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Global climate changes drive ecological
specialization of mammal faunas: trends in rodent
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Abstract

Background: Several macroevolutionary hypotheses propose a synchrony between climatic changes and variations
in the structure of faunal communities. Some of them focus on the importance of the species ecological
specialization because of its effects on evolutionary processes and the resultant patterns. Particularly, Vrba’s turnover
pulse hypothesis and resource-use hypothesis revolve around the importance of biome inhabitation. In order to
test these hypotheses, we used the Biomic Specialization Index, which is based on the number of biomes occupied
by each species, and evaluated the changes in the relative importance of generalist and specialist rodents in more
than forty fossil sites from the Iberian Plio-Pleistocene.

Results: Our results indicate that there was a decrease in the specialization degree of rodent faunas during the
Pliocene due to the global cooling that triggered the onset of the glacial events of the Cenozoic (around 2.75 Ma).
The subsequent faunal transition after this critical paleoenvironmental event was characterized by an increase of
specialization related to the adaptation to the new environmental conditions, which was mainly associated with the
Pleistocene radiation of Arvicolinae (voles).

Conclusions: The pattern of faunal turnover is correlated with the development of the modern glaciations in the
Northern Hemisphere around 2.75 Ma, and represents a reorganization of the rodent communities, as suggested by
the turnover pulse hypothesis. Our data also support the resource-use hypothesis, which presumes the role of the
degree of specialization in resources specifically related to particular biomes as a driver of differential speciation and
extinction rates. These results stress the intimate connection between ecological and evolutionary changes.
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Background
Almost since the first publication of the seminal contribu-
tion about the tendency of species to form varieties [1],
there has been a debate between models that consider the
competition between species as the key for evolutionary
changes [2,3] and the ones that regard factors external to
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the species, usually biogeography or climatic changes, as
the main drivers responsible of biotic evolution [4-7].
Nevertheless, an increasing consensus has appeared dur-
ing the last decades on the critical importance of changes
in the physical environment, rather than biotic interac-
tions themselves, for the evolution of organisms and eco-
systems at large spatial and time scales [8-11].
The habitat theory proposed by Elisabeth S. Vrba

[12,13] is one of the best known of such evolutionary
models. This theory comprises a set of hypotheses show-
ing the influence of global climatic shifts and the subse-
quent environmental changes on the turnover of species
assemblages as a result of the drifting of geographic distri-
butions, lineage originations and extinctions.
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Figure 1 Schematic representation of the turnover-pulse and
the resource-use hypotheses. Iterative and differential evolution of
clades related to variations in biomic specialization as predicted by
the turnover-pulse and the resource-use hypotheses (modified from
Vrba [25,26]). During severe environmental changes, extinction rates
of stenobiomic lineages reach their apex, giving rise to critical biotic
events in which generalist species constitute most of the survivors.
After each critical event the development of new specialist lineages
with faster speciation rates generates specialists-dominated faunas
as the environmental conditions are stabilized.
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As a core part of the habitat theory, Vrba [7,14] devel-
oped the resource-use hypothesis, which stresses the rela-
tionship between the ecological specialization of species
and the processes that regulate their evolution. The differ-
ent conditions imposed by the ecological characteristics of
species, and especially the biomes that they inhabit, have
an effect on the macroevolutionary patterns that are ob-
served through time and space [7,14-17]. In this way, the
resource-use hypothesis gives a great value to the differ-
ences between the species that inhabit one biome exclu-
sively (biome specialists or stenobiomic species) and
others that obtain their resources from more than one
biome (biome generalists or eurybiomic species). In order
to clarify the concepts used for this work, it is important
to indicate that biome specialization is not necessarily re-
lated to specialization in other ecological traits of the spe-
cies. For example, Rhynchomys soricoides (Murinae,
Rodentia), which has been described as vermivore [18], ex-
hibits a high grade of specialization in its dietary habits
but, since it inhabits three different biomes (equatorial
rainforest, tropical deciduous woodland and temperate
evergreen forest) [19-21], is a biome generalist. On the
other hand, Stochomys longicaudatus (Murinae, Rodentia)
has an omnivore diet [22], but it is restricted to the equa-
torial rainforest of Central Africa [23].
According to the resource-use hypothesis, during epi-

sodes of climatic triggering of habitat change, specialist
species are more prone to suffer limitation of their re-
sources and, consequently, they are more susceptible to
habitat fragmentation, vicariance and directional selec-
tion. Since environmental changes have stronger effects
on biome specialists than on generalist species, which
can find their resources in different biomes, the former
are predicted to have higher speciation and extinction
rates than the latter [14,17]. Such phenomenon results
in an increase of the specialist species versus generalists
in the global fauna, which has been observed in mam-
malian assemblages from both Africa [14,15] and South
America [16] as well as in the ruminants at the global
scale [17].
Importantly, because of the constraints on the evolu-

tionary history of species imposed by changes in the
physical environment, most of the evolutionary changes
in biotic lineages (including speciation, extinction or dis-
persion) should occur synchronically with global climatic
changes. Such an evolutionary scenario is developed in
the turnover-pulse hypothesis [12,24,25]. According to
this hypothesis, most speciations and extinctions across
diverse groups of organisms are not randomly distrib-
uted in time, but show statistically significant concentra-
tions near times of major physical change. While most
of these turnover-pulses affect few lineages and/or re-
stricted geographic areas, some of them are massive and
of global extent [25].
The combination of all these issues, along with the hier-
archical organization of ecological and evolutionary pro-
cesses [26], raises three corollary predictions (Figure 1):
(1) due to their large ecological preferences, biome gener-
alists might constitute a predominant part of the set of
species that survive during the moments of significant glo-
bal change; (2) nevertheless, once the critical periods of
global change have finished, the preponderance of gener-
alist species will decrease and a set of new specialist spe-
cies will develop through speciation of the surviving
lineages as the environmental conditions are stabilized;
(3) this would entail a progressive specialization of
generalist clades through niche filling within the newly
generated environments. On the other hand, due to eco-
logical constraints, clades dominated by specialist species
before the crisis are expected to severely decrease in im-
portance, although their specialization degree may not
change.
To test these predictions, here we focus on the rodent

faunas from the Iberian Plio-Pleistocene. During this
period, successive cooling pulses culminated with the es-
tablishment of continental northern-hemisphere glaciations



Table 1 Fossil sites used in this work and values of
average BSI

Fossil sites Age (Ma) * N † Average BSI §

Caldeirâo Eb 0.012 9 1.778

Caldeirâo Fa 0.012 7 1.429

Caldeirâo Fb 0.012 8 1.750

Cueva Millán 1a 0.038 7 2.800

Pinilla del Valle 0.191 14 2.231

Las Yedras 0.191 8 1.714

Cueva del Agua 0.266 8 2.286

Áridos 1 0.266 6 2.000

Galería III 0.340 11 2.100
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and the modern ice age climate around 2.75 Ma [27-29].
This severe climatic event at the global scale is an ideal sce-
nario for testing Vrba’s hypotheses. We used rodents as
our study group because they are widespread, highly di-
verse and habitat-sensitive, which makes them one of the
most environmental and climatically informative groups of
mammals [30-34]. Besides, their Iberian fossil record is vast
and extensively documented [35]. Additionally, this group
has been used to characterize intervals of great faunal
change throughout the Cenozoic, usually associated with
global climate fluctuations (e.g. [36,37]). For these reasons
they provide a suitable faunal set to test the predictions ex-
posed above.
Galería IIb 0.340 12 2.091

Galería IIa 0.340 12 2.182

Cueva de los Zarpazos 4 0.340 9 2.444

Trinchera Dolina 10 0.340 9 2.125

Cúllar Baza 1 0.430 5 2.400

Trinchera Penal Tubo 2 0.852 5 2.600

Trinchera Penal 8 0.852 7 2.000

Trinchera Penal 7 0.852 11 2.375

Trinchera Dolina 6 1.110 14 2.571

Trinchera Dolina 5 1.110 14 2.538

Trinchera Dolina 4 1.110 13 2.667

Trinchera Dolina 3 1.110 9 2.333

Huéscar 1 1.472 6 1.500

Sima del Elefante 1.472 11 2.375

Quibas 1.782 5 2.800

Bagur 2 1.782 8 2.143

Casablanca 1 2.040 8 2.429

Valdeganga III 2.144 6 2.500

Casablanca B 2.402 5 2.800

Huélago 5 2.557 4 2.333

Escorihuela A 2.971 9 3.000

Escorihuela 2.971 11 2.818

Sarrión 3.281 10 2.556

Moreda 1 3.281 18 2.625

Barranco de Quebradas 1 3.436 6 2.000

Layna 3.591 14 2.500

Orrios 1 3.746 8 1.857

Arquillo III 4.056 15 2.733

Aldehuela 4.263 9 1.857

Villalba Alta 1 4.263 15 2.333

Gorafe 1 4.521 11 1.625

Caravaca 1 4.728 10 1.333

Peralejos E 4.832 12 2.417

La Gloria 4 4.832 16 2.313

Purcal 4 5.245 11 2.000
* Ages after [38].
† N, number of species.
§ BSI, Biomic Specialization Index.
Methods
Data
In this work we used the faunal lists of rodent commu-
nities from 44 fossil sites from the Iberian Plio-
Pleistocene (Table 1) dated between 5.25 and 0.01 Ma
[38]. These fossil sites have been subject to intensive
sampling during the last fifty years (see references in
[38]). The minimum sample required to include a fossil
site in our study was 100 first and second upper and
lower molars, which is considered the minimum number
necessary to render a representative sample of the ori-
ginal paleocommunity [30,36,39].
The specialization degree of each species was mea-

sured using the Biomic Specialization Index (BSI) devel-
oped by Hernández Fernández and Vrba [15]. This
index indicates the number of biomes inhabited by the
species, following the climatic classification of Walter
[40], which recognizes ten biomes. Therefore, BSI equals
1 for most specialized species whereas generalist species
could exhibit a BSI as high as 10. The data on the biome
residence for all the rodent species were obtained from
[34], who derived biome residences from identifying
their living ecological analogues as estimated by eco-
morphological studies of the dentition [41,42].
Finally, following Hernández Fernández and Vrba [43],

we calculated the relative frequency of specialist and
generalist species in each fossil site in terms of the aver-
age value of the BSI of the species found in the site. Tak-
ing into account that some taxa on our lists were not
identified to species level, we decided to conduct the
analysis by two different ways. First, for the undeter-
mined taxa, the BSI value was calculated as the average
of all the species that belong to their upper taxonomic
level. Second, to avoid the potential noise in the data
due to unidentified taxa, we only analysed the taxa that
were determined at species level in each fossil site. Since
both analyses yielded very similar results, here we only
discuss those corresponding to the latter version of the
analysis (all taxa at the species level).
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Analyses
Following our predictions derived from the interaction
between the resource-use and the turnover-pulse hy-
potheses, the beginning of the modern glaciations in the
Northern Hemisphere (around 2.75 Ma) should be coin-
cident with the rising of mammal faunas dominated by
generalists (high average BSI values). After this critical
event we should find a progressive increase in the
specialization degree of the rodent faunas from the Iber-
ian Pleistocene (decrease of average BSI). In order to
identify significant changes in the average BSI of fossil
assemblages through time, we carried out Multivariate
Adaptive Regression Splines (MARS; [44]) on the data
set. MARS is a method that identifies hinge points in a
time series that automatically minimize the residual sum
of squares (RSS). In this way time shifts in BSI trends do
not need to be fixed a priori. Progressively adding hinge
points to the model increases the number of parameters.
Since overly complex models may result in stochastic
error (inflated variance), we need to find an equilibrium
between fit and complexity. MARS does this automatic-
ally using the Akaike Information Criterion (AIC) scores
of each model, which measures the goodness of the fit of
a statistical model while penalizing the number of pa-
rameters (the complexity).
Additionally, we expected to find different evolution-

ary responses to this event in different rodent clades
according to their degree of specialization. More gener-
alist groups are predicted to survive and proliferate after
the environmental crisis at 2.75 Ma, becoming progres-
sively more specialized. Meanwhile clades dominated by
specialist species before the crisis are expected to de-
crease in importance, although the specialization degree
may not change. These predictions were tested by means
of t-Student comparisons between species pools before
5 4 3

1.0

1.5

2.0

2.5

3.0

Time befor

A
ve

ra
ge

 B
S

I

Pliocene
Ruscinian Villafr

MN 14 MN 15 MN 16 

Figure 2 Time series of average BSI for rodent faunal assemblages th
index (BSI) estimated for 44 fossil sites from the Iberian Plio-Pleistocene dat
the MARS analysis [44], which identified a hinge point (Table 2) in the tren
onset of the modern glaciations in the Northern Hemisphere ~ 2.75 million
land mammal ages (see [38]) and epochs are shown at the bottom.
and after the inflection point yielded by the MARS ana-
lysis within different taxonomic groups. Following Wil-
son & Reeder [45], we studied the specialization trend of
Sciuridae, Gliridae, Castoridae, Arvicolinae, Cricetinae,
Gebillinae, Murinae and Hystricidae separately. Subfam-
ilies within Cricetidae (arvicolines and cricetines) and
Muridae (gerbillines and murines) [19] were studied in-
dependently due to their importance in Iberian Plio-
Pleistocene rodent faunas, and because they have been
traditionally taken as independent families in paleon-
tological studies [35] and their monophyly has been dem-
onstrated by molecular studies [46,47].

Results
Through the time span considered here, our results
show the existence of two opposed patterns with an in-
flection point coincident with the onset of the Pleisto-
cene glaciations. This involves substantial changes in the
average BSI value of the Iberian rodent faunas (Figure 2),
supporting the prediction of a change in the pattern of
ecological specialization in concert with the cooling
pulse of the Plio-Pleistocene around 2.75 Ma.
We observed a considerable increase of the average

BSI throughout the Pliocene, reaching maximum values
close to the end of the period. This is to say; during the
Pliocene there was a transition from faunas with a
higher prevalence of specialist species to faunas where
biome generalists were predominant. The best-fit model
identified by MARS analysis (Table 2) includes a single
hinge point in the BSI time-series that divides the time
series in two sub-sets differing in their trend. The first
sub-set of data ranges from 5.3 Ma to 2.9 Ma, depicting
an increase in BSI values (towards less specialists; see
Figure 2). The second sub-set ranges from 2.6 Ma to the
present and shows a decrease of the BSI values (towards
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Table 2 AIC scores

Hinges AIC ΔAIC Time-shifts (Ma)

0 88.99 13.28 –

1 75.71 0 2.97

2 77.71 2 2.97 3.43

3 79.71 4 2.40 2.97 3.43

4 81.71 6 2.40 2.97 3.43 4.06

AIC scores of the models with different number of hinge points according to
the MARS analysis [44]. The lowest AIC represents the best fit to the data. Age
for each hinge is shown.
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more specialists; see Figure 2). Adding this hinge point
to the model resulted in a significant improvement of
the fitness over the null model where specialization
(BSI) remains linear through time (ΔAIC = 13.28, see
Table 2). Increasing the number of hinge points did not
improve the fit of the models (Table 2).
The t-student tests for different rodent groups indi-

cated that the radiation of arvicolines (voles) is related
to a significant change in biomic specialization, from few
generalists to many specialist species, associated to the
critical environmental change at 2.75 Ma (Figure 3).
Other Pliocene generalist groups (beavers, gerbils and
porcupines) appear to be scarce in Iberian faunas. More
Number 
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I

Figure 3 Species BSI (average ± standard error) values for each roden
clade in the Plio-Pleistocene record from the Iberian Peninsula. Values befo
hemisphere glaciations, 2.75 million years ago, are shown. T-student tests f
comparisons were possible. **, p < 0.01; ns, non significant. Taxonomic grou
specialized groups (sciurids, glirids, cricetines and par-
ticularly murines) showed much lower number of spe-
cies during the Pleistocene than in the Pliocene,
although they did not show differences between their
species BSI before and after the development of the first
glaciations of the Pleistocene (Figure 3). These results
corroborate the third prediction tested here.

Discussion
The gradual decrease in the relative importance of spe-
cialist species during the Pliocene (increase in average
BSI) is probably related to the progressive global cooling
predominant during the Pliocene, which triggered modifi-
cations in the climate of southern Europe, from subtrop-
ical conditions with minor fluctuations of temperature to
temperate conditions with noticeable annual thermal sea-
sonality [49,50].
Our results are consistent with a scenario where spe-

cies dwelling in more than one biome (generalists) were
more able to tolerate this change due to their ability to
find resources in different environments. After the de-
velopment of the first modern glacial events at the
Northern Hemisphere the specialization degree of the
faunas progressively increased (the value of average BSI
decreases). This trend reflects a gradual “recovery” of
of species
t clade. Species BSI (average ± standard error) values for each rodent
re (circles) and after (squares) the onset of the modern northern
or both assemblages in each clade are indicated when statistical
ps are ordered according to Wilson and Reeder [45].
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Table 3 Correlation analyses between average BSI and
the percentage of different rodent groups

Before 2.75 Ma After 2.75 Ma

r p * r p *

% Sciuridae −0.545 0.036 0.112 0.562

% Gliridae 0.346 0.206 0.052 0.790

% Castoridae 0.250 0.368 0.220 0.251

% Arvicolinae 0.711 0.003 −0.537 0.003

% Cricetinae −0.054 0.849 0.095 0.625

% Gerbillinae −0.628 0.012 (na) † (na) †

% Murinae −0.367 0.178 0.309 0.103

% Hystricidae 0.133 0.636 0.333 0.077
* Bold, significant correlations.
† na, not available (there are no species).
Coefficients and their significance for each group in the fossil sites before
(N = 15) and after (N = 29) the onset of the Pleistocene glaciations at 2.75 Ma.
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the rodent communities after the ecological disturbance
caused by the onset of the first glaciations. Finally, dur-
ing the Holocene the ecological specialization (average
BSI) of the faunas reached similar values to the ones
found during the early Pliocene.
There were profound changes in the faunal compos-

ition of the rodent assemblages (Figure 4) stemming
from the development of the temperate climates of the
Plio-Pleistocene [51]. During the Pliocene, Iberian ro-
dent faunas were dominated by murines and cricetines,
with a set of companion species within terrestrial squir-
rels and gerbils. In contrast, the dominant group during
the Pleistocene was Arvicolinae (voles) [52]. Most of the
correlations between the percentage of species in each
family and the average BSI value of each fossil site before
and after the modern glaciations are not significant
(Table 3). Nevertheless, it is noteworthy that Arvicolinae
shows a significant relationship with different sign in
each period. Before 2.75 Ma, the moderate increase in
the number of arvicoline species is associated with
higher average BSI (more generalists). Yet, after the cli-
matic crisis, the flowering of arvicoline faunas is associ-
ated to a significant decrease in average BSI of the
rodent communities. This signifies that the increase in
arvicoline diversity likely resulted from an adaptive radi-
ation involving highly stenobiomic taxa. Furthermore,
the radiation of voles had a preponderant role in the
reorganization of the rodent faunas from the Iberian
Plio-Pleistocene. During the Pliocene, this group is
mainly represented by generalist species in Promimomys,
Dolomys and Mimomys [34], and an important part of
the survivors during the climatic “deterioration” of the
middle-late Pliocene belong to the latter genus. During
the Pleistocene the large radiation of arvicolines is domi-
nated by the evolution of specialist species in many dif-
ferent genera, especially in Microtus [53,54]. Probably,
this is related to the development of several new envi-
ronments in the temperate latitudes [55], where re-
sources were available for the exploitation by the
generalist survivors of this family, which could start a
process of progressive specialization along the Pleisto-
cene. This is possibly one of the keys for the evolution-
ary success of this family (Figure 3), which now inhabits
all the ecosystems of the Holarctic and is the dominant
group of rodents in most of them.
On the contrary, the other rodent groups of the Iber-

ian Plio-Pleistocene were not able to take advantage of
the new environments that were associated with the
glacial-interglacial cyclicity of the Pleistocene climate.
Particularly, in the case of Murinae there was a substan-
tial decrease in the relative importance of this group in
the rodent faunas from the Iberian Peninsula (Figure 4).
From communities with representatives of eight genera
during the Pliocene [56], the Pleistocene faunas only
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preserved species of Apodemus, Castillomys, Micromys
and Stephanomys, the latter only surviving until 2.0 Ma
[57,58]. Most murine species were adapted to forested
and warm environments [34,42], which disappeared
from Iberian latitudes with the onset of the modern gla-
ciations. Today this family is predominantly distributed in
tropical areas of the Old World, with only a few genera
and species in temperate regions [59]. Murine demise in
the Iberian Peninsula would be due not only to the de-
crease in temperature, but probably also to changes in pre-
cipitation amount and seasonality, associate to the
development of Mediterranean climate [34]. Although
such species loss was conspicuous in the Iberian Pleisto-
cene, the specialization degree of this group did not show
significant differences after 2.75 Ma (Figure 3).
Cricetinae was the other group showing a clear impov-

erishment over the analyzed interval. Whereas cricetid
communities during the Pliocene held the genera
Apocricetus, Blancomys, Ruscinomys, Celadensia or
Trilophomys [60], Pleistocene cricetid faunas were only
represented by the immigrant Allocricetus bursae. This
taxon is closely related to the few genera that occupy
today the arid environments present in the temperate re-
gions of Eurasia since the onset of the glaciations. Ap-
parently, the global cooling at the Plio-Pleistocene
boundary imposed strong ecological limitations to the
species adapted to arid and open environments, such as
the Iberian cricetids [42,61]. Similarly, the terrestrial
squirrels, characteristic of many Pliocene faunas from
the Iberian Peninsula (Atlantoxerus), belong to Xerini, a
group that today is restricted to the African savannas
and semideserts, and disappeared completely from the
Iberian record due to the cooling of the climate. They
were replaced in the Iberian Pleistocene by Sciurini
(Sciurus) and Marmotini (Marmota); these groups are
predominant respectively in forested and open temper-
ate environments. In the case of glirids, there were no
large faunal changes before and after the beginning of
the Pleistocene northern glaciations. They maintained
the same genera, which are still living, and there are no
significant differences in the BSI of their species over the
period studied here (Figure 3).
Finally, three minor Pliocene generalist groups, gerbils,

beavers and porcupines, were unable to proliferate in
the Iberian Pleistocene. In the first case this is probably
due to their specific specialization to arid climates
mostly developed in other regions of Eurasia. The other
two families show extremely low species number, which
may have hampered their diversification.
It seems that the Pliocene witnessed a process of disas-

sembly within the Iberian rodent communities. The im-
poverishment of the Iberian rodent communities
throughout the Pliocene stemmed from a loss of diversity
that affected most of the rodent families. The recovery of
species diversity during the Pleistocene was linked to the
radiation of stenobiomic arvicolines that resulted in the
establishment of a new rodent fauna (Figure 4). This glo-
bal radiation is evidenced within the Iberian fossil record
by local speciation (e.g. development of the endemic
lineage Iberomys within Microtus [62-64]) as well as by
immigration of new species from other Eurasian regions,
being both processes spurred by global environmental
change. Overall, such ecological reorganization of assem-
blages appears to be triggered by global climatic changes
and modulated by the differences in ecological specializa-
tion of the implied species, similarly to what was observed
in earlier periods of faunal replacement in Spain [36,65].

Conclusions
Our results offer support for some hypotheses included
in Vrba’s habitat theory, which predicts a proportional
decrease of specialist species associated with severe glo-
bal climatic changes, and a later recovery of this kind of
species associated to a complete faunal turnover. The
pattern of faunal turnover is correlated with the develop-
ment of the modern glaciations in the Northern Hemi-
sphere around 2.75 Ma, which triggered a reorganization
of the rodent communities as predicted by the turnover
pulse hypothesis. In the same way our data support the
resource-use hypothesis, which stresses the role of the
degree of specialization in resources specifically related
to particular biomes as a driver of differential speciation
and extinction rates. In this way, ecological and evolu-
tionary changes are intimately connected.
Finally, this work shows that the exceptional quality of

the fossil record in the rodent assemblages from the
Iberian Peninsula makes this group a good case for the
study of the relevance of ecological characteristics of spe-
cies in the development of macroevolutionary processes.
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