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Abstract

Background: Conserving genetic diversity and local adaptations are management priorities for wild populations of
exploited species, which increasingly are subject to climate change, habitat loss, and pollution. These constitute
growing concerns for the walleye Sander vitreus, an ecologically and economically valuable North American
temperate fish with large Laurentian Great Lakes' fisheries. This study compares genetic diversity and divergence
patterns across its widespread native range using mitochondrial (mt) DNA control region sequences and nine
nuclear DNA microsatellite (usat) loci, examining historic and contemporary influences. We analyze the genetic and
morphological characters of a putative endemic variant- “blue pike” S. v. “glaucus” —described from Lakes Erie and
Ontario, which became extinct. Walleye with turquoise-colored mucus also are evaluated, since some have
questioned whether these are related to the “blue pike”.

Results: Walleye populations are distinguished by considerable genetic divergence (mean Fst mtDNA =0.32 +0.01,
psat=0.13 +0.00) and substantial diversity across their range (mean heterozygosity mtDNA =0.53 + 0.02, psat =0.68 +
0.03). Southern populations markedly differ, possessing unique haplotypes and alleles, especially the Ohio/New River
population that houses the oldest haplotype and has the most pronounced divergence. Northern formerly glaciated
populations have greatest diversity in Lake Erie (mean heterozygosity mtDNA =0.79 + 0.00, usat = 0.72 £ 0.01). Genetic
diversity was much less in the historic Lake Erie samples from 1923-1949 (mean heterozygosity mtDNA = 0.05 +
0.01, psat =0.47 £ 0.06) than today. The historic “blue pike” had no unique haplotypes/alleles and there is no
evidence that it comprised a separate taxon from walleye. Turquoise mucus walleye also show no genetic
differentiation from other sympatric walleye and no correspondence to the “blue pike”.

Conclusions: Contemporary walleye populations possess high levels of genetic diversity and divergence, despite
habitat degradation and exploitation. Genetic and previously published tagging data indicate that natal homing
and spawning site philopatry led to population structure. Population patterns were shaped by climate change and
drainage connections, with northern ones tracing to post-glacial recolonization. Southerly populations possess
unique alleles and may provide an important genetic reservoir. Allelic frequencies of Lake Erie walleye from ~70-
90 years ago significantly differed from those today, suggesting population recovery after extensive habitat loss,
pollution, and exploitation. The historic “blue pike” is indistinguishable from walleye, indicating that taxonomic
designation is not warranted.
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Background

Species today face many challenges that influence their
genetic, phenotypic, and ecological diversity and diver-
gence patterns across space and time. The genetic vari-
ation of their component populations comprises the
raw material underlying overall and local adaptedness,
providing resilience to anthropogenic stressors —such as
climate change, habitat alteration and loss, invasive spe-
cies, and exploitation [1,2]. Notably, declines in genetic
diversity may lead to decreased fitness, undermining
ability to respond to present and future conditions [3,4].
Evaluating comparative and hierarchical levels of gen-
etic composition and differentiation of widespread taxa,
as well as their unique or reservoir populations, thus is
important for prioritizing conservation management
strategies [5,6].

Population genetic patterns of today’s temperate taxa
resulted from historic and contemporary processes [7,8],
regulated by their physiological requirements, habitat
connectivity, and dispersal capability [9,10]. Broadly
distributed taxa display heterogeneous patterns over a
breadth of environmental and ecological conditions
[11,12]. Isolated populations experience drift and pos-
sibly evolve unique alleles [13,14], whereas large inter-
connected ones frequently have high gene flow and less
genetic distinctiveness [15,16]. Low migration may lead
to higher divergences, whereas mobility fosters gene
flow and homogeneity [17,18].

During the Pleistocene Epoch, ~2.6-0.01 million years
ago, the North American Laurentide Ice Sheet advanced
south to the Ohio River system (Figure 1), altering popula-
tion distributions and genetic compositions [19,20]. Taxa
became sequestered in glacial refugia and then moved
northwards to colonize old and new habitats as the ice
retreated [21,22]. Recent climate warming is accelerating
these historic dispersal patterns northward [23,24].

Anthropogenic factors may further modify genetic pat-
terns and force populations into sub-optimal habitats lead-
ing to reduced population size, genetic diversity, and/or
local adaptation and resulting in possible extirpation [27].
For example, increasing temperatures may reduce popula-
tion sizes and ranges of temperate cold-water fishes, e.g.,
lake trout Salvelinus namaycush (Walbaum 1792) and
cutthroat trout Oncorhynchus clarkii (Richardson 1836)
[23,28]. Rising temperatures and decreasing population
sizes have been linked to declining genetic diversity
through drift and inbreeding in Atlantic salmon Salmo
salar Linnaeus 1758 and brown trout S. trutta Linnaeus
1758 [29]. In contrast, warm-water species, such as the
walleye Sander vitreus (Mitchill 1818) may broaden their
ranges, shifting their distribution centers north [23]. Some
outlying populations may fail to adapt, leading to declining
genetic variability and extirpation [28], which may particu-
larly affect southerly fringe areas such as the relict North
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River, Alabama population of walleye [30] (site Y; Figure 1).
Exploitation and other anthropogenic stressors may
accelerate diversity loss further [2,31]. The present
study analyzes the genetic patterns of walleye, in light
of its past and potential future, to evaluate such pat-
terns of variability, isolation, and continuity over space
and time.

