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Abstract

Background: The molecular history of animal evolution from single-celled ancestors remains a major question in
biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study,
we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular
relatives.

Results: Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK
20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6,

emergence.

found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K.and T as a whole
subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin
subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is
generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in
animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora
owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D
subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens.
Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi,
choanoflagellates, and the basal metazoan Amphimedon queenslandica.

Conclusions: Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the
evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of
the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan
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Background
Cyclin-dependent kinases (CDKs) are serine and threo-
nine kinases whose actions are dependent on the bind-
ing of regulatory subunits known as cyclins [1,2].
Various cyclins are synthesized and destroyed at specific
times during the cell cycle, thus regulating CDK activity
in a timely manner [3,4]. CDK and cyclin families func-
tion in a variety of cellular processes, including cell cycle
regulation, transcription, RNA processing, translation,
neurogenesis, and apoptosis [1,5,6].

The evolution of metazoans from protozoans is a
major milestone in the history of life. This transition has
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been generally marked by increases in the number of
genes involved in cell differentiation, cell-cell communica-
tion, and cell adhesion [7-12]. The evolutionary histories
of transcription factors (Hox transcription factors and the
Myc-max network) [12-16], cell-cell communication-
related genes (Wnt, catenin, and receptor tyrosine kinase
families, and the Ca** signaling “Toolkit’ ) [17-21], and cell
adhesion genes (cadherin, integrin, and laminin families)
[22-27] during the unicellular to metazoan transition have
been extensively investigated.

In addition to cell communication and cell adhesion
proteins, other proteins may be linked with metazoan
emergence. Based on a comprehensive phylogenetic ana-
lysis of sponge Amphimedon queenslandica proteins, it
has been proposed that the emergence of metazoan
multicellularity may have been related to the evolution
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of various genes functioning in cell cycling and growth,
programmed cell death, cell-cell and cell-matrix adhe-
sion, developmental signaling and gene regulation,
allorecognition and innate immunity, and cell type
specialization [28].

As implied by the aforementioned study, investigation
of the evolutionary history of cell cycle control genes
could enhance our understanding of metazoan emer-
gence from single-celled ancestors. At present, however,
comprehensive evolutionary analyses have been carried
out only for a few cell cycle control genes, such as P53,
RB, and E2F families [29,30].

The core machinery of the animal cell cycle can gener-
ally be traced back to early eukaryotes [31-33]. It was
previously proposed that the eukaryotic cell cycle was
controlled by the DNA damage checkpoint kinase
Chklp at early stages of evolution, and duplications of
kinase genes occurred during subsequent evolution.
Gradually, eukaryotic kinases were added to the cell
cycle control system, with CDKs being among the last
major additions [34]. However, cyclin-dependent kinases
(CDKs) in yeast and animal are thought to be the
cornerstone in cell cycle control [1,6,35].

According to recent reports, 20 CDK and approxi-
mately 30 cyclin genes are present in humans [6,36,37].
The evolution of CDK and cyclin families has been stud-
ied previously. An analysis of the CDK family in yeasts
and animals divided the CDK family into seven subfam-
ilies (Pho85, CDC28, CTK, BC18H.15, SRB10, KIN28,
and CDK4/6) [38], while another analysis examined 123
CDK family members from animals, plants, yeasts, and
four protists [39]. With respect to the cyclin family, one
phylogenetic analysis covered A-, B-, D-, and E-type cyc-
lin proteins in animals and fungi [40]; another analysis
included fungal, plant, and protist cyclins, and success-
fully divided all cyclins in three groups [41]. These ana-
lyses only incorporated a relatively limited number of
organisms, however, with several representative organ-
isms occupying key positions in the transition from uni-
cellular to metazoan organisms not analyzed.

Taking advantage of the increasing number of se-
quenced genomes, in this study we conducted a compre-
hensive evolutionary analysis of 176 CDK and 226 cyclin
genes from 18 representative organisms. Our analysis in-
corporated several organisms important to the study of
metazoan emergence, such as the closest known meta-
zoan relative, the choanoflagellate Monosiga brevicollis
[42]; the oldest surviving metazoan, Amphimedon
queenslandica [28]; the earliest eumetazoan, Trichoplax
adhaerens [43]; and the cnidarian Nematostella vectensis
[44]. We also included several unicellular organisms, such
as the choanoflagellate Salpingoeca rosetta and the filas-
terean Capsaspora owczarzaki, that are recognized as
close relatives of metazoans based on data from the

Page 2 of 16

Origins of Multicellularity project [10]. Our results re-
vealed detailed evolutionary information regarding CDK
and cyclin proteins in metazoan organisms and their uni-
cellular relatives, and provided evidence for simultaneous
CDK4/6-cyclin D complex and eumetazoan emergence.

Methods

Database searching and identification of CDK and cyclin
sequences

For CDK proteins, we performed PSI-Blast searches using
human CDKI1 and CDK?7 protein sequences as queries
[45] against the NCBI non-redundant protein database
(http://www.ncbinlm.nih.gov/) for 15 organisms: Homo
sapiens, Ciona intestinalis (C. intestinalis), Strongylocen-
trotus purpuratus (S. purpuratus), Branchiostoma floridae,
Drosophila melanogaster (D. melanogaster), N. vectensis,
T. adhaerens, A. queenslandica, Monosiga brevicollis,
S. rosetta, C. owczarzaki, Schizosaccharomyces pombe
(S. pombe), Saccharomyces cerevisiae (S. cerevisiae),
Coprinopsis cinerea (C. cinerea), and Dictyostelium dis-
coideum (D. discoideum). The search results were used
as new queries in a second round of BLAST searching,
which was continued until no new sequences were
returned. We also performed a similar BlastP search
against the Broad Institute database [10] (http://www.
broadinstitute.org/annotation/genome/multicellularity _pro-
ject/MultiHome.html) to collect CDK sequences from three
unicellular organisms: Sphaeroforma arctica (S. arctica),
Spizellomyces punctatus (S. punctatus), and Thecamonas
trahens (T. trahens), as these sequences are not available in
the NCBI database. For CDK genes, only the longest
protein sequence encoded by each gene was retained.
We also carried out a preliminary phylogenetic analysis
on all putative CDK family proteins collected from
Blast searching. Proteins clustering with human CDKs
were used in subsequent analyses, whereas those clus-
tering with other human protein kinases, such as MAP
kinases, were discarded.

