Additional file 5). No hard incongruences
were detected between the individual matrices with respect
to the major clades of the Solanaceae. Incongruence issues
were not tested at shallower taxonomic levels due to meth-
odological constraints, and hence individual studies cited in
the Background section should be referred to for phylogen-
etic relationships within genera or major clades in Solanum.
The software AIR-Appender as implemented in the Oslo
BioPortal [103] was used to concatenate the individual
matrices. We measured missing data in two ways: missing
data per gene region and per species. Missing data for each
species was calculated using two measures, missing data
and missing information. Missing data was measured as the
absolute number of missing base pairs, while missing infor-
mation was measured as the sum of the parsimony inform-
ative characters of missing regions. All species with > 90%
missing data and/or information were removed prior to
analysis.
Before analysis, the matrix was cleaned by pruning

rogue taxa, identified as unstable terminals causing arti-
ficial lowering of branch support, using the software
RogueNaRok [104]. RogueNaRok analyses were based on

http://peabody.yale.edu/collections/paleobotany
http://peabody.yale.edu/collections/paleobotany
http://paleodb.org
http://insidewood.lib.ncsu.edu
http://www.washington.edu/burkemuseum/collections/paleontology
http://www.washington.edu/burkemuseum/collections/paleontology
http://www.stratigraphy.net
http://www.stratigraphy.net
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trees derived from fast RAxML bootstrap analyses using
a 50% majority-rule consensus threshold and support
values for optimization with drop setsize set to one. Four
iterations were run and rogue taxa were removed
after each iteration. Rapid bootstrap analyses were run
in RAxML-VI-HPC v2.0.1 [105,106] via the CIPRES
Science Gateway [107] applying partitioning for each
gene region using a GTR + CAT approximation rate sub-
stitution model and the rapid Bootstrap algorithm with
100 replicates [106]. We removed a total of 85 rogue
taxa, some of which had a large amount of missing data
and/or information (60-90%), but others with nearly
complete sampling. The final matrix included 10,672 bp
of aligned sequence data of which 1,902 bp were ex-
cluded due to ambiguous alignment (Additional files 6,
7, 8). The matrix included a total of 1,075 Solanaceae
species and a single outgroup (Ipomoea, Convolvulaceae).
We minimized outgroup sampling in order to simplify the
BEAST analysis, as the number of outgroups significantly
affected run time. The final supermatrix was analysed using
RAxML-VI-HPC v2.0.1 [105] via the CIPRES Science
Gateway applying partitioning for each gene region using
GTR+CAT approximation rate substitution model and
the rapid Bootstrap algorithm with 1,000 replicates. The
resulting trees were used either as input trees or as starting
topologies for dating analyses.

Molecular dating analyses
The Bayesian uncorrelated relaxed clock-model as
implemented in BEAST [108,109] was used as a primary
dating method because it allows for rate variation across
branches and measures for rate autocorrelation between
lineages. Topology and node ages are estimated simul-
taneously in BEAST, hence topological uncertainty is in-
corporated into node age estimation. The best tree from
the RAxML search was used as a starting topology
(Additional file 9). Each region was partitioned separ-
ately and given its own substitution model (GTR +G)
and rate. A Birth-Death tree prior was used, which ac-
counts for both speciation and extinction [110]. The
Solanoideae seed fossils were used to constrain the stem
node of Solanoideae with a lognormal offset of 23.0 Ma,
mean of 0.01, and standard deviation (SD) of 1.0. The
age constraint reflects the youngest age bracket of the
oldest known fossil seed assignable to the Solanoideae.
Similarly, the Solanaceae stem node was constrained
with a lognormal offset of 46.0 Ma, mean of 0.01, and
SD of 1.0 based on the youngest age estimate of the
oldest fossil specimen of Solanaceae type seeds. Priors
for the relaxed clock model mean rate and standard de-
viation were set to 1.0 and 0.3, respectively, based on
known substitution rates in plants. The parameter
weights of the delta exchange operator were modified to
reflect the length of each partition. Default priors were
used for all other parameters. A total of 100 million gener-
ations (10 runs with c. 10 million generations each) were
run in BEAST v.1.7.4 [108]. Results were combined using
LogCombiner and TreeAnnotator (BEAST package).
A second dating analysis was run using PATHd8

[111]. PATHd8 is a local rate smoothing method that es-
timates node ages by calculating mean path lengths from
the node to the tips. Deviations from a strict molecular
clock are corrected as suggested by the calibrated nodes.
Only simple calibrations are allowed as point estimates
of minimum, maximum or mean ages. Because substitu-
tion rates are smoothed locally, rather than simultan-
eously over the whole tree, PATHd8 allows analysis of
very large trees. The best tree from the RAxML search
was used as the input phylogeny for the PATHd8 ana-
lysis (Additional file 10). The stem node of Solanoideae
was constrained with the identified Solanoideae seed fos-
sils with minimum age of 23.0 Ma. PATHd8 requires a
minimum of one fixed node constraint, and hence the
stem node of the family was constrained with a fixed age
of 46.0 Ma. Results from both the Maximum Likelihood
and Bayesian dating analyses have been deposited in
TreeBase (http://purl.org/phylo/treebase/phylows/study/
TB2:S14458).

Additional files

Additional file 1: Solanaceae fossil record. Details of all records of
Solanaceae with full references to primary sources.

Additional file 2: Solanaceae time-calibrated phylogeny with tips. A
detailed dated phylogeny of Solanaceae showing mean node ages and
95% confidence intervals for all nodes. Posterior probability branch
support values are indicated in branch colours, where red refers to nodes
with < 80% support. Major clades are indicated, and studies which
include more detailed phylogenies of the particular groups are indicated
on the left. These studies should be referred to as primary phylogenetic
sources for the particular clades with more up-to-date details of species-
level relationships because the individual studies used more markers and
discuss specific issues relevant at such low taxonomic levels, including
polyploidy, hybridisation, and gene tree – species tree incongruences.

Additiona file 3: Solanaceae time-calibrated phylogeny. Dated
molecular phylogeny of the Solanaceae based on the supermatrix
calibrated using fossil data. Major clades are shown with their associated
ages and 95% confidence intervals. Thick branches indicate highly
supported clades with > 0.9 posterior probability. Clade size is
proportional to the number of species sampled in each clade. Associated
floral and fruit forms are shown on the right. A more detailed view of
this phylogeny is shown in Additional file 2.

Additional file 4: New sequence data. Voucher data and GenBank
numbers for sequences newly generated as part of the study.

Additional file 5: New sequence data. Details of sequences
downloaded from GenBank which appeared clearly misidentified or
potentially contaminated sequences based on BLAST searches and their
position in our preliminary Maximum Likelihood phylogenies.

Additional file 6: Supermatrix sequence alignment file (RAxML
input). Final supermatrix alignment file in phylip format used as input for
the Maximum Likelihood phylogeny estimation in RAxML.

Additional file 7: Supermatrix partitions (RAxML input). Details of
the partitioning scheme used in the supermatrix for the Maximum
Likelihood analysis in RAxML.

http://purl.org/phylo/treebase/phylows/study/TB2:S14458
http://purl.org/phylo/treebase/phylows/study/TB2:S14458
http://www.biomedcentral.com/content/supplementary/1471-2148-13-214-S1.docx
http://www.biomedcentral.com/content/supplementary/1471-2148-13-214-S2.tiff
http://www.biomedcentral.com/content/supplementary/1471-2148-13-214-S3.zip
http://www.biomedcentral.com/content/supplementary/1471-2148-13-214-S4.docx
http://www.biomedcentral.com/content/supplementary/1471-2148-13-214-S5.docx
http://www.biomedcentral.com/content/supplementary/1471-2148-13-214-S6.txt
http://www.biomedcentral.com/content/supplementary/1471-2148-13-214-S7.txt
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Additional file 8: Supermatrix excluded regions (RAxML input).
Details of the excluded regions within the supermatrix alignment file in
RAxML.

Additional file 9: BEAST xml input file. Input file used for Bayesian
relaxed molecular clock dating analysis in BEAST.

Additional file 10: PATHd8 input file. Input file used for local clock
model dating analysis in PATHd8.
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