The walleye is an ecologically and economically valu-
able fish [32,33] that supports large Great Lakes’ fisher-
ies, peaking in Lake Erie [34]. It inhabits slow turbid
lakes to fast flowing clear streams throughout much of
North America (Figure 1). Historically, it ranged from
the Mackenzie River in the Northwest Territories of
Canada, south to the U.S. Gulf Coast, and northeast-
ward to New Hampshire and Quebec; during the past
century it also was transplanted into many other areas
for fishing [25] (Figure 1A). After maturing at~ age
three, it migrates annually in spring to early summer to
reproduce at natal spawning grounds [35], exhibiting
site fidelity, homing, and philopatry [36]. Adults do not
provide parental care or nest guarding, and range widely
to feed after spawning, travelling 50-300 km [37].

Past studies by our laboratory examined fine-scale
population patterns of walleye using nine nuclear DNA
microsatellite (psat) loci, showing that most spawning
groups markedly differ even within lake basins and be-
tween proximate sites, as well as at broad scales support-
ing natal homing and spawning site philopatry [30,38-40].
Stepien et al. [38] found that the genetic structure of
spawning groups remains similar from year to year, among
age cohorts, and from generation to generation. An earlier
study [41] addressed patterns across the Great Lakes using
mitochondrial (mt) DNA control region sequences, whose
geographic scope is extended here to accompany the psat
data set and includes new information from the Canadian
Shield lakes for both data sets.

We additionally evaluate the historic genetic diversity of
walleye from Lake Erie using preserved samples from
1923-1949. We address the taxonomic identity of a pos-
sible historic walleye variant, the “blue pike” S. v. “glaucus”
(Hubbs [42]), whose distinction has been controversial
[41,43]. The “blue pike” was reported to be endemic in
Lakes Erie and Ontario, where it co-occurred with the
common walleye S. v. vitreus (hereafter referred to as wall-
eye). The “blue pike” was believed to inhabit the deeper
cooler waters of eastern Lake Erie, but also was caught in
the shallow and warmer western basin along with walleye
[44]. It reportedly spawned somewhat later and in deeper
areas than walleye [43]. The “blue pike” was described to
have a steel grey-blue color, larger eyes that were higher
on the head, and a smaller interorbital distance than wall-
eye [44,45]. However, all characters overlapped extensively
between the two [44]. Hubbs [42] originally described the
“blue pike” as a separate species (“S. glaucus”), which then
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Figure 1 Maps of walleye sampling sites (lettered, corresponding to locations in Table 1 and Additional file 10). A Distribution across
North America (modified from Billington et al. [25]), depicting genetic discontinuities among contemporary walleye spawning groups from Barrier
v2.2 analysis [26], with black box denoting area of close-up study for B Lake Erie, with historic collections of walleye (labeled Q) and “blue pike”

J

was demoted to a subspecies due to pronounced inter-
grades with walleye including color and all other morpho-
logical measures [44]. The present study thus addresses
their identities using new morphological and genetic data.

Both “blue pike” and walleye shared a popular com-
mercial fishery with the former collapsing in 1959 attrib-
uted to exploitation, pollution, and/or habitat alteration

and the latter concurrently declining [44]. The last “blue
pike” record was reported in 1965 [44] and the US Fish
and Wildlife Service declared it officially extinct in 1983
[46]. The “blue pike’s” identity has been confusing since
it did not belong to the pike family (Esocidae) and some
walleye in northern waters (along the Canadian Shield)
are colored bright turquoise-blue due to sandercyanin
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protein in the mucus [47], which does not match the
darker grey-blue color described for “blue pike” [48,49].
Early fishery biologists called these turquoise mucus
walleye “mutants” and stated that they lacked the body
color, shape, and other morphological characteristics of
“blue pike” [49]; however, these variant colors have be-
come confused in the literature [41]. Turquoise mucus
and yellow walleye occur sympatrically in the same
northern habitats, and the latter also have some turquoise
mucus pigment [45]. The turquoise mucus additionally
characterizes some yellow perch Perca flavescens (Mitchill
1814) in those habitats. Some of the turquoise color
typically “rubs off” when the fish is collected [46 and
CAS, pers. obs.].

This study aims to resolve population genetic patterns
of walleye across its native range, providing a baseline for
evaluating future anthropogenic pressures. We analyze
contemporary walleye spawning groups and compare Lake
Erie populations to historic samples, including the putative
“blue pike” variant. Morphological characters also are ana-
lyzed for the historic samples. We expand the previous
sampling coverage to 1181 walleye and combine informa-
tion from mtDNA control region sequences and nine nu-
clear DNA psat loci. Patterns are evaluated at multiple
evolutionary and temporal scales, with mtDNA sequences
revealing historical context (glacial refugium origins and
taxonomic relationships) and psat loci addressing contem-
porary microevolutionary processes (migration, gene flow,
and genetic drift) [50,51]. Biogeographic patterns are com-
pared with those of other North American taxa. Specific
questions are: (1) What is the genetic structure of walleye
across its native distribution?, (2) How does genetic diver-
sity vary across the range?, (3) What is the relationship of
contemporary samples to historic Lake Erie (1923-1949)
patterns?, and (4) Did the extinct “blue pike” significantly
differ from walleye?

Results

Genetic diversity and phylogenetic relationships from
mtDNA

Contemporary walleye populations contain 27 control re-
gion haplotypes (Figure 2; GenBank Accession numbers
U90617, ]X442946-56, KC819843-54, KF954732-35).
Haplotypes 1-23 match those previously described by our
laboratory [41,52,53] and five additional ones are identified
here (four from contemporary samples, haplotypes 24—27;
GenBank:KF954732-35, and one from historic Lake Erie
walleye, haplotype 28; GenBank:KF954736) —totaling 28
haplotypes. Haplotype 19 from the Ohio/New Rivers
(W-=X, 1.00pp/98%) is located basally on the phylogenetic
tree as the sister clade to all other walleye haplotypes,
diverging by 19 steps (sites W and X; Additional file 1).
The remaining 27 haplotypes share a common origin,
with most differing by just single mutational steps,
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excepting haplotype 20 from the North River (site Y),
which differs by eight (Figure 2A). Historic walleye
haplotype 28 groups with the others (Additional file 1),
varying by just a single mutational step from abundant
haplotype 3 and found in a single individual.

