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Abstract

define conservation units.

differentiated.

be considered for the Qinling panda population.

Background: Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily
significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral
markers could be used to infer population history, their application in the estimation of adaptive variation is limited.
The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence,
analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation
genetics studies. Here, we investigated 4 classical MHC class | genes (Aime-C, Aime-F, Aime-l, and Aime-L) and 8
microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further

Results: Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-l, and 7 for Aime-L) from 218
individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the
highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at
Aime-MHC class | genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation
index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both
supported that most populations were highly differentiated. The Qinling population was the most genetically

Conclusions: The giant panda showed a relatively higher level of genetic diversity at MHC class | genes compared
with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling
and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and

Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-
Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend that a captive breeding program
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Background

Evolutionary and conservation biologists are concerned
with how genetic variation is maintained within popu-
lations of endangered species, especially within small
and isolated populations [1]. The assumption is that a
decrease in genetic variation and a lack of exchange
between isolated populations increase the likelihood of
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extinction by reducing the population's ability to adapt
to changing environmental conditions [2].

Generally, biologists use neutral markers (microsa-
tellites) to estimate genetic variation in threatened
populations [3,4]. Although variation at neutral markers
can provide information about dispersal patterns [5],
population connectivity [6], and population history (past
demographic expansions or contractions) [2], thus inform-
ing decisions regarding the recognition of distinct man-
agement units (MUs) [7], these markers cannot provide
information on adaptive variation [8]. Such information
is necessary in order to designate adaptive units (AUs)
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for conservation purposes [9]. Hence, adaptive loci should
be used in concert with neutral markers to facilitate opti-
mal management decisions [9]. In this study, we consider
patterns of variation in major histocompatibility complex
(MHC) genes in combination with neutral markers in
an effort to understand more about units of conserva-
tion associated with the giant panda, Ailuropoda mela-
noleuca [10].

The MHC genes encode molecules involved in im-
mune responses and can be classified into class I and
class II genes [11]. Class I genes are mainly associated
with intracellular pathogens, such as viruses and proto-
zoa, while class II genes are in charge of extracellular
pathogens [12]. MHC class I genes can be further
grouped as either classical (class Ia) or nonclassical
(class Ib) based on their polymorphisms, expression
levels, and functions [13]. Class Ia genes are involved in
presenting endogenous peptides to CD8+ cells [14],
while class Ib loci have various functions associated
with control of natural killer (NK) cell activation [15],
successful reproduction [16], and recognition of anti-
genic lipids [17].

MHC genes (either class I or class II) are highly poly-
morphic, especially within their antigen-binding region
[18]. It is generally believed that balancing selection
maintains MHC diversity, which includes overdominant
selection and negative frequency-dependent selection
[10]. Such variation has been hypothesized to enhance
mechanisms of mate choice as well as to provide an
adaptive strategy for dealing with new pathogens [19].

The giant panda (Ailuropoda melanoleuca) is a unique
endangered species in China. At present, wild populations
comprise only about 1500 giant pandas in 6 isolated
mountain ranges of China (Figure 1): Qinling (QLI),
Minshan (MSH), Qionglai (QLA), Daxiangling (DXL),
Xiaoxiangling (XXL), and Liangshan (LSH) [20,21].
These populations are isolated by several rivers (i.e., the
Hanjiang, Jianglingjiang, Minjiang, and Dadu rivers;
Figure 1) and many roads [21]. The QLI population has
been shown to be genetically divergent [22,23], but
there is disagreement about whether this population
represents a subspecies or a distinct evolutionarily sig-
nificant unit (ESU) [23]. According to the fossil record,
the giant panda originated 3 million years ago (in the
early Pleistocene) and was widely distributed from
Zhoukoudian in China to northern Burma and northern
Vietnam during the middle and late Pleistocene [20].
Seven functional MHC class II genes have been isolated
in the giant panda [24,25], and locus-specific genotyp-
ing techniques have been established [26,27]. Studies on
the MHC class II loci identified moderate levels of al-
lelic diversity and indicated that natural selection and
intragenic recombination maintains genetic diversity on
MHC class II loci [27]. However, the giant panda
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appears susceptible to parasites [28,29] as well as sev-
eral types of viruses associated with domestic animals
[30,31]. There is still a need for further investigations of
genetic variations at MHC class I genes in this endan-
gered species. Recently, Zhu et al. [32] isolated 6 class I
MHC genes (i.e., Aime-C, Aime-E, Aime-1, Aime-K,
Aime-L, and Aime-1906) from the giant panda, includ-
ing 4 class la genes (Aime-C, Aime-F, Aime-I, and
Aime-L) and 2 class Ib genes (Aime-K and Aime-1906),
and established locus-specific genotyping techniques
for each class Ia gene. Therefore, this pilot study pro-
vided an opportunity to examine the adaptive variation
of MHC class I genes in structured giant panda popula-
tions on a large geographical scale.

In the present study, our aims were to: (1) assess pat-
terns of genetic variation at 4 classical MHC class I genes
and 8 microsatellites across 6 extant giant panda popula-
tions; and (2) estimate patterns of genetic differentiation
among populations and identify conservation units based
on both MHC and microsatellite data.

Results

MHC variation within and between populations

We obtained 14 exon 2 alleles (4 for Aime-C, 1 for
Aime-F, 5 for Aime-1, and 4 for Aime-L) and 23 exon 3
alleles (8 for Aime-C, 1 for Aime-F, 7 for Aime-1, and 7
for Aime-L) and identified 24 linked long fragment hap-
lotypes (9 for Aime-C, 1 for Aime-FE, 7 for Aime-1, and 7
for Aime-L) across the 4 Aime-MHC class I loci (Gen-
Bank: JX987000-JX987023).

The number of haplotypes within the 4 classical
Aime-MHC class I loci varied among the wild popula-
tions, ranging from 17 in QLI to 22 in XXL and LSH
(Table 1). Some of these haplotypes were highly abun-
dant in all of the populations (e.g., Aime-1*02 and
Aime-L*02 and 03), while others were detected at very
low frequencies and/or only in certain populations (e.g.,
Aime-C*01, 04, and 09; Aime-1*05 and 07; and Aime-L*05
and 07).

Estimates of heterozygosity revealed higher than ex-
pected heterozygosities for DXL and XXL at Aime-C,
for LSH at Aime-I, and for QLI, MSH, and DXL at
Aime-L. In contrast, other population-locus combina-
tions exhibited lower than expected levels of heterozy-
gosity (Table 1). We only observed significant deviations
from Hardy-Weinberg equilibrium (HWE) in the Aime-I
locus of the smallest population, XXL, and at Aime-L
in the QLI population; the other combinations all
obeyed HWE (Table 1). Different levels of Hg were
found among the wild populations at each locus
(Aime-C: 0.711-0.812; Aime-1: 0.734—0.832; and Aime-
L: 0.740-0.843). Allelic richness (AR) was also differ-
ent at 3 polymorphic loci, with Aime-C ranging from
5.736 to 7.519, Aime-1 ranging from 4.842 to 6.613,
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Figure 1 Habitat distribution and suggested management units of the giant panda. Habitat distribution of the giant panda, with each
filled circle representing a sampling location. Population abbreviations are as follows: QLI, Qinling; MSH, Minshan; QLA, Qionglai; DXL, Daxiangling;
XXL, Xiaoxiangling; and LSH, Liangshan. Numbers indicate sampling sites as shown in Additional file 4: Table S3. Different levels of grey in the
habitat distribution represent the 3 management units as suggested by this study (light grey, QLI; grey, MSH-QLA; dark grey, DXL-XXL-LSH).

and Aime-L ranging from 4.624 to 6.935 (Table 1).
Among the 6 populations across 3 polymorphic MHC
loci, the mean Hy was 0.731-0.816 and the mean AR
was 5.118-6.627 (Table 1).

All 15 pairwise Fsr comparisons revealed there was
significant genetic divergence among all populations, with
the exception of MSH and QLA (P > 0.05; see Additional
file 1: Table S1). The neighbor-joining (NJ) tree indi-
cated that the giant panda populations fell into 3 clus-
ters. First, MSH and QLA clustered together with 71%
bootstrap values (Figure 2A). Second, The DXL, XXL,
and LSH populations clustered together with a weak
support of 34% (Figure 2A). Finally, QLI formed the
third cluster. Fs values among the 3 clusters are shown in
Table 2.

Bayesian clustering analysis based on MHC loci also
indicate strong subdivision, where the delta k showed 1
peak at K = 3 (see Additional file 2: Figure S1A). QLI (in
yellow) was a separate cluster, with the other 2 clusters
being MSH-QLA (in red) and DXL-XXL-LSH (in blue;
Figure 3). Most of the individuals showed high admix-
ture levels among the 3 clusters.

Microsatellite variation within and between populations
We identified 121 alleles across 8 microsatellite loci,
ranging from 8 to 23 (see Additional file 3: Table S2).
Only QLA at Aime-3 and GP-4, XXL at Aime-10, and
LSH at Aime-14 significantly deviated from the HWE
after Bonferroni correction (see Additional file 3: Table S2).
Among the 6 wild populations, XXL showed the highest
mean number of alleles (MNA), mean AR, mean Hp, and
mean polymorphic information content (PIC) (MNA =
10.8; AR = 8.324; Hg = 0.856; PIC = 0.832). Effective popu-
lation sizes (Ne values) were estimated for each popula-
tion, but larger populations (i.e., MSH and QLA) had
lower Ne values, which were not expected (see Additional
file 3: Table S2).

All 15 pairwise Fst comparisons revealed significant
genetic differentiation among all pairwise populations,
with the exception of DXL and XXL, XXL, and LSH
(P > 0.05; see Additional file 1: Table S1). The NJ tree
showed that the 6 giant panda populations partitioned
into 3 clusters. The first cluster contained MSH and
QLA (78% bootstrap value), while the second cluster
included DXL, XXL, and LSH (60% bootstrap value).
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Table 1 Haplotypic frequencies, allelic richness, and heterozygosities of MHC class I loci in 6 wild panda populations

Population
Locus Haplotype QLl (17) MSH (19) QLA (21) DXL (19) XXL (22) LSH (22)
Aime-C 01 / 0.026 0016 0.100 / 0.043
02 0.368 0.250 0.250 0.067 0.107 0.357
03 0.079 0.355 0.375 0.200 0.196 0.143
04 / / 0.031 / 0.018 /
05 0.395 0.066 0.094 0.100 0.107 0.071
06 0.079 0.105 0.109 0.467 0.107 0.157
07 0.026 0.118 0.063 0.067 0.375 0.114
08 0.053 0.079 0.063 / 0.089 0.071
09 / / / / / 0.043
AR 5.736 6.498 7.018 6.000 6.497 7.519
Ho 0.684 0.737 0.781 0.933 0.821 0.800
He 0.711 0.785 0.804 0.738 0.792 0.812
Aime-F 01 1.000 1.000 1.000 1.000 1.000 1.000
AR / / / / / /
Ho / / / / / /
He / / / / / /
Aime-| 01 0.125 0.134 0.212 0.250 0.290 0.256
02 0.438 0.500 0.455 0.219 0.210 0.207
03 / 0.073 0.091 0.125 0.129 0.098
04 0.188 0.232 0.167 0.375 0.113 0.256
05 / 0.061 0.030 0.031 0.145 0073
06 0.146 / / / 0.097 0.073
07 0.104 / 0.045 / 0.016 0.037
AR 4.993 4.842 5.528 4938 6.458 6.613
Ho 0.626 0.732 0.758 0625 0.774* 0.829
He 0.741 0.734 0.777 0.756 0.832 0.814
Aime-L 01 0.021 0.012 0.121 0.094 0.032 0.049
02 0.167 0.226 0.303 0.219 0.226 0.232
03 0.292 0.262 0.273 0.188 0.210 0.244
04 0.146 0.286 0.106 0.156 0.113 0.244
05 / 0.024 0.030 0.031 0.065 /
06 0.375 0.190 0.167 0.250 0.129 0171
07 / / / 0.063 0.226 0.061
AR 4.624 4946 569 6.935 6.663 5.749
Ho 0.792* 0.810 0.788 0.938 0.774 0.731
He 0.740 0.789 0.803 0.843 0.824 0.802
Total AR 5118 5429 6.079 5958 6.539 6.627
Ho 0.701 0.760 0.776 0.832 0.790 0.787
He 0.731 0.769 0.795 0.779 0816 0.809

Notes: The predominant haplotype of each population is marked in bold. The figures in parentheses are the number of haplotypes in each population. Asterisks
denote significant deviations from HWE (P < 0.05).
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QLI formed the third cluster (Figure 2B). Fst values
among the 3 clusters are also shown in Table 2.

Bayesian clustering analysis of microsatellite variation
indicated the same 3 clusters as MHC (Figure 3 and
Additional file 2: Figure S1B). Most of the individuals
from the QLI cluster showed very low admixture levels,
whereas individuals from the other 2 clusters showed
high levels of admixture (Figure 3). The higher admix-
ture levels suggested there was significant gene flow be-
tween MSH, QLA, DXL, XXL, and LSH populations.
Conversely, low admixture levels demonstrate limited
gene flow between QLI and the other populations, indi-
cating that QLI may be suffering from strong genetic
isolation. The STRUCTURE plot suggested nearly uni-
directional migration from QLI to MSH-QLA (Figure 3),
as evidenced by the large proportion of individuals in
MSH-QLA that contained substantial QLI heritage (yel-
low) and the small proportion of individuals in QLI that
contained substantial MSH-QLA heritage (red). This
movement from QLI, but not into QLI, was in good
agreement with previous results [22,33], which showed
that the giant panda experienced 2 bottlenecks, the first
serious one resulting in a single refuge, QLI, and the
second causing 2 refuges, QLI and XXL. The unidirec-
tional movement from QLI to MSH-QLA indicated
range expansion followed by the bottlenecks.

Table 2 Fs; index for microsatellites and MHC loci among
different groups of giant pandas

QLI MSH-QLA DXL-XXL-LSH
QL / 0.068* 0.066*
MSH-QLA 0.039* / 0.038*
DXL-XXL-LSH 0.053* 0.015* /

MHC values are below the diagonal and microsatellites values are above the
diagonal. The asterisks indicate P < 0.05.

Mantel tests revealed that patterns of MHC class I
genes and microsatellites were not correlated (r = 0.520,
P = 0.132), indicating that patterns of MHC class I diver-
sity were not strongly influenced by the effects of stochas-
tic micro-evolutionary processes (migration and drift).
Isolation by distance was more obvious for microsatellites
than for MHC class I genes (microsatellites: r = 0.703,
P =0.022; MHC: r = 0.517, P = 0.017).

Discussion

Genetic variation levels of Aime-MHC class | genes

In this study, we identified 24 exon 2-3 haplotypes for the
4 classical Aime-MHC class I genes in 218 wild individ-
uals, averaging 6 haplotypes per locus. In our previous
study [32], we detected 13 exon 2 and 16 exon 3 se-
quences, which formed 17 haplotypes in the Chengdu
captive population, revealing that most diversity from wild
populations was conserved in captive populations. Com-
pared with the brown bear, the giant panda has similar or
fewer MHC class I alleles. A total of 37 alleles (2 pseudo-
alleles) were observed from at least 5 loci in 234 brown
bear individuals, averaging 7 alleles per locus. However,
compared with other endangered felids, Aime-MHC class
I genes maintain a relatively high level of genetic diversity.
For example, a total of 10 alleles (9 functional alleles and 1
pseudo-allele) were detected from 4 putative MHC class 1
loci in 108 Namibian cheetahs, averaging 2.5 alleles per
locus [34]. While 13 putatively functional alleles and one
pseudo-allele were found from at least 4 MHC class I loci
in 16 highly endangered India Bengal tigers [35]. Further-
more, Aime-MHC class II genes also showed higher poly-
morphism relative to other endangered species [27]. These
findings suggested that the giant panda had relative higher
genetic variation at their MHC genes, which is necessary
for them to cope with changing environmental conditions
(e.g., pathogens).
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Figure 3 Bayesian clustering anaIyS|s. Genetic structure of the giant panda based on MHC class | (A) and microsatellite loci (B) inferred by
Bayesian clustering analysis (STRUCTURE) with the sampling location as prior information. Each column represents a single individual. Colors

represent different genetic clusters (QLI, yellow; MSH-QLA, red; DXL-XXL-LSH, blue).

Genetic variation within populations

According to a survey conducted by the State Forestry
Administration of China [21], XXL occupies the smallest
habitat area and includes only 32 giant pandas. Interest-
ingly, XXL represented more haplotypes, higher AR, and
higher expected heterozygosity at MHC class I genes
than those in the larger mountain populations, i.e., MSH,
QLA, and QLI (Table 1). Our microsatellite data further
revealed that XXL had the highest genetic variation
among all of the populations in terms of AR, expected het-
erozygosity, and number of alleles. Furthermore, a recent
MHC 1I study revealed that XXL has the greatest number
of alleles within wild giant panda populations [33]. These
results, regardless of adaptive or neutral markers, sug-
gested that the XXL population may have arisen from an
ancestral population that had a higher level of genetic di-
versity, which was also supported by the results of MHC
class II study [33]. Although the MSH population covers
the largest habitat area and contained 708 individuals as of
the last survey round, it did not show the highest level of
genetic variation, as was reflected by Ne estimates. Ne esti-
mates based on microsatellites at 6 populations indicated
that MSH had an Ne of 90.5, which was smaller than that
of the majority of giant panda populations (see Additional
file 3: Table S2).

ESUs, MUs, and AUs in giant panda populations

Population genetics data are useful to identify ESUs,
MUs, and AUs in some endangered species [9,36]. In
this study, we first defined ESUs in giant pandas in
order to protect evolutionarily important groups. Sec-
ond, we identified MUs in each ESU for management
purposes. Finally, we looked for possible AUs to help
the government make management decisions. MHC
and microsatellite variations in this study revealed that
the 6 giant panda populations formed 3 distinct groups.

Based on these data, we recommended that the 3 groups
be 3 AUs, but partitioned into 2 ESUs, and that one of the
ESUs consists of 2 MUs.

The QLI population should be viewed as a separate
ESU. Funk et al. [9] defined ESU as “a population or
group of populations that warrant separate management
or priority for conservation because of high genetic and
ecological distinctiveness,” and they recommended using
neutral and adaptive markers to define ESUs, since neu-
tral and adaptive processes both shape ESUs. Therefore,
our recommendation is based on our present genetic
data and previous ecological and molecular genetics
studies [22,23,37,38]. Our NJ trees based on microsatel-
lite and MHC class I genes revealed that QLI formed a
distinct cluster from other populations, which is con-
sistent with our STRUCTURE analysis and previously
reported genomic, microsatellite, and DNA fingerprint-
ing data [22,23,37]. The QLI population is currently iso-
lated from other populations by the Hanjiang and
Jialingjiang rivers. Additionally, QLI giant pandas live in
the south-central range of the QLI Mountain at eleva-
tions between 1300 and 2600 m, where the bamboo
Bashania fargesii (E. G. Camus) Keng f. et Yi grows. In
contract, other populations of giant pandas live at eleva-
tions of 2100 to 3400 m throughout the year and mainly
eat bamboo of the genus Fargesia [20]. Additionally,
Wan et al. [38] revealed that QLI giant pandas have
smaller skulls, larger molars, and different pelage color
as compared to other populations’ individuals; these dif-
ferences may be due to different habitat characteristics
in QLI and other mountains. Based on DNA fingerprint
and morphological data, Wan et al. [22] suggested that
the QLI should represent a separate subspecies. How-
ever, whether this population represents a subspecies or
a distinct ESU is still controversial [23]. Because our
evidence indicated that there is significant genetic and
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ecological distinctiveness between QLI and the other 5
southern populations, we propose that QLI should be a
separate ESU and should be monitored and managed
separately. Moreover, given that the QLI population has
lower genetic diversity at MHC genes and microsatellites
and fewer offspring in the captive population compared to
the other 5 southern populations, captive breeding of
Qinling giant pandas should be encouraged.

The other ESU contains 2 MUs, represented by MSH-
QLA and DXL-XXL-LSH. MUs are usually defined as
demographically independent populations [36]. If the
dispersal rate (m) is smaller than 10%, populations be-
come demographically isolated [39]. Dispersal rate or
gene flow is shaped by neutral processes; therefore,
neutral markers should be used to define MUs [9]. Our
Bayesian clustering analysis using microsatellites showed
that 3 clusters existed within giant panda populations.
Our results are different from those of a previous study
based on microsatellites [23], where they detected 4 clus-
ters (QLI, MSH, QLA, and XXL-LSH). In the present
study, MSH and QLA formed 1 cluster, which was con-
firmed by an NJ tree and was consistent with the data
from previously reported DNA fingerprinting and mtDNA
analyses [22,40], but was inconsistent with the results of
Zhang et al’s study [23]. These inconsistencies could be
the result of difference in samples used in the different
studies. Three populations, ie, DXL, XXL, and LSH,
formed another cluster, which may not have conflicted
with Zhang et al’s study. Because there was only 1 sample
collected from the DXL population in the previous study,
this sample was considered part of the QLA population
for the analysis [23]. The Ne values for MSH-QLA
and DXL-XXL-LSH were 200 and 300, respectively
(see Additional file 3: Table S2). Given that the thresh-
old dispersal rate is 10%, this corresponded to an Fgt
of ~0.0125 (Fgt = 1 / [1 + 4Nem]). The Fgr between
MSH-QLA and DXL-XXL-LSH was 0.038 (Table 2),
which was greater than the threshold of 0.0125; there-
fore, we can conclude that these 2 clusters should be
separate MUs. Moreover, QLI also deserved a separate
MU given the greater pairwise Fst between QLI and
the other 2 clusters (Table 2). Since MSH and QLA
showed no genetic structure among wild populations,
we suggest that green corridors should be constructed
between these 2 similar populations in order to pre-
serve its existing genetic diversity and evolutionary
potential of the populations. In addition, intrapopula-
tion habitat fragmentation is a serious problem for the
giant panda [21], so it is essential that we reconnect
the patches inhabited by each population in order to
enhance contemporary gene flow (individual dispersal)
and ensure the long-term survival of the giant panda.

When discussing AUs, adaptive loci should be used
[9]. We determined 3 possible AUs (QLI, MSH-QLA,
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and DXL-XXL-LSH) based on patterns of variation at
MHC loci that reflected the ability to adapt to various
pathogens. These analyses suggested that QLI should be
a separate AU, which was supported by our NJ tree and
structure analyses and genomic structure data [37].0ur
NJ trees revealed that MSH and QLA were most similar
(Figure 2A; bootstrap value = 78%); this was supported
by our structure analysis and the Fgt value between
these 2 populations (Fst = 0.003), but was inconsistent
with the results of Zhao et al. [37]. They detected 3 dis-
tinct populations (QLI, MSH, and QLA-DXL-XXL-LSH)
based on genomic data. The discrepancy lies in whether
MSH and QLA should be together considered as a sin-
gle AU and could be due to differential sensitivity of
these 2 groups of markers. However, given that it is bet-
ter to use adaptive loci to delineate AU, it is hard to say
whether MSH and QLA should be viewed as separate
AUs, though genomic data is much more sensitive than
specific genes of known function (i.e, MHC loci) [9].
The genomic structure results reported by Zhao et al.
were based on all loci [37]. Furthermore, we do not have
any data on different types of pathogens within giant
panda populations that could directly reflect the differ-
ent characteristics among possible adaptive groups.
Therefore, we can only recommended 3 possible AUs
given the above limitations to our data.

Conclusions

In summary, our work revealed relative high genetic vari-
ation at MHC class I genes in the giant panda. Using all
loci, we defined 2 ESUs: QLI and MSH-QLA-DXL-XXL-
LSH. The differentiation index (FST)-based phylogenetic
tree and Bayesian clustering analysis for microsatellite loci
suggested the need for 3 MUs: QLI, MSH-QLA, and
DXL-XXL-LSH. We recommended 3 possible AUs: QLI,
MSH-QLA, and DXL-XXL-LSH based on the patterns
of variation in MHC loci. QLI was found to be the most
genetically differentiated and had fewer offspring in the
captive population, suggesting that captive breeding of
pandas from this population should be encouraged.
XXL exhibited the highest genetic variation at microsa-
tellites among the 6 giant panda populations and higher
genetic variation based on MHC class I genes than that
in larger populations (i.e., QLI, MSH, and QLA). There-
fore, XXL should be considered before prior to other
populations for translocation and captive breeding
programs.

Methods

Sampling and DNA extraction

We collected 267 samples from 25 geographic locations
in 6 segregated mountain ranges (see Additional file 4:
Table S3; Figure 1): QLI (n = 40), MSH (n = 43), QLA
(n = 47), DXL (n = 25), XXL (n = 51), and LSH (n = 61).
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These included 35 blood, 109 skin, and 123 faecal
samples. Blood samples were obtained from wild-born
giant pandas, considered part of the wild population
(QLL MSH, QLA, and LSH). They were collected during
routine medical examinations and were stored in liquid
nitrogen. Skin samples were obtained from skin tissues
from dead wild pandas and were preserved in sealed
paper bags in desiccators. The 123 faecal samples (25
DXL, 51 XXL, and 47 LSH; see Additional file 4: Table S3)
were collected from nonoverlapping home ranges dur-
ing the nonreproductive season (between August and
November). For faecal samples from the same adjacent
home ranges, we performed individual discrimination.
First, we performed PCR amplification of 8 microsatel-
lites and 4 Aime-MHC-I loci in faecal DNA and found
that MHC genes yielded obviously higher amplification
success rates than microsatellites. Thus, the faeces were
considered to represent a single individual when all al-
leles were identical across the amplifiable microsatellites
and all studied MHC class I loci. Twenty-three faecal
samples (18.7%) did not yield PCR products at more
than 4 microsatellites and were thus treated as failures
of microsatellite-based individualization. We identified
individuals from these samples based on genotyping re-
sults of 4 Aime-MHC-I genes, which nonetheless under-
went additional confirmation in an Aime-MHC-II-based
genotyping analysis conducted in another study [33].
These results allowed us to distinguish 123 faecal sam-
ples as having come from 16 giant panda individuals in
DXL, 31 in XXL, and 27 in LSH. Thus, we ultimately
used 218 individuals for our subsequent analysis (see
Additional file 4: Table S3).

Genomic DNA was isolated as described by Wan [26].

MHC genotyping and haplotyping

We performed locus-specific amplification of the 4 clas-
sical Aime-MHC class I genes characterized in our pre-
vious paper [32]. In addition to separate amplifications
of exons 2 and 3, we amplified a long fragment compris-
ing exon 2, intron 2, and exon 3 and used the resulting
products to conduct haplotyping (see Additional file 5:
Table S4). PCR amplification conditions are presented
in Additional file 6: Table S5. A stringent multitube ap-
proach was used to obtain reliable genotypes from the
faecal samples [41]. If the genotype could not be deter-
mined after 2 of 3 amplifications, a fourth was performed.
We used single-strand conformation polymorphism and
heteroduplex (SSCP-HD) analysis to screen the PCR frag-
ments. Electrophoresis conditions were as described by
Zhu et al. [32]. In addition to obtaining separate genotypic
data from exons 2 and 3, we cloned PCR products repre-
senting a longer fragment of exon 2-3 into DH5a compe-
tent cells (TaKaRa, Ltd, Dalian, China) and used the
recombinants to determine exon 2-3 haplotypes. To
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identify the combined exon 2-3 genotypes, positive clones
were subjected to PCR-SSCP using exon 2- and exon 3-
targeted SSCP-series primers. To avoid errors arising from
PCR-based recombination, we sequenced at least 8 clones,
each showing a unique SSCP banding pattern. If a se-
quence appeared in at least 2 individuals or was found in
2 independent PCRs from a single individual, we recog-
nized it as an allele.

Microsatellite genotyping

After assessing their amplification, polymorphism, and
yield, we chose 8 giant panda dinucleotide microsatellite
loci (see Additional file 7: Table S6) from 37 loci [42-44].
PCR amplification conditions are shown in Additional
file 6: Table S5. Genotyping methods were the same as
those reported by Li et al. [45]. A multitube approach
was also used to genotype microsatellite loci, as described
above.

Summary statics

We assessed deviations from HWE and calculated allele
frequencies with GenePop 4.0 software [46]. Observed
(Ho) and expected (Hg) heterozygosities were obtained
from Arlequin 3.1 software [47]. AR, standardized for
sample sizes of each locus, was calculated using FSTAT
2.9.3 [48]. Linkage disequilibrium (LD) between pairs of
microsatellite loci was evaluated in GenePop 4.0 [46].
We used Micro-Checker to test for the presence of null
alleles, stuttering, or large allele dropout for microsatel-
lites [49]. Within the 8 microsatellite markers selected,
no evidence was found for LD and/or other genotyping
errors for each population. The Ne was estimated by the
LD method, as implemented in the NeEstimator pro-
gram [50].

Estimates of population differentiation
We calculated pairwise Fgr values in Arlequin 3.1 [47].
To further assess population structure, we first built NJ
trees on the basis of Fg values [51] in PHYLIP 3.69 soft-
ware [52]. Bootstrap values were obtained by resampling
the loci 1000 times. We visualized trees in Figtree 1.4.0
[53], and rooted the trees at the midpoint. We then used
Bayesian clustering methods in STRUCTURE V 2.3.3 to
detect genetic structure [54]. We conducted 10 runs for
K from 1 to 10 with 100,000 burn-in runs from
1,000,000 Markov Chain Monte Carlo (MCMC) opera-
tions for each K [54]. Then, the results were uploaded to
the online Structure Harvester [55] program, which se-
lects the number of clusters by simultaneously evaluat-
ing posterior probability and the delta K statistic of
Evanno et al. [56]. Graphical output was displayed using
DISTRUCT V1.1 [57].

We used Mantel tests to detect whether patterns of
population differentiation at MHC and microsatellite
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loci showed isolation by distance. We first measured
geographical distances between different populations
by Google Earth [58]. Then, we tested for the relation-
ship between log geographical distance of different
populations and G'st/1 — G'gt for 2 markers using a
simple Mantel test. The G’st estimate could control
for differences between different markers with differ-
ent heterozygosities [59]. We conducted Mantel tests
in ZT [60].

Supporting data
The data set supporting the results of this article is avail-
able in the Dryad repository [doi:10.5061/dryad.2gt86].
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