Using human cyclin B, cyclin C, and cyclin Y proteins
as queries, similar Blast searches were carried out to
identify cyclin proteins from related organisms in the
NCBI and Broad Institute databases. Because cyclin pro-
teins are greatly diverged, an HMM search (http://hmmer.
janelia.org/search/hmmsearch; E-value <1 x 10™*) against
non-redundant proteins from GenBank was also carried
out [46] using Pfam profile PF00134, which corresponds
to the Cyclin-N domain—the most highly conserved cyc-
lin protein domain [41]. For three unicellular organisms
(S. arctica, S. punctatus, and T. trahens), Cyclin-N
domain-containing proteins were also collected from the
Broad Institute database [10]. Only the longest protein se-
quence associated with each cyclin gene was retained. We
verified the putatively identified cyclin proteins by search-
ing against Pfam (http://pfam.sanger.ac.uk/search) and
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SMART (http://smart.embl-heidelberg.de/) databases [47,48].
Proteins lacking Cyclin-N domains were discarded. Simi-
lar to a previous analysis [41], non-cyclin proteins posses-
sing Cyclin-N domains (homologs of human CABLES],
CNTD1, and CNTD2) were identified by reciprocal Blast
searching and removed.

Protein alignment and phylogenetic analyses

After evaluating several multiple alignment programs,
we used MSAProbs [49] for multiple alignment of most
full-length proteins. Alignments that included cyclin se-
quences from T. trahens and D. discoideum were carried
out using PROMALS [50], a program more suitable for
alignment of distantly related proteins [50]. Poorly
aligned positions in these alignments were removed,
with only the conserved region—the CDK domain for
the CDK family, and Cyclin-N and —C domains for the
cyclin family—used for further phylogenetic analyses.
Alignments used for phylogenetic analyses are found in
Additional file 1: File S1. Phylogenetic analyses were per-
formed using maximum likelihood (ML) and Bayesian
methods, with optimum substitution models determined
for each alignment based on the Akaike Information Cri-
terion using ProtTest 2.4 [51]. ML trees were con-
structed using RAXxML 7.2.8 [52] as implemented in the
CIPRES Science Gateway v. 3.1 [53] with 1000 bootstrap
resamplings. Bayesian phylogenetic analyses were carried
out under an LG substitution model using PHYLO-
BAYES v. 3.3 [54], with Markov chain Monte Carlo runs
terminated when Maxdiff < 0.1. Multiple sequence align-
ments and phylogenetic tree files were deposited in
Labarchives (http://dx.doi.org/10.6070/H4RF5S05). Tree
files were viewed using the Dendroscope program [55],
and phylogenetic networks were constructed with Split-
sTree v.4 [56].

Ortholog identification

As suggested in a recent review [57], ortholog identifica-
tion of different CDK and cyclin subfamilies was mainly
based on results of the phylogenetic analyses; however,
results from reciprocal Blast search methods (Reciprocal
Best Hit method) [58,59] were also referenced for some
distantly related proteins. In general, a protein was iden-
tified as an ortholog of a representative CDK or cyclin
subfamily if it clustered with that subfamily in the ML
phylogenetic tree with greater than 50% bootstrap sup-
port. For proteins clustering with less than 50% ML
bootstrap support within a subfamily, reciprocal Blast
results were consulted: only proteins in the initial
BLAST query for which E-values returned for members
of a representative CDK or cyclin subfamily were five or-
ders of magnitude better (smaller) than those of the next
best-scoring CDK or cyclin subfamily were considered
to be orthologs of that subfamily. Such a “five-orders
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criterion” has recently been described and used to iden-
tify Arf GAP orthologs [60]. Cyclin proteins placed with
low bootstrap support into a representative cyclin sub-
family and not meeting the five-orders criterion were
designated as unclassified cyclin proteins.

Results and discussion
As summarized in Table 1, we identified 176 CDK and
226 cyclin proteins from 18 representative organisms.
Detailed information regarding these CDKs and cyclins
may be found in Additional file 2: File S2 and Additional
file 3: File S3, respectively.

The evolutionary history of CDK family

We attempted to perform global phylogenetic analyses
using ML and Bayesian methods on all 176 CDK pro-
teins from 18 organisms. A robust and reliable phylo-
genetic tree could not be obtained by either method,
however, possibly because of the large number of se-
quences. We therefore carried out separate phylogenetic
analyses on subsets of the 18 organisms. We first ana-
lyzed CDK sequences from H. sapiens, N. vectensis, T.
adhaerens, A. queenslandica, M. brevicollis, and S.
rosetta7 as one group (Figure 1). These six organisms,
except for H. sapiens, are all located in key positions
with respect to metazoan emergence. Given that lineage-
specific gene duplication and loss may have occurred in

Table 1 Distribution of CDK and cyclin family proteins in
representative organisms

Species Phylum CDK Cyclin
Homo sapiens Vertebrata 20 29
Ciona intestinalis Urochordata 10 14
Strongylocentrotus purpuratus Echinodermata 11 14
Branchiostoma floridae Cephalochordata 12 16
Drosophila melanogaster Arthropoda 11 14
Nematostella vectensis Cnidaria 12 16
Trichoplax adhaerens Placozoa 14 14
Amphimedon queenslandica Porifera 11 13
Monosiga brevicollis choanoflagellata 10 8
Salpingoeca rosetta choanoflagellata 6 8
Capsaspora owczarzaki Filasterea 9 10
Sphaeroforma arctica Ichthyosporea 3 9
Saccharomyces cerevisiae Fungus 6 15
Schizosaccharomyces pombe Fungus 7 11
Coprinopsis cinerea Fungus 7 9
Spizellomyces punctatus Fungus 8 8
Thecamonas trahens Apusoza 7 9
Dictyostelium discoideum Amoeboza 8 9
Total 172 226
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(See figure on previous page.)

Figure 1 Phylogenetic tree from analysis of CDK family proteins in Homo sapiens, Nematostella vectensis, Thecamonas adhaerens,
Amphimedon queenslandica, Monosiga brevicollis, and Salpingoeca rosetta. Maximum likelihood (ML) and Bayesian analyses were conducted
using RAXML and PHYLOBAYES 3.3, respectively. Both methods produced trees with nearly identical topologies. The first numbers above branches
indicate Bayesian posterior probabilities (only key branches are labeled), and the second numbers above branches indicate ML bootstrap
percentages. The scale bar shows the number of substitutions per site. Sequences of Hsa-GSK3alpha, Hsa-MAK, and Hsa-HCDKL1 were used as
outgroups. All proteins are labeled with species names followed by accession numbers. Species abbreviations are as follows: Hsa, H. sapiens;

Nve, N. vectensis; Tad, T. adhaerens; Aqe, A. queenslandica; Mbr, M. brevicollis. The alignment used for this analysis is found in Additional file 1: File S1.

some of these organisms, any conclusions drawn from
this subset may not be adequate to fully understand the
evolutionary history of the CDK family during meta-
zoan emergence. Consequently, analyses of CDK se-
quences from other organisms were also carried out; one
analyzed subset comprised C. intestinalis, B. floridae, S.
purpuratus, D. melanogaster, T. adhaerens, and H. sapiens
(Additional file 4: Figure S1), while another group
consisted of C. owczarzaki, S. arctica, S. cerevisiae, S.
pombe, S. punctatus, C. cinerea, T. trahens, D. discoideum,
T. adhaerens, and H. sapiens (Additional file 5: Figure S2).
Results of these phylogenetic analyses are summarized in

Figure 2 and Additional file 6: Table S1, and are described
in detail below.

Based on our analyses, the entire CDK family can be
divided into eight subfamilies: CDK7, CDK20, CDK8/19
(including human CDK8 and CDK19), CDK9 (including
CDKO9, CDK12, and CDK13), CDK10/11 (including CDK10
and CDK11), CDKI1 (including CDK1, CDK2, and CDK3),
CDK4/6 (including CDK4 and CDK®6), and CDK5 (in-
cluding CDK5, CDK16, CDK17, CDK18, CDK14, and
CDK15) (Figures 1 and 2; Additional files 4: Figure S1
and Additional file 5: Figure S2). Although these results
are generally consistent with previous reports [38,39],
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Figure 2 Schematic representation of the distribution of different CDK subfamilies in eukaryotic organisms. The results of phylogenetic
analyses of CDK family proteins in different organisms are summarized. A black dot indicates the presence of clear homologs of CDK subfamilies
or clades (see text for further explanations). Phylogenetic relationships of these organisms are based on recent reports [43,61,62] and the results
of the Origins of Multicellularity project [10]. Detailed information regarding this figure, including CDK protein accession numbers, is given in
Additional file &: Table S1.
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our analysis revealed more detailed information and in-
cluded human CDK20 and its orthologs.

We found that orthologs of seven CDK subfamilies
(CDK7, CDK20, CDK8/19, CDK9/12/13, CDK10/11,
CDK1/2/3, and CDK5) are present in basal metazoans 7.
adhaerens and A. queenslandica, the choanoflagellate M.
brevicollis, and/or S. rosetta (Figure 1). In further ana-
lysis, orthologs of 6 CDK subfamilies (CDK7, CDK8/19,
CDK9/12/13, CDK10/11, CDK1/2/3, and CDK5 subfamily)
could be identified in fungi, T. trahens, and D. discoideum.
A CDK20 representative is present in the fungus S. puncta-
tus (SPPG_01972), but is absent in S. cerevisiae, S. pombe,
T. trahens, and D. discoideum (Additional file 5: Figure S2).
Compared with other CDK subfamilies, the CDK4/6 sub-
family is unique, as it is only found in eumetazoan organ-
isms such as 7. adhaerens (gi:195999760) and N. vectensis
(gi:156374066), and is absent in the basal metazoan A.
queenslandica, choanoflagellates, and other investigated
unicellular organisms (Figures 1 and 2; Additional file 5:
Figure S2). The different functions of these CDK subfam-
ilies have been described in an excellent review [63].

The CDK4/6 subfamily is generally recognized as
animal-specific, but previous phylogenetic analyses sup-
porting this conclusion have only included a relatively
small number of organisms [38,39]. In the tree shown in
Figure 1, subfamilies CDK4/6, CDK1/2/3, and CDK5
generally cluster together. As phylogenetic networks are
useful for describing complex evolutionary scenarios
such as horizontal gene transfer and recombination [56],
we carried out a phylogenetic network analysis for
CDK4/6, CDK1/2/3, and CDK5 subfamily proteins from
H. sapiens, N. vectensis, T. adhaerens, A. queenslandica,
M. brevicollis, and S. rosetta (Additional file 7: Figure S3).
The results of that analysis were generally consistent with
our phylogenetic tree topology, CDK4/6 subfamily is lo-
cated between CDK1/2/3 subfamily and CDK5 subfamily.
The detail evolutionary information among CDK4/6 sub-
family, CDK1/2/3 subfamily and CDK5 subfamily are still
requiring further study. Anyway, our analysis is the first to
map the detailed evolutionary history of the CDK4/6 sub-
family in representative organisms occupying key posi-
tions along the transition from unicellular organisms to
metazoans. Our results indicate that the CDK4/6 subfam-
ily is linked simultaneously with eumetazoan appearance.

Subfamilies CDK9, CDK10/11, CDK1/2/3, and CDK5
all contains more than one CDK members in metazoan
organisms and every subfamily could be divided into
two or three clades. Our analysis provided some detailed
information about how and when these clades were
formed in different subfamilies.

The CDK9 subfamily consists of two clades, CDK9
and CDK12/13. Basal metazoan organisms 7. adhaerens
and A. queenslandica have representative members in
both clades (Figure 1). In addition, consistent with
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previous reports [38], S. pombe Lskl and S. cerevisiae
Ctklp belong to the CDK12/13 clade, while S. cerevisiae
SGvlp and S. pombe CDK9 are members of the CDK9
clade (Additional file 5: Figure S2). These results imply
that the CDK9 subfamily split into two clades (CDK9
and CDK12/13) before the divergence of metazoans and
fungi. In humans, CDK9 is reported to regulate tran-
scription by phosphorylating the C-terminal domain of
RNA polymerase II [63,64].

The CDK10/11 subfamily comprises clades CDK10
and CDK11 (Figure 1). Basal metazoans A. queenslan-
dica and T. adhaerens have members in both clades;
similarly, unicellular M. brevicollis is represented in both
CDK10 (gi:167516962) and CDKI11 (gi:167538010). In
further analysis, we found that one S. punctatus protein
(SPPG_05640) was classified into the CDK10 clade, and
that one S. pombe protein (Ppk23/gi:19112531) and one
C. cinerea protein (gi:299755758) were placed in the
CDK11 clade (see Additional file 5: Figure S2). Proteins
from D. discoideum (gi:66827511 and gi:66810856) and
T. trahens (AMSG_04682) were only grouped into the
CDK10/11 subfamily, and were not found in clades
CDK10 and CDK11. In addition to their roles in regulat-
ing transcription, CDK10 and CDK11 display distinct
functions during the G2/M transition [63,65].

The CDK1/2/3 subfamily can be divided into CDK1 and
CDK2/3 clades in metazoans. Bona fide CDK1 clade mem-
bers are found in A. queenslandica (gi:340381019) and T.
adhaerens (gi:196003954), and similarly CDK2/3 clade
members are present in A. queenslandica (gi:340379293)
and T. adhaerens (gi:196013348) (Figure 1). CDK1/2/3
subfamily members from M. brevicollis (gi:167517533), S.
rosetta, fungi, T. trahens, and D. discoideum, however, are
not placed into CDK1 or CDK2/3 clades (Figure 1;
Additional file 5: Figure S2). Our data indicate that genes
of the ancient CDK1/2/3 subfamily arose in the common
ancestor of amoebozoans and fungi, and then diverged via
gene duplication into clades CDKland CDK2/3 in
metazoans.

In the tree in Figure 1, the CDK5 subfamily is divided into
clades CDK5, CDK16/17/18, and CDK14/15. The placozoan
T. adhaerens possesses three CDK5 subfamily members,
which are classified into CDK5 (gi:196000717), CDK16/17/
18 (gi:195996637), and CDKI14/15 (gi:196001193) clades
(Figure 1). We found that one M. brevicollis protein
(gi:167522771) is clustered into CDK5, whereas another
(gi:167522415) is placed into CDK16/17/18 (Figure 1).
In the comprehensive analysis, some fungal CDK5
subfamily members (SARC_06703 and SPPG_00440)
were classified into the CDK5 clade, while others
(SARC_10569, Pho85p/gi:6325226, Pefl/gi: 19075421,
SPPG_06236) were placed into clades CDK16/17/18
and CDK14/15 (see Additional file 5: Figure S2). These
data indicate that the CDK5 subfamily originated in
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single-celled ancestors, and subsequently split into
three clades before or during eumetazoan emergence.
In humans, CDK5 is essential for neuronal cell cycle
arrest and differentiation [63,66].

The evolutionary history of cyclin family

Based on the same reasons as in the CDK family, we car-
ried out separate phylogenetic analyses on subsets of
cyclin family members. As for the CDKs, we performed
analyses of cyclin proteins from the group H. sapiens, N.
vectensis, T. adhaerens, A. queenslandica, M. brevicollis,
and S. rosetta (Figure 3), and then from a subset consist-
ing of C. intestinalis, B. floridae, S. purpuratus, D. mela-
nogaster, T. adhaerens, and H. sapiens (Additional file 8:
Figure S4). Because their cyclin sequences diverged
greatly, we failed to obtain a reliable cyclin phylogenetic
tree from eight organisms: C. owczarzaki, S. arctica, S.
cerevisiae, S. pombe, S. punctatus, C. cinerea, T. trahens,
D. discoideum, T. adhaerens, and H. sapiens. We thus di-
vided these organisms into smaller subsets for analysis:
one group for filasterean and ichthyosporean organisms
(C. owczarzaki, S. arctica, T. adhaerens, and H. sapiens;
Additional file 9: Figure S5), one group for fungi (S. cere-
visiae, S. pombe, C. cinerea, S. punctatus, T. adhaerens,
and H. sapiens) (Additional file 10: Figure S6), and one
group for Apusozoa and Amoebozoa (1. trahens, D. dis-
coideum, T. adhaerens, and H. sapiens) (Additional file 11:
Figure S7). These subgroups were analyzed, and orthologs
of different cyclin subfamilies were classified (Figure 4;
Additional file 12: Table S2) based on the phylogenetic re-
sults and those of reciprocal Blast analysis.

According to our phylogenetic analyses, the meta-
zoan cyclin family could be divided into 16 subfamilies
(Figure 3 and Figure 4), and fungi organisms owns
three fungi specific subfamily (CLB, CLN, PCL) (see
Additional file 10: Figure S6, Figure 4). A recent cyclin
family analysis indicated that the cyclin family could be di-
vided three groups (Group I, Group II, and Group III)
[41], and our analysis confirmed it (Figure 3, Figure 4, see
Additional file 10: Figure S6). In this manuscript, we will
refer Group I as cyclin B like group (cyclin B, A, D, E, J, E,
G, I, O, CLB, CLN), Group II as cyclin Y like Group ( cyc-
lin Y, PCL), and Group III as cyclin C like group (cyclin C,
H, L, K, T, and Fam58). Though our results is general con-
sistent with previous analysis [41], some new information
was revealed by our analysis. For example, our analysis
successfully identificated cyclin C ortholog (gi:198414966)
and cyclin J ortholog (gi:198425946) in C. intestinalis, the
previous analysis [41] which also included C. Intestinalis
missed this information.

Most subfamilies in the cyclin C-like group are conserved
in metazoans, choanoflagellates, fungi, and D. discoideum.
We found that cyclins C, H, and L are all conserved
in metazoans, choanoflagellates, fungi, T. trahens, and
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D. discoideum (Figures 3 and 4; Additional file 9: Figure
S5, Additional file 10: Figure S6, and Additional file 11:
Figure S7). Orthologs of cyclins T and K were found in
metazoans (Figure 3); in fungi and D. discoideum, how-
ever, homologous proteins of cyclin T and/or cyclin K sub-
family could only be identified as the common ancestor of
the two subfamilies (Additional file 10: Figure S6 and
Additional file 11: Figure S7). Our data indicate that the
common ancestor of cyclins K and T originated early in the
course of evolution, and then diverged no later than during
the period of metazoan emergence. Fam58 is generally con-
served only in metazoans (Figure 3), although an ortholog
is also found in S. arctica (Additional file 9: Figure S5).

We found that the cyclin Y subfamily is conserved
in metazoans, choanoflagellates, and D. discoideum
(Figure 3; Additional file 11: Figure S7). Interestingly,
one fungal protein in S. punctatus (SPPG_07965) was
identified as an ortholog of cyclin Y (Additional file 10:
Figure S6). PCL subfamily members are found in S. cerevi-
siae and C. cinerea (Additional file 10: Figure S6). In fact,
cyclin Y and PCL subfamilies cluster together tightly in
the phylogenetic tree (Additional file 10: Figure S6).
Cyclins Y and PCL are binding partners of CDK5 subfam-
ilies in metazoans and fungi, respectively [41]; although
we list them as two separate subfamilies, as previously re-
ported [41], we believe they share a common ancestor.

Evolutionary conservation varied greatly among differ-
ent subfamilies in the cyclin B-like group. These subfam-
ilies are described in detail as follows.

The cyclin B subfamily is conserved in metazoans,
choanoflagellates, fungi, 7. trahens, and D. discoideum
(Figures 3 and 4; Additional files 9: Figure S5, Additional
file 10: Figure S6, and Additional file 11: Figure S7). The
fungus-specific subfamily CLB is related to the cyclin B
family, with Blast E-values as low as approximately 1 x
107%°. Cyclins B and CLB are binding partners of CDK1
subfamilies in metazoans and fungi, respectively [35,67].
Consequently, although we treat cyclins B and CLB as
two subfamilies, as previously reported [41], they appear
to share a common ancestor in early eukaryotic lineages,
as suggested by previous analyses [40,41]. Alignments of
representative cyclin B subfamily proteins from meta-
zoan organisms H. sapiens and T. adhaerens and unicel-
lular organisms S. rosetta, C. owczarzaki, T. trahens, and
D. discoideum are shown in Figure 5.

Our analysis results indicate that the cyclin A subfamily
is conserved in metazoans, unicellular choanoflagellates,
and C. owczarzaki, but is absent in fungi, T. trahens,
and D. discoideum (Figures 3 and 4; Additional file 9:
Figure S5, Additional file 10: Figure S6, and Additional
file 11: Figure S7). Alignments of representative cyclin A
subfamily proteins from metazoans H. sapiens, T. adhaerens,
and unicellular organisms M. brevicollis, S. rosetta, and C.
owczarzaki are given in Figure 5.
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Figure 3 Tree derived from phylogenetic analysis of cyclin family proteins in H. sapiens, N. vectensis, T. adhaerens, A. queenslandica,
M. brevicollis, and S. rosetta. Maximum likelihood (ML) and Bayesian analyses were conducted using RAXML and PHYLOBAYES 3.3, respectively.
Both methods produced trees with nearly identical topologies. The first numbers above branches indicate Bayesian posterior probabilities (only
key branches are labeled), and the second numbers above branches indicate ML bootstrap percentages. The scale bar shows the number of
substitutions per site. Sequences of Hsa-Cables1 and Hsa-Cables2 were used as outgroups. All proteins are labeled with their accession numbers
preceded by their species names. Species abbreviations are as follows: Hsa, H. sapiens; Nve, N. vectensis; Tad, T. adhaerens; Age, A. queenslandica;
MBr, M. brevicollis. The alignment used for this analysis is found in Additional file 1: File S3.

The fungus-specific subfamily CLN, which functions We found that orthologs of cyclin D are present in 7.
in cell cycle regulation, is the binding partner of fungus adhaerens (gi:196001479) and N. vectensis (gi:156350442),
CDKI. Results of Blast analysis revealed similar genetic ~ but are absent in M. brevicollis, S. rosetta, and A. queen-
distances between the CLN subfamily and the metazoan  slandica (Figures 3 and 4). Comprehensive analysis unex-
cyclin A subfamily, and between CLN and the metazoan  pectedly revealed that cyclin D orthologs are present in 7.
cyclin B subfamily. trahens (AMSG_02061) (Additional file 11: Figure S7), al-

The cyclin E subfamily is not only conserved in meta-  though absent in fungi and D. discoideum (Additional file
zoans, but is also present in several unicellular organ-  10: Figure S6 and Additional file 11: Figure S7). Although
isms such as choanoflagellate S. rosetta, C. owczarzaki,  plant D-type cyclin is generally considered to be homolo-
and T. trahens (Figures 3 and 4; Additional file 9: Figure  gous to animal cyclin D [31,68], plants do not possess
S5, Additional file 10: Figure S6, and Additional file 11: ~ CDK4/6 orthologs; instead, plant D-type cyclin functions
Figure S7). This result conflicts with previous studies in-  together with plant CDKA, a CDK1 homolog, in the G1
dicating that cyclin E is animal-specific [28,41]. This in-  phase [31,68]. Possibly because of low sequence similarity
consistency may be due to the failure of previous (Blast E-value approximately 1x 107’ for plant D-type
analyses to incorporate several important unicellular or-  cyclin against human cyclin D), plant D-type cyclin did
ganisms, such as S. rosetta and C. owczarzaki. Align- not cluster together with animal cyclin D in a previous
ments of representative cyclin E subfamily proteins from  phylogenetic analysis [69]. Our phylogenetic results are
metazoans H. sapiens and 1. adhaerens and unicellular  the first to reveal the presence of a bona fide ortholog of
organisms S. rosetta, C. owczarzaki, and T. trahens are  the animal cyclin D subfamily in a non-opisthokont, 7.
shown in Figure 6. trahens. The Blast E-value for this protein against human
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Figure 4 Schematic representation of the distribution of different cyclin subfamilies in eukaryotic organisms. The results of phylogenetic
analyses of cyclin family proteins in different organisms are summarized. A black dot indicates the presence of clear homologs of cyclin subfamily
members (see text for further explanations). Phylogenetic relationships illustrated for these organisms are derived form a proteome-based
phylogeny [43,61,62] and the results of the Origins of Multicellularity project [10]. The names of cyclin B-like (cyclins B, A, D, E, J, F, G, I, O, CLB,
and CLN); cyclin Y-like (cyclins Y and PCL), and cyclin C-like (cyclins C, H, L, K, T, and Fam58) group members are indicated by different colors.
Detailed information regarding this figure, including cyclin protein accession numbers, may be found in Additional file 12: Table S2.
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Figure 5 Alignments of cyclin B and cyclin A proteins. A. Alignment of cyclin B proteins from representative organisms. The region of
Cyclin_N domain was underlined. Protein accession numbers are as follows: Hsa-cyclin B1: gi:14327896 from H. sapiens; Tad-cyclin B: gi:196002535
from T. adhaerens; Sro-cyclin B: gi:326428978 from S. rosetta; Cow-cyclin B: gi:320166256 from C. owczarzaki; Ttr-cyclin B: AMSG_03352 from T. trahens;
Ddi-cyclin B: gi:66819865 from D. discoideum. B. Alignment of cyclin A proteins from representative organisms. The region of Cyclin_N domain
was underlined. Protein accession numbers are as follows: Hsa-cyclin A1:gi4502611 from H. sapiens; Tad-cyclin A: gi:196005765 from T. adhaerens;
Mbr-cyclin A: gi:167517989 from M. brevicollis; Sro-cyclin A: gi:326426811 from S. rosetta; Cow-cyclin A: gi:320169862 from C. owczarzaki.

J

cyclin D is approximately 1 x 107*°. This result indicates
that the cyclin D subfamily arose in early eukaryotes, and
that the absence of cyclin D in fungi and many other uni-
cellular organisms may be due to lineage-specific gene loss
in these organisms. Similar to plant organisms, the non-
opisthokont T. trahens does not possess an ortholog of
the CDK4/6 subfamily. Our alignment of representative

cyclin D subfamily proteins from H. sapiens, N. vectensis,
T. adhaerens, and T. trahens is displayed in Figure 6.

In our analyses, cyclins I and G always clustered to-
gether. Cyclins I and G collectively have representative
members in unicellular organisms C. owczarzaki, S. arctica,
A. queenslandica, and N. vectensis (Figures 3 and 4). These
data indicate that cyclin subfamilies I and G are derived
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Figure 6 Alignments of cyclin E and cyclin D proteins. A. Alignment of cyclin E proteins from representative organisms. The region of
Cyclin_N domain was underlined. Cyclin accession numbers are as follows: Hsa-cyclin E1: gi:17318559 from H. sapiens; Tad-cyclin E:gi:196003236
from T. adhaerens; Sro-cyclin E: gi:326437558 from S. rosetta; Cow-cyclin E:gi:320167008 from Cowczarzaki; Ttr-cyclin E: AMSG_07694 from T. trahens.
B. Alignment of cyclin D proteins from representative organisms. The region of Cyclin_N domain was underlined. Cyclin accession numbers
are as follows: Hsa-cyclin D1: gi|16950655 from H. sapiens; Nve-cyclin D: gi:156350442 from N. vectensis; Tad-cyclin D: gi:196001479 from T. adhaerens;
Ttr-cyclin D: AMSG_02061 from T. trahens.

from a common ancestral gene that was present in unicel-
lular organisms, with this common ancestor differentiating
into cyclins I and G after the emergence of N. vectensis.

In addition to the above phylogenetic analyses, we con-
ducted a phylogenetic network analysis of cyclin B-like
group proteins from H. sapiens, N. vectensis, T. adhaerens,
A. queenslandica, M. brevicollis, and S. rosetta (Additional
file 13: Figure S8). It was found that the cyclin D subfamily
is located between subfamily E and subfamily G/I. The de-
tail evolutionary information among cyclin D subfamily,

cyclin E, and cyclin G/I will be an interesting topic for fur-
ther study.

Cell cycle related CDK/cyclin evolutionary histories during
animal emergence

Information is limited regarding evolution of cell cycle
regulation in eukaryotes. It is generally believed, however,
that early eukaryotes already possessed complex cell cycle
regulation, with key cell cycle regulators having subse-
quently undergone divergent functional specializations in
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different organisms [31]. For example, the RB-E2F path-
way, which functions in cell cycle regulation, is conserved
in animals and plants, but has been lost in fungi [30,31].

The eukaryotic cell cycle is controlled by a compli-
cated regulatory network [70]. CDK-cyclin complexes, as
key regulators of the cell cycle, phosphorylate a variety
of substrates during the cell cycle [71,72]. In humans,
for example, CDK4/cyclin D phosphorylates pRB during
the G1 phase [73], and CDKl-cyclin B phosphorylates
Cdc25C and WeelA during the M phase [74,75]. A re-
cent structural study [76] revealed that the conformation
of t CDK4/ cyclin D1 diverges from that of previously
known CDK-cyclin binary complexes, and CDK4 might
have a unique regulation and activation mechanism
compared with that of CDK2-cyclin A [76]. Another
study has also found that the structural mechanism of
CDK4-cyclin D3 activation differs markedly from that of
previously studied CDK2-cyclin A complexes [77].

Our analysis has provided detailed evolutionary informa-
tion on CDK and cyclin subfamilies in metazoans and re-
lated organisms. Our data are the first to reveal that cyclin
D orthologs are present in a non-opisthokont (7. trahens),
but have generally been lost in fungi and most other uni-
cellular opisthokonts, such as M. brevicollis, S. rosetta, C.
owczarzaki, and S. arctica. Our analysis also found that
cyclin E is not restricted to animals, but is present in sev-
eral unicellular organisms.

Investigations of cell cycle regulation have primarily
been carried out in animals (e.g., D. melanogaster,
Caenorhabditis elegans, Xenopus laevis, and H. sapiens)
and yeasts (S. cerevisiae and S. pombe). In animals, CDK4/6
and cyclin D have been determined to function in the G1
phase, human CDK2 and cyclin A/E in S and G2 phases,
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and CDK1 and cyclin B in the M phase [5,37]. In yeasts,
S. cerevisiae CDK1 (Sce-CDC28/gi:6319636) functions
in G1, S, G2, and M phases with different cyclins
[67,78]. Given the large evolutionary distance between
yeasts and animals, it has proved difficult to elucidate
the evolutionary history of cell cycle regulation and its
relationship to the emergence of metazoans from their
single-celled ancestors. In this study, we analyzed cell
cycle-related CDKs (CDK1/2/3 and CDK4/6 subfamilies)
and cyclins (cyclin A, B, D, and E subfamilies) in several
representative organisms, such as M. brevicollis [42], A.
queenslandica [28], and T. adhaerens [43], which occupy
key positions for metazoans origination from their
single-celled ancestors organisms (Figure 7). We dis-
covered that the number of cell cycle-related CDK and
cyclin proteins has gradually increased from M. brevi-
collis and A. queenslandica to T. adhaerens: M. brevi-
collis possesses orthologs for CDK1, cyclin B, cyclin A,
and cyclin E, A. queenslandica has orthologs for CDK1,
CDK2, cyclin B, cyclin A, and cyclin E, and T. adhaerens
features orthologs for CDK1, CDK2, CDK4, cyclin B, cyc-
lin A, cyclin E, and cyclin D (Figures 2 and 4; Additional
files 6: Table S1 and Additional file 12: Table S2). Based
on the evolutionary information uncovered for these
CDK and cyclin proteins, we are able to propose different
scenarios for the function of CDK and cyclin proteins in
cell cycle control in representative organisms M. brevicollis,
A. queenslandica, and T. adhaerens (Figure 7). Because M.
brevicollis does not possess CDK4/6 and cyclin D ortho-
logs, we speculate that the ortholog of CDK1 in M. bre-
vicollis (gi:167517533) may function throughout the cell
cycle with different cyclins, similar to S. cerevisiae
CDK1 (Sce-cdc28/gi:6319636) (Figure 7). As indicated

S. cerevisiae M. brevicollis A. queenslandica T. adhaerens H. sapiens
Soe.cOK1 e LW A Oyl € Tas Cyetn E/A Hea-Gucin E/A
Sce-COK1 Mbr-COK1 " paecoie T8 FCyoin D 7aq. cpiy HEFCYCIN Hsa-CDK1
Sce-Clb1/2/3/4 Mbr-Cyclin B Age-Cyclin B Tad-Cyclin B Hsa-Cyclin B
s Fungi Choanoflagellates Sponga (metazoa) Eumetazoa
°
g J 4/\
©
9
E]
w
Figure 7 Schematic scenarios of CDK and cyclin protein function in cell cycle regulation of different representative organisms. Schemes
for organisms S. cerevisiae and H. sapiens were drawn based on previous reports [6,37,67,70], and schemes for M. brevicollis, A. queenslandica, and
T. adhaerens were drawn based on inferences derived from our evolutionary analysis (see text for further explanations). Accession numbers of
CDK and cyclin proteins in the figure are as follows: Sce-CDK1: gi:6319636; Sce-CIn1/2: gi:6323855, gi:6324999; Sce-Clb5/6: gi:6325377, gi:6321546;
Sce-Clb1/2/3/4: gi:6321545, gi:6325376, gi:6320046, gi:6323239; Mbr-CdK1: gi:167517533; Mbr-cyclin B: gi:167523717, gi:167524669; Mbr-cyclin E:
gi:167519314; Mbr-cyclin A: gi:167517989; Age-CDK1: gi:340381019, Age-CdK2: gi:340379293; Age-cyclin B: gi:340376468, gi:340374274; Age-cyclin
E: gi:340379787; Tad- CDK1: gi:196003954; Tad-CDK2: 196013348; Tad-CDK4: gi:195999760; Tad-cyclin B: gi:196002535; gi:196003740; Tad-cyclin E:
gi:196003236; Tad-cyclin A: gi:196005765; Tad-cyclin D: gi:196001479.
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in Figure 7, we have inferred that the CDK4/6-cyclin D
complex appeared at the same time as the emergence
of the eumetazoan T. adhaerens.

It is interesting that the CDK4/6-cyclin D complex
first emerged in T. adhaerens, as T. adhaerens has four
morphologically identifiable somatic cell types and is
thought to represent the earliest eumetazoan lineage
[43]. The CDK4/6-cyclin D complex functions in the G1
phase, the first phase within interphase [5]. The duration
of the G1 phase is highly variable among different cells
in animals, and is affected by limiting growth factors,
nutrient supply, temperature, and additional inhibiting
factors [79]. For example, human embryonic stem cells
are characterized by an abbreviated G1 phase and lack
the classical restriction (R) point that normally controls
commitment for progression into the S phase [80,81]. In
contrast, somatic cell proliferation is linked to growth
factor-dependent passage through the R point in the G1
phase [82,83]. In fission yeast, a single oscillation of
p34cdc2 kinase activity provided by a single B-type cyc-
lin can promote ordered progression into both DNA
replication and mitosis [84]. The function of CDK4-
cyclin complexes in animals has been extensively studied
and reviewed [85]. With respect to the cyclin D family,
mice lacking cyclin D1, D2, or D3 exhibit different de-
velopmental anomalies [85-90]. Mice expressing cyclin
D1, but not D2 and D3, have been observed to die be-
fore embryonic day (E) 18.5 [85,91], while mice lacking
all three cyclins die before E16.5 [85,92]. In regard to
CDK4 and CDK6, mice lacking Cdk4 or Cdké6 also ex-
hibit different developmental anomalies [85,93-96], with
mice lacking both CDK4 and CDK6 displaying progres-
sive embryonic lethality from E14.5 onward, and the few
live pups dying shortly after birth [85,96]. These data
clearly indicate that the CDK4-cyclin D complex plays
critical roles during mouse early embryonic develop-
ment. It would be interesting to study the function of
CDK4-cyclin D in early eumetazoan organisms such as
N. vectensis and T. adhaerens.

Based on a comparative analysis of cell cycle regula-
tory networks in animals, yeasts, and plants, Harashima
et al. [31] have recently suggested that the CycD/CycE
clade has undergone lineage-specific expansion and
specialization in both metazoans and plants. They fur-
ther speculate that this expansion and specialization of
cell cycle protein families has occurred to meet the chal-
lenges of a complex multicellular lifestyle. The compre-
hensive evolutionary histories of CDKs and cyclins
outlined in our study provided new evidence for their
hypotheses. We believe that the emergence of the
CDK4/6-cyclin D complex may have contributed to the
formation of eumetazoan-specific G1 phase regulation,
and may represent a key step in the development of cell
cycle regulation during eumetazoan evolution.
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Conclusions
In this study, we conducted a comprehensive evolution-
ary analysis of CDK and cyclin proteins in metazoans
and their unicellular relatives. Our results indicated that
CDK family could be divided into eight subfamilies.
Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20,
CDK8/19, CDK9, and CDK10/11) are conserved in
metazoans and fungi, with CDK4/6 subfamily found only
in eumetazoans. As to cyclins, cyclin C, H, L, Y subfam-
ilies, and cyclin K and T as a whole subfamily, are con-
served in animal, fungi, and amoeba Dictyostelium
discoideum. The cyclin B subfamily is conserved in D.
discoideum, fungi, and animals, whereas cyclin A and E
subfamilies are both present in animals and their unicel-
lular relatives such as choanoflagellate Monosiga brevi-
collis and filasterean Capsaspora owczarzaki, but are
absent in fungi and D. discoideum. Cyclin D subfamily
orthologs can be found in the early-emerging, non-
opisthokont apusozoan Thecamonas trahens. Within
opisthokonta, the cyclin D subfamily is conserved only
in eumetazoans, and is absent in fungi, choanoflagellates,
and the basal metazoan Amphimedon queenslandica.
Our data indicate that the CDK4/6 subfamily and
eumetazoans emerged simultaneously, with the evolu-
tionary conservation of the cyclin D subfamily also
tightly linked with eumetazoan appearance. We specu-
lated that establishment of the CDK4/6-cyclin D com-
plex may have been the key step in the evolution of cell
cycle control during eumetazoan emergence.

Additional files

Additional file 1: File S1. All Multiple alignments of CDK or cyclin
proteins which were used for phylogenetic analysis. Multiple alignments
of full-length proteins were mainly carried out using MSAProbs program
[44], however, the protein alignment which include the cyclin sequence
from T. trahens and D. discoideum was carried out using PROMALS
program [45], Then the poorly aligned positions in these alignments were
removed, only the conserved region (the CDK domain for CDK family, the
Cyclin_N domain and Cyclin_C domain for cyclin family) in these
alignments were used for further phylogenetic analysis.

Additional file 2: File S2. CDK sequences from 18 organisms.
Additional file 3: File 3. Cyclin sequences from 18 organisms.

Additional file 4: Figure S1. Phylogenetic analysis of CDK family
proteins in H. sapiens, T. adhaerens, C. intestinalis, B. floridae, S. purpuratus
and D. melanogaster. Maximum likelihood analysis was conducted using
RAXML program, and Bayesian analysis was carried out using
PHYLOBAYES 3.3. Both methods produced trees with nearly identical
topologies. The first numbers above branches indicate Bayesian posterior
probabilities (only these key branches are labeled), and the second
numbers above branches indicate ML bootstrap percentages. The scale
bar shows the number of substitutions per site. The sequences of
Hsa-GSK3alpha, Hsa-MAK, and Hsa-HCDKL1 were used as outgroup. All
proteins are labeled with their accession numbers and their specie name
as prefix. Abbreviations: Hsa: H. sapiens; Tad: T. adhaerens; Cin:

C. intestinalis; Bfl: B. floridae; Spu: S. purpuratus; Dme: D. melanogaster.

Additional file 5: Figure S2. Phylogenetic analysis of CDK family
proteins in H. sapiens, T. adhaerens, Cowczarzaki, S. arctica, S.cerevisiae, S.

pombe, C. cinerea, S. punctatus, T. trahens and D. discoideum. Maximum
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likelihood analysis was conducted using RAXML program, and Bayesian
analysis was carried out using PHYLOBAYES 3.3. Both methods produced
trees with nearly identical topologies. The first numbers above branches
indicate Bayesian posterior probabilities (only these key branches are
labeled), and the second numbers above branches indicate ML bootstrap
percentages. The scale bar shows the number of substitutions per site.
The sequences of Hsa-GSK3alpha, Hsa-MAK, and Hsa-HCDKL1 were used
as outgroup. All proteins are labeled with their accession numbers and
their specie name as prefix. Abbreviations: Hsa: H. sapiens; Tad: T. adhaerens;
Cow: Cowczarzaki; Sar: S. arctica; Sce:S.cerevisiae; Spo:S,pombe; Cci:C. cinerea;
Spu:S. punctatus; Ttr:T. trahens; Ddi:D. discoideum.

Additional file 6: Table S1. Evolutionary relationship of CDK family
proteins from 18 representative organisms. Summary of the evolutionary
relationship of CDK family proteins based on the results of phylogenetic
analyses of CDK family proteins (Figure 1, see Additional file 4: Figure S1
and Additional file 5: Figure S2).

Additional file 7: Figure S3. Phylogenetic network analysis for CDK4/6,
CDK1/2/3, and CDK5 subfamily proteins from H. sapiens, N. vectensis, T.
adhaerens, A. queenslandica, M. brevicollis, and S. rosetta. Neighbor-Net
analysis was conducted using SplitsTree v.4 program [56] with 100 boot-
strap resamplings. All proteins are labeled with their accession numbers
preceded by their species names. Species abbreviations are as follows:
Hsa, H. sapiens; Nve, N. vectensis; Tad, T. adhaerens; Age, A. queenslandica;
MBr, M. brevicollis. The alignment used for this analysis is found in
Additional file 1: File S3.

Additional file 8: Figure S4. Phylogenetic analysis of cyclin family
proteins in H. sapiens, T. adhaerens, C. intestinalis, B. floridae, S. purpuratus
and D. melanogaster. Maximum likelihood analysis was conducted using
RAXML program, and Bayesian analyses were carried out using
PHYLOBAYES 3.3. Both methods produced trees with nearly identical
topologies. The first numbers above branches indicate Bayesian posterior
probabilities (only these key branches are labeled), and the second
numbers above branches indicate ML bootstrap percentages. The scale
bar shows the number of substitutions per site. The sequences of Hsa-
Cables1 and Hsa-Cables2 were used as the outgroup. All proteins are
labeled with their accession numbers and their specie name as prefix.
Abbreviations: Hsa: H. sapiens; Tad: T. adhaerens; Cin: C. intestinalis;

Bfl: B. floridae; Spu: S. purpuratus; Dme: D. melanogaster.

Additional file 9: Figure S5. Phylogenetic analysis of cyclin family
proteins in H. sapiens, T. adhaerens, Cowczarzaki, and S. arctica.
Maximum likelihood analysis was conducted using RAXML program, and
Bayesian analyses were carried out using PHYLOBAYES 3.3. Both methods
produced trees with nearly identical topologies. The first numbers above
branches indicate Bayesian posterior probabilities (only these key
branches are labeled), and the second numbers above branches indicate
ML bootstrap percentages. The scale bar shows the number of
substitutions per site. The sequences of Hsa-Cables1 and Hsa-Cables2
were used as the outgroup. All proteins are labeled with their accession
numbers and their specie name as prefix. Abbreviations: Hsa: H. sapiens;
Tad: T. adhaerens; Cow: C.owczarzaki; Sar: S. arctica.

Additional file 10: Figure S6. Phylogenetic analysis of cyclin family
proteins in H. sapiens, T. adhaerens, S.cerevisiae, S.pombe, C. cinerea, and
punctatus. Maximum likelihood analysis was conducted using RAXML
program, and Bayesian analyses were carried out using PHYLOBAYES 3.3.
Both methods produced trees with nearly identical topologies. The first
numbers above branches indicate Bayesian posterior probabilities (only
these key branches are labeled), and the second numbers above branches
indicate ML bootstrap percentages. The scale bar shows the number of
substitutions per site. The sequences of Hsa-Cables1 and Hsa-Cables2
were used as the outgroup. All proteins are labeled with their accession
numbers and their specie name as prefix. Abbreviations: Hsa: H. sapiens; Tad:
T. adhaerens, Sce: S.cerevisiae; Spo: S.,pombe; Cci: C. cinerea; Spu: S. punctatus.

Additional file 11: Figure S7. Phylogenetic analysis of cyclin family
proteins in H. sapiens, T. adhaerens, T. trahens and D. discoideum.
Maximum likelihood analysis was conducted using RAXML program, and
Bayesian analyses were carried out using PHYLOBAYES 3.3. Both methods
produced trees with nearly identical topologies. The first numbers above
branches indicate Bayesian posterior probabilities (only these key

branches are labeled), and the second numbers above branches indicate
ML bootstrap percentages. The scale bar shows the number of
substitutions per site. The sequences of Hsa-Cables1 and Hsa-Cables2
were used as the outgroup. All proteins are labeled with their accession
numbers and their specie name as prefix. Abbreviations: Hsa: H. sapiens;
Tad: T. adhaerens; Ttr.T. trahens; Ddi:D. discoideum.

Additional file 12: Table S2. Evolutionary relationship of cyclin family
proteins from 18 representative organisms. Summary of the evolutionary
relationship of cyclin family proteins based on the results of phylogenetic
analyses of cyclin family proteins(Figure 3, see Additional file 8: Figure 54,
Additional file 9: Figure S5, Additional file 10: Figure S6, and Additional
file 11: Figure S7), and also refer the reciprocal blast search results

(detail see material and methods section).

Additional file 13: Figure S8. phylogenetic network analysis for

Cyclin B like group proteins from H. sapiens, N. vectensis, T. adhaerens, A.
queenslandica, M. brevicollis, and S. rosetta. Neighbor-Net analysis was con-
ducted using SplitsTree v4 program [56] with 100 bootstrap resamplings. All
proteins are labeled with their accession numbers preceded by their species
names. Species abbreviations are as follows: Hsa, H. sapiens; Nve, N. vectensis;
Tad, T. adhaerens; Age, A. queenslandica; MBr, M. brevicollis. The alignment
used for this analysis is found in Additional file 1: File S3.
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