Five abundant haplotypes (1-4, 11) comprise 90% of
walleye individuals, with haplotype 1 being the most fre-
quent and widely distributed (Figure 2B, Additional file 2).
Haplotype 3 is the next most numerous, and is distributed
from the upper Great Lakes through the south. It is the
sole haplotype shared between the contemporary and his-
toric samples; it predominated in historic Lake Erie wall-
eye and characterized all “blue pike” samples, in contrast
to being represented in just 22% of today's Lake Erie wall-
eye (Figure 2B, Additional file 2). The historic “blue pike”
samples thus do not genetically differ from historic and
contemporary walleye in mtDNA control region se-
quences. Haplotypes 2 and 4 are less abundant, yet have
wide distributions and characterize a large number of indi-
viduals and locations. Haplotype 11 is broadly distributed
and abundant in the northern samples (A-G, K, V), but
mostly is absent from other areas (Figure 2B, Additional
file 2). Three other haplotypes appear unique to separate
drainages: haplotype 25 in Lake Winnipeg and the
Upper Mississippi River (A, D-E), haplotype 19 from
the Ohio/New Rivers (W-X), and haplotype 20 in the
North River (Y).

Each spawning group contains multiple haplotypes
(Figure 2, Table 1), with Lake Erie having the most (O-P)
and Lake of the Woods (C), St. Louis River (F), Moon/
Musquash Rivers (L), Lac Mistassini (V), and North River
(Y) having the least. Historic walleye and “blue pike” ap-
pear to have possessed fewer haplotypes compared to
populations in Lakes Erie and Ontario today. Modest
numbers and proportions of private haplotypes characterize
contemporary populations, with Oneida Lake (U) and
North River (Y) containing the most. Lake Erie walleye
have more private haplotypes than other Great Lakes' lo-
cations. A rare private haplotype (28) occurred in a single
historic walleye individual, which appears to have been
lost to today's populations. Historic “blue pike” samples
lacked private haplotypes.

Haplotype diversity (Hp) varies greatly among popula-
tions (Table 1), with the Moon/Musquash Rivers (L) and
Mille Lacs (E) being lowest and Ohio/New Rivers (W-X),
eastern Lake Erie (P), Cedar Lake (A), and western Lake
Erie (O) highest. Historic walleye and “blue pike” samples
had much lower diversity than contemporary walleye from
Lakes Erie and Ontario, supported by analysis of variance
(ANOVA; F =47.24, df = 2, p = 0.005).

Genetic diversity patterns from nuclear DNA loci
All nine psat loci conform to Hardy Weinberg Equilib-
rium (HWE) expectations and are unlinked. Locus Svil7
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Figure 2 Relationships among mtDNA control region haplotypes of walleye, including A haplotype network from TCS v1.21 [54] and B
relative frequencies per population sample. Haplotypes from contemporary spawning groups are numbered 1-27 and #28 was found in a
historic walleye. Letters = geographic locations of haplotypes from Table 1. * = haplotypes occurring in the historic walleye and “blue pike”
samples analyzed here. Circles in the network are sized according to total observed frequency of the haplotype. Lines = a single mutational step

between the haplotypes; small unlabeled circles = those hypothesized/not sampled.

has a higher Fst value, suggesting some possible positive
selection, whereas SviL7 has the lowest, suggesting slight
balancing selection based on results from Lositan [56]
(Additional file 3). The remaining seven loci conform to
neutrality, having intermediate Fst values (mean = 0.090).
Locus Svil8 has the fewest alleles and Svi6 the most.
Seven loci are included here for historic walleye and “blue
pike”, since Svil7 and L7 failed to amplify. Results from
the seven versus the nine loci are identical among the 23
contemporary spawning groups, therefore, the former are
presented here; the dataset based on nine loci was detailed
by Stepien et al. [30,40].

Most walleye populations (87%, 152/175 comparisons)
are free of null alleles. Micro-Checker v2.2.3 [57] detects
some slight homozygote excess at Svi33 (for populations
C, L, V), Svid (C, P), Svil8 (O, Q, R, V), Svil6 (O, Q, T),
Svi6 (F, Q, U, X), and Svi7 (L, M, Q). Since those loci

have no such excess in other spawning groups, all popu-
lations are in HWE, and are free of heterozygote defi-
ciency, scoring error, and stuttering [57], all loci are
analyzed here. The historic walleye sample (Q) contains
some possible null alleles (57%, Svil8, L6, 6, and 7),
which appear more prevalent at loci having longer allelic
lengths (Additional file 4). However, these allelic frequen-
cies are similar among all samples: 0.00-0.20 for contem-
porary walleye spawning groups, 0.02—0.22 for historic
walleye (site Q) and 0.00-0.27 for historic “blue pike” (R),
negating their possible bias.

FreeNA analysis [58] results moreover discern no effect
from possible null alleles on Fgy values. With FreeNA
corrections, pairwise comparisons between the historic
(Q-R) and contemporary samples (O—P, S—T) only slightly
change (from 0.141 to 0.120), retaining a similarly large
magnitude of difference between the sampling intervals.
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Table 1 Genetic variation of contemporary walleye populations (sampling areas labeled A-P, S-Y), historic walleye (Q),
and “blue pike” (R) determined from mtDNA control region sequence data and nuclear DNA psat loci

Control region psat loci
Location N Hp#S.E. Ny Npy N Ho*S.E. Fis Na Npa Ar Sib
L. Winnipeg
A. Cedar L. 25 0.77£0.01 6 2 25 0.63+0.04 0.025 36 0 335 0.12
B. L. Winnipeg 25 0.53£0.01 3 1 25 0.67+0.02 0.003 38 0 344 0.08
C. L. of the Woods 25 0.33£0.02 2 0 30 0.64+0.03 0.099 39 0 3.68 0.00
D. McKim L. 25 0.61£0.02 4 0 25 0.57+£0.04 -0.021 34 0 3.00 0.28
Upper Mississippi R.
E. Mille Lacs 25 0.16£0.02 3 0 39 0.62+0.02 0.010 38 2 322 0.15
L. Superior
F. St. Louis R. 25 0.50+0.01 2 0 28 0.68+0.02 0.116 56 0 4.20 0.14
G. L. Nipigon 25 0.23£0.02 3 1 30 0.74+0.03 -0.047 43 0 376 040
H. Portage L. 25 0.64+0.01 3 0 56 0.73+0.02 0.001 52 0 397 0.07
L. Michigan
. Muskegon R. 25 0.23£0.02 3 0 50 0.73+£0.01 0.057 57 0 4.20 0.04
L. Huron
J. Thunder Bay 25 0.55+0.02 3 0 40 0.70+£0.01 0.015 55 2 3.88 0.15
K. Flint R. 25 0.58+0.02 5 0 44 0.77£0.01 -0.023 55 0 4.5 0.09
L. Moon/Musquash R. 25 0.15+0.02 2 0 35 0.71£0.03 0.024 49 0 3.87 0.14
L. St. Clair
M. Thames R. 25 0.72£0.01 4 0 39 0.75+0.02 0.012 63 0 419 0.05
N. Detroit R. 95 0.74+0.00 6 1 123 0.71£0.01 0.022 72 2 4.06 0.07
N1. Belle Isle 25 0.78+0.01 5 0 40 0.72+£0.02 0.010 62 0 4.06 0.00
N2. Fighting Is. 45 0.73£0.01 6 0 48 0.68+0.01 0.044 57 0 392 0.08
N3. Grosse lle 25 0.77£0.01 4 0 35 0.74+0.02 0.001 60 0 4.20 0.11
Contemporary L. Erie
O. Western L. Erie 100 0.76+0.00 9 3 211 0.70£0.01 0.035 78 0 4.02 0.07
O1. Huron R. 25 0.78£0.01 5 1 40 0.73+£0.02 0.021 64 0 4.18 0.00
02. Hen Is. 25 0.78+0.01 5 0 65 0.67+0.01 0.039 63 0 3.84 0.09
03. Maumee R. 25 0.72£0.01 4 0 76 0.69+0.01 0.042 65 0 401 0.11
04. Sandusky R. 25 0.76+0.01 7 2 30 0.75+0.02 0.006 54 0 4.5 0.00
P. Eastern L. Erie 50 0.82+0.00 1 4 137 0.74+0.01 0.034 74 1 4.30 0.09
P1. Van Buren Bay 25 0.76+0.01 5 1 87 0.76+0.01 0.021 64 1 433 0.13
P2. Cattaraugus Ck. 25 0.88+0.01 9 3 50 0.71+0.02 0.053 66 0 418 0.04
Historic L. Erie
Q. Historic yellow walleye 20 0.10+0.02 2 1 31 0.40+0.04 0.258 44 6 283 0.23
R. “Blue pike” 20 0.00+0.00 1 0 25 0.54+0.07 -0.191 20 0 2.06 0.76
L. Ontario
S. Pigeon L. 25 0.47£0.02 4 0 29 0.73+£0.02 -0.017 55 0 401 0.00
T. Bay of Quinte 25 0.62+0.02 5 1 50 0.69+0.02 0.046 65 0 4.00 0.08
U. Oneida L. 25 0.66£0.01 6 3 25 0.66+0.03 0.103 48 0 3.98 0.08
Lac Mistassini
V. Lac Mistassini 25 0.48+0.01 2 0 40 0.52+0.03 0.137 45 2 3.09 0.05
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Table 1 Genetic variation of contemporary walleye populations (sampling areas labeled A-P, S-Y), historic walleye (Q),
and “blue pike” (R) determined from mtDNA control region sequence data and nuclear DNA psat loci (Continued)

Ohio R.

W. Ohio R. 1 0.85+£0.02 5 0
X. New R. 25 0.45+0.05 3 0
Tombigbee R.

Y. North R. 5 040£0.11 2 1
Mean contemporary walleye 31 0.53+0.02 4 1

(23 sites; A-P, S-Y)

4 0.61+0.07 0.306 33 0 471 0.00
35 0.68+0.01 0.121 60 1 4.29 0.06
5 0.56+0.11 0.197 27 3 353 0.00
49 0.68+0.03 0.055 39 1 3.86 0.08

Values include number of samples (N), haplotypic diversity (Hp) and heterozygosity (Ho) * standard error (S.E.), number of haplotypes (Ny) and alleles (Na), number
of private haplotypes (Npy) and alleles (Npa), inbreeding coefficient (Fis), allelic richness (Ag), and proportion of full siblings (Sib) determined from Colony v2.0.5.0
[55] analyses. Microsatellite results from these seven loci are statistically equivalent to those obtained from nine loci [30]. Latitude and longitude for each location

are provided in Additional file 10.

Fgt values between the contemporary populations change
only at the thousandth decimal point after correction (e.g.,
0.058 to 0.054). Thus, there was no need to adjust the
allele frequencies against possible null alleles, as there was
no apparent effect.

We recover 155 alleles among seven nuclear psat loci,
across 23 contemporary walleye spawning groups, his-
toric walleye, and “blue pike” (Table 1, Additional file 3).
Many alleles are shared, widely distributed, and have
high frequency in contemporary and historic samples
(Additional file 4). Great Lakes populations possess
more alleles than the others, with Lake Erie housing the
most, similar to control region data. Allelic richness is
highest in the Ohio (W/X) and North Rivers (Y), moderate
in Great Lakes’ populations, and lowest in the northern
sites (A—E, V). ANOVA indicates that allelic richness
significantly varies among populations (F = 2.50, df = 22,
p <0.001); Tukey’s post hoc tests, however, reveal no
overall pattern.

Historic walleye (Q) and “blue pike” (R) possess fewer
alleles and lower allelic richness (ANOVA F=11.129,
df =5, p<0.001) than characterize contemporary wall-
eye from Lakes Erie (sites O-P) and Ontario (S-T;
Table 1, Additional file 4). Allele lengths show some
tendency to be smaller in historic samples and longer in
the contemporary samples (Additional file 4). Historic
walleye also display some inbreeding depression, whereas
“blue pike” suggest some outbreeding (Table 1), but both
were in HWE. Contemporary populations comparatively
have moderate values. Colony v2.0.5.0 [55] analyses in-
dicate that full siblings constitute 8% of contemporary
walleye populations, being highest in McKim Lake (D)
and Lake Nipigon (G). Higher values also characterize
our historic walleye and “blue pike” samples (R).

Modest proportions of private psat alleles typify the 23
contemporary samples, with the North River (Y) having
the highest (Table 1). Historic walleye samples contained
the most private alleles. However, all historic “blue pike”
samples possessed common walleye alleles, with no
unique ones, supporting lack of distinction.

Genetic diversity values from the psat loci (Hp) gener-
ally are somewhat higher than in the control region
(Table 1). Diversities of historic walleye and “blue pike”
were relatively low compared to contemporary samples.
ANOVA indicates some differences in diversity among
contemporary spawning groups (F=1.79, df=22, p=
0.02), and between contemporary versus historic samples
(F=3.83, df =5, p=0.007), however, Tukey’s tests de-
scribe no overall pattern. Thus, genetic diversity is simi-
lar among all samples.

Spatial genetic structure of walleye populations
Relationships among spawning groups show a pattern of
genetic isolation with geographic distance (Additional
file 5). Most are genetically distinctive (Table 2, Additional
file 6) for both the control region and psat data sets, in-
dicating high genetic structure. The most pronounced
divergences distinguish three geographic regions: north-
ern (A-E), Great Lakes (F-U), and southeastern (X-Y).
Notably, the Ohio/New (W-X) and North River (Y)
populations differ by the greatest Fst values. Geneclass2
[59] assignment tests denote high self-assignment among
spawning groups and to the three geographic regions,
similar to pairwise comparison results (Additional file 7).
Hierarchical analysis of molecular variance (AMOVA)
[60] also supports division into three geographic regions:
northern (A-E, V), Great Lakes (F-U), and southeast
(W=Y), which explains the most overall variation, has
highest mean Fsr values, and best characterizes the data.
A second well-supported scenario distinguishes walleye
from each of the 11 drainage systems, with high mean Fgr
values, but less support. The scenario for potential par-
titioning between river and lake population groups is
unsupported.

Barrier v2.2 [26] and Structure v2.3.4 [61] analyses like-
wise identify significant genetic structuring across the
range (Figures 1 and 3, Additional file 8). The first mtDNA
barrier separates the southern (W-Y) from northern pop-
ulations (A—P, S—V), the second isolates the northernmost
sites (A—G, V), and the third distinguishes Lake Nipigon



Table 2 Genetic Fsy divergences between pairs of walleye population samples, including contemporary spawning groups (labeled A-P, S-Y), historic Lake
walleye (Q) and “blue pike” (R), from mtDNA control region sequences (below diagonal) and nuclear psat data (above diagonal)

Erie

Location A. B. C D. E. F. G. H. l. J. K. L. M. N. 0. P. Q. R. S. T. u. V. w. X. Y.
A. Cedar L. — 0.059 0.054 0.136 0.152 0.084 0.080 0.112 0.102 0.095 0.087 0.144 0.111 0.129 0.123 0.115 0.252 0.318 0.123 0.124 0.122 0.188 0076 0.109 0.249
B. L. Winnipeg 0.164 — 0.028 0.150 0.144 0.080 0.040 0.111 0.119 0.144 0.122 0.155 0.127 0.141 0.131 0.113 0.240 0.281 0.155 0.143 0.136 0.189 0039 0.128 0.252
C. L of 0.248 0271 — 0.147 0.090 0.064 0037 0.081 0.093 0.108 0.093 0.124 0.100 0.113 0.109 0.091 0.222 0.267 0.128 0.121 0.125 0.162 0034 0.104 0.223
the Woods

D. McKim L. 0071 0.174 0037 — 0.222 0.168 0.216 0.181 0.212 0.238 0.216 0.234 0.221 0.230 0.222 0.195 0.384 0.440 0.253 0.244 0.203 0.239 0.213 0.211 0.334
E. Mille Lacs 0.360 0.487 0072 0136 — 0.115 0.069 0.149 0.154 0.155 0.162 0.177 0.115 0.115 0.111 0.097 0.274 0.330 0.184 0.139 0.150 0.183 0.155 0.117 0.288
F.St. LouisR. 0.771 0000 025 0.167 0.480 — 0.053 0.035 0.044 0.055 0.046 0.061 0.034 0.045 0.040 0.029 0.179 0.211 0.087 0.067 0.050 0.138 0003 0.044 0.164
G. L. Nipigon  0.385 0.773 0.646 0.501 0.801 0203 — 0.086 0.088 0.094 0.088 0.119 0.073 0.082 0.077 0.069 0.190 0.242 0.110 0.093 0.108 0.168 0031 0.085 0.215
H. Portage L. 0.173 0.280 0.767 0094 0.236 0.280 0.557 — 0.044 0.066 0.047 0.036 0.043 0.055 0.054 0.044 0.169 0.200 0.090 0.074 0.044 0.130 0014 0.051 0.212
|. Muskegon R. 0.334 0.446 0054 0117 0000 0.439 0.765 0.187 — 0.028 0007 0.052 0.031 0.046 0.042 0.041 0.095 0.135 0.047 0.041 0.042 0.167 0008 0.031 0.156
J. Thunder 0.196 0.301 0098 0064 0.145 0.297 0.603 0000 0098 — 0017 0.073 0.027 0.036 0.035 0.040 0.119 0.184 0.036 0.031 0.066 0.196 0035 0.042 0.188
Bay

K. Flint R. 0.177 0.270 0.108 0064 0.175 0.266 0.571 0002 0.719 0000 — 0.046 0.020 0.039 0.037 0.037 0.122 0.171 0.030 0.033 0.053 0.177 0010 0.034 0.180
L. Moon/ 0.376 0.489 0078 0.152 0000 0.483 0.803 0270 0000 0714 0138 — 0.045 0.062 0.059 0.052 0.209 0.249 0.083 0.064 0.063 0.160 0047 0.061 0.220
Musquash R.

M. Thames R.  0.165 0.280 0.258 0.752 0.339 0.285 0.518 0000 0.283 0046 0030 0.315 — 0001 0000 0002 0.150 0.199 0.040 0.013 0.035 0.157 0011 0008 0.184
N. Detroit R. 0.158 0.253 0.213 0.138 0.259 0.255 0.437 0011 0.221 0053 0047 0.243 0000 — 0001 0.007 0.142 0.191 0.045 0.020 0.058 0.166 0035 0.021 0.198
O. Western 0.148 0.242 0.200 0.126 0.244 0.243 0.426 0007 0.208 0048 0049 0.233 0000 0000 — 0.006 0.136 0.182 0.048 0.017 0.048 0.160 0024 0.018 0.198
L. Erie

P. Eastern 0.137 0.243 0.253 0.154 0.314 0.249 0.422 0039 0.275 0095 0.102 0308 0008 0010 0000 — 0.144 0.185 0.050 0.026 0.040 0.136 0019 0.011 0.173
L. Erie

Q. Historic 0.541 0.668 0.773 0.627 0.869 0.683 0.830 0.499 0.824 0.581 0.516 0.860 0.352 0.304 0.336 0.364 — 0.050 0.140 0.132 0.155 0.343 0./39 0.149 0.276
walleye

R. “Blue pike” 0.585 0.712 0.817 0.672 0.913 0.728 0.875 0.550 0.870 0.632 0.567 0.908 0.405 0.334 0.366 0.399 0000 — 0.222 0.196 0.196 0.384 0.203 0.190 0.367
S. Pigeon L. 0.351 0.471 0.541 0.402 0.635 0.484 0.651 0247 0.583 0.322 0253 0.610 0779 0.136 0.171 0.194 0092 0145 — 0010 0.082 0.225 0031 0.055 0.196
T. Bay of 0.272 0.392 0.455 0.319 0.547 0.403 0.576 0.155 0.495 0233 0.182 0522 0046 0073 0102 0112 0151 0205 0000 — 0.056 0.198 0.030 0032 0.198
Quinte

U.Oneida L.  0.269 0.405 0.503 0.367 0.584 0.420 0.557 0.289 0.532 0.350 0.295 0.581 0.769 0.150 0.161 0.138 0.400 0.454 0.240 0.186 — 0.126 0020 0018 0.188
V. L. Mistassini  0.163 0088 0.022 0027 0226 0072 0.463 0.161 0.191 0131 0119 0230 0.218 0.191 0.179 0.211 0.694 0.739 0.473 0.389 0.430 — 0.177 0.136 0.324
W. Ohio R. 0116 0259 0293 0142 0413 0269 0.531 0068 0346 0.118 0116 0.416 0041 0034 0020 0004 0.557 0.629 0.287 0.180 0.151 0222 — 0010 0.122
X. New R. 0.382 0.508 0.607 0.470 0.693 0.523 0.660 0.443 0.653 0.492 0.467 0.695 0.384 0.338 0.331 0.310 0.685 0.732 0.512 0.438 0.364 0.533 0769 — 0.171

Y. North R. 0.342 0.506 0.651 0.454 0.793 0.527 0.736 0.432 0.732 0.495 0.468 0.798 0.369 0.338 0.327 0.288 0.836 0.923 0.551 0.447 0361 0.541 0299 0.543 —

Results are congruent to those from exact tests of differentiation (Additional file 6). Values using these seven nuclear psat loci data are almost identical to those based on nine loci, differing only at the thousandth
decimal place (see Stepien et al. [30] for the nine locus dataset). Bold = significant before and following sequential Bonferroni corrections, italics = significant at a = 0.05, and normal text = not significant.
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Figure 3 Bayesian Structure analysis [61] for A contemporary walleye (K= 2, 3, 8) and B contemporary Lakes Erie and Ontario and
historic Lake Erie walleye (with “blue pike”; K= 2, 3, 6) population groups, based on seven psat loci. Individuals are represented as thin

' Historic |

L. Erie

L. Ontario

(Q). In contrast, barriers for psat loci denote finer-scale
discontinuities, with the first separating Lake Nipigon (G,
barrier I; 49% bootstrap support, 7/7 loci), then the North
River (Y, II; 57%, 7/7), followed by Lac Mistassini (V, III;
43%, 6/7). Remaining barriers for both data sets depict
fine-scale divergences, with most among northern spawn-
ing groups (Figure 1). Structure analyses indicate high
assignment of the northernmost populations (A-G, V,
purple color) from those to the south (I-U, W-Y, blue;
Figure 3A). Populations in the upper (F-L; orange) and
lower (M-U; light blue) Great Lakes assign separately,

with St. Louis River (F) and Lake Nipigon (G) walleye
clustering more closely to those in the northwest. Finer-
scale demarcations by drainage and some spawning
groups also are recovered, similar to results from the
analyses using pairwise comparisons, Geneclass, and
AMOVA.

The combined population genetic distance tree (Additional
file 9) also shows separation of the southern samples,
with the North River (Y) walleye as basal, matching its
high pairwise divergence (Table 2). The tree clusters
northern walleye and those from Lake Superior together
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(sites A—G, V; 62%), similar to Barrier results. Lakes St.
Clair (M-N) and Erie populations (O-P) display close
genetic relationship, analogous with pairwise comparisons.

Historic vs. contemporary populations of Lake Erie
walleye

Historic walleye and “blue pike” samples are indistin-
guishable in control region sequences, and vary from
each other in psat allele frequencies within the realm
among contemporary walleye populations, on the low
end among the 23 spawning groups (Table 2, Additional
file 6). In contrast, greater values distinguish walleye
populations spawning in the New (X) and North Rivers
(Y). Thus, there is no genetic evidence that the “blue
pike” comprised a distinct taxon from walleye.

Both sets of historic samples differed in haplotypic
and allelic frequencies from contemporary Lakes Erie
and Ontario walleye in the Fgrand y* analyses. The his-
toric samples significantly varied in genetic composition
from all but one contemporary spawning group (Table 2,
Additional file 6). The control region frequencies of the
Pigeon Lake spawning group (S) alone resemble the his-
toric samples from Lake Erie due to shared high repre-
sentation of haplotype 3, but differ in the psat data. This
likely is an artifact.

No genetic distinction occurs between turquoise-
colored mucus versus yellow walleye from McKim
Lake (D, control region: Fgr=0.000, y*=0.00, psat:
Fst = 0.000, y* = 14.05). Together, McKim Lake repre-
sents a distinct spawning group, differing from other
walleye populations (Table 2, Additional file 6). The
historic walleye and “blue pike” samples from Lake Erie
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were very significantly different from the McKim Lake
samples. Thus, both turquoise mucus walleye and
“blue pike” are walleye.

AMOVA analyses show no significant difference be-
tween the historic (walleye and “blue pike” considered to-
gether as a single group) versus the contemporary samples
for control region sequences. The historic and contem-
porary samples differ with psat data (Table 3) by ~2-5x
greater than the mean Fgp values among contemporary
walleye spawning groups. Results thus indicate that psat
allelic frequencies have changed from the past to the
present.

The genetic distance tree of the combined gene data
(Additional file 9) and Structure analyses (Figure 3B,
Additional file 8) both separate the historic samples into
a distinct group. Geneclass assignment tests likewise de-
pict their genetic difference, with 89% of the historic
samples self-assigning. Just 10% mis-assign to the con-
temporary eastern Lake Erie walleye (group P), 6% to
historic “blue pike” (R) and 6% to contemporary western
Lake Erie walleye (O). Historic “blue pike” individuals self-
assigned 48% of the time (N = 12), with 48% mis-assigning
to historic walleye. A single “blue pike” individual assigned
to contemporary eastern Lake Erie walleye (4%).

Morphological traits of historic samples

Morphological variations occur between walleye and
“blue pike” in six characters; “blue pike” individuals tend
to have the smallest head and interorbital widths, lar-
gest eye diameter, highest numbers of pelvic fin rays, a
larger orbit: interorbital ratio, and fewer second dorsal
fin rays (Table 4). However, the ranges of all characters

Table 3 Relative distribution of genetic variation among contemporary and historic walleye samples using AMOVA,
calculated from mtDNA control region sequence and nuclear DNA psat data

Control region

Microsatellite loci

Source of variation % variation O value Mean Fst % variation O value Mean Fst
1. Contemporary (O-P,S-T) vs. historic samples (Q-R) 26.01 0.260 NS 0.260 6.99 0.070 NS 0.167
Among sampling sites within groups 0.00 0.000 NS 0.176 0.87 0.009%* 0.030
Within sampling sites 73.98 0.252%* — 92.14 0.079** —

2. Among northern (A-EV), Great Lakes 12.06 0.121%* 0318 5.07 0.051** 0.129
(F-U), and southeast (W-Y) regions

Among sampling sites within groups 17.64 0.201** 0.238 497 0.052** 0.063
Within sampling sites 7030 0.297** — 89.96 0.100%* —

3. Among the contemporary 11 drainages (A-P,S-Y) 14.38 0.144%* 0.286 426 0.043** 0.132
Among sampling sites within drainages 11.07 0.129%* 0.158 313 0.033** 0.058
Within the sampling sites 74.05 0.254** — 9261 0.074** —

4. Between lake (A-E,G-H,J,02,P1,5-V) and river 0.00 0.000 NS 0.306 0.58 0.006** 0.107
(F | K-01,03-4,P2,W-Y) spawners

Among sampling sites within groups 24.92 0.247%* 0.298 6.59 0.066%* 0.100
Within sampling sites 75.08 0.2471** — 92.83 0.071** —

NS = not significant, ** = significant.
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Table 4 Morphological data from historic walleye and “blue pike” samples, with mean, standard deviation (SD), and

range of values

Historic walleye (N=51)

“Blue pike” (N=52)

Measurement Mean + SD Range Mean + SD Range
Standard length (mm) 2643 +499 187 — 385 2488 +37.7 202 - 362

% Standard length

Body depth 201 £19 15.8—-24.2 204 £ 2.1 163 —-249
Head length 30.7+038 289-322 306+18 279-407
% Head length

Cheek length 483+18 443 -525 484+16 46.3 557
Upper jaw length 386+3.1 336-439 379+37 31.0-449
Lower jaw length 388+4.1 30.1-437 382+43 31.6 —44.1
Head width 416+45 343-550 386+25 32.1 —440%
Interorbital width 149+1.1 128-17.3 141+£12 11.2-172%
Orbit diameter 207+18 174-264 219+ 2.1 166 —25.9%*
Orbit: interorbital 14+£0.2 1.1-20 1.6+£0.2 1.0 —-22%*
Upper: lower jaw 1.0+£0.2 08-13 1.0£0.2 07-13
Meristic Mode Range Mode Range

First dorsal fin rays 14 11-16 12 11-15
Second dorsal fin rays 21 19-22 20 13 —22%*
Pectoral fin rays 15 11=17 14 10-16
Pelvic fin rays 6 5-8 7 5-8%

Anal fin rays 14 11-16 14 11-16

Body and head measurements are given as percentage of standard or head lengths, respectively. Ratios are between the original measurement values.
Additional file 11 lists individuals examined. ** = statistically significant comparisons between walleye and “blue pike” using Student’s t and Mann Whitney U tests.
Overall, walleye and “blue pike"differed according to the nonparametric MANOVA (morphometric: F = 4.34, degrees of freedom (df) =1, p < 0.001; meristic: F=4.13,

df=1, p=0.001).

extensively overlap and do not reliably distinguish a
“blue pike” from a walleye specimen.

The first four morphometric principal components (PC)
explain 86% of the overall variation and the first three me-
ristic PCs explain 79% between historic walleye and “blue
pike”. Multivariate analysis of variance (MANOVA) shows
significant difference in morphometric (Wilks’” A =0.768,
F=7244, df=1, p<0.001) and meristic principal compo-
nents analysis (PCA) (Wilks” A = 0.876, F=4.522, df =1,
p =0.005; Figure 4). Morphometric PC3 and 4 distin-
guish walleye and “blue pike” (ANOVA, PC3: F=10.443,
df=1, p=0.002, PC4: F=9.004, df =1, p =0.003) and are
correlated with body depth (r=0.850) and head width
(r=-0.546). Meristic PC1 and 2 (Figure 4) also differen-
tiate them (ANOVA, PCl: F=4.323, df =1, p =0.040,
PC2: F=5.0832, df =1, p=0.026) in number of second
(r=-0.827) and anal fin rays (r = -0.578).

Quadratic discriminant function analysis (DFA) cor-
rectly assigns 72% of samples using the morphometric
dataset and just 64% with meristic characters. Historic
walleye (76% morphometric, 71% meristic data) and
“blue pike” (68%, 57%) more often self-assign, but have
high mis-assignment to each other, similar to the Geneclass
results. Thus our findings do not support designation of

“blue pike” as a subspecies or species, since it lacks reliable
morphological characters and has no genetic differentiation,
with no unique haplotypes or alleles. Its level of frequency
difference in psat allelic composition appears typical of a
walleye population.

Discussion
Broadscale genetic divergence patterns
Walleye populations from the unglaciated southern por-
tion of the range (W-Y) are the most divergent, posses-
sing unique alleles and haplotypes. The earliest and
most divergent haplotype (19) occurs in the Ohio and
New Rivers (W-X), and is very genetically distinct
([30,62] this study). Other fishes, including brook trout
Salvelinus fontinalis (Mitchill 1814) [63], smallmouth
bass Micropterus dolomieu Lacepede 1802 [64], green-
side darter Etheostoma blennioides Rafinesque 1819
[65], rainbow darter Etheostoma caeruleum Storer 1845
[66], and yellow perch [67], likewise demonstrate pro-
nounced population divergence of Atlantic coastal
groups, indicating long-term isolation.

The North River (Y), which drains south into the Gulf
of Mexico, is dominated by an endemic walleye haplotype
(20). The population is small, very isolated, and relatively
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Figure 4 Principal components analysis plots for historic walleye and “blue pike”, based on A morphometric and B meristic characters.
Solid symbols = mean component scores. Circles = 95% confidence intervals for each group.

low in diversity, as previously documented [25,30].
Boschung and Mayden [68] noted that this indigenous
North River population is at risk of colonization from
northerly walleye due to connections through the
Tombigbee—Tennessee River waterway, which may
threaten localized adaptations. Likewise, yellow perch
from the Gulf Coastal drainage possessed high endem-
ism, unique haplotypes, and extensive divergence [67].
Southerly populations of walleye and yellow perch thus
represent unique genetic sources that may prove valu-
able for conservation.

Walleye populations exhibit moderate divergence
levels across the range, as described by previous studies
[30,41,69]. In contrast, yellow perch (control region mean

Fs1=0.469, psat = 0.236) [67] and smallmouth bass (cyto-
chrome b mean Fgr=0.412, psat = 0.232) [64,70] possess
much higher divergence among spawning groups. This
may be due to their more limited migration [71,72].
Wealleye have been documented to disperse 50—-300 km
[73], followed by yellow perch to 48 km, with occasional
individuals travelling 200 km [71], and smallmouth bass
only to ~10 km [72].

The European perch P. fluviatilis Linnaeus 1758 dis-
criminates kin from non-kin via olfactory cues and
schools in family groups, which may reproduce together
[74,75]. This life history pattern remains to be tested for
yellow perch, walleye, or smallmouth bass. Kinship tests
by our laboratory reveal high proportions of full siblings
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in some spawning groups of yellow perch (mean =0.20
ranging to 75%) [76] and smallmouth bass (0.15, to 67%)
[70], which are greater than those identified here for
walleye. Limited lifetime migration, and apparent close
association among kin for yellow perch and smallmouth
bass, may lead to their higher divergences among proxim-
ate populations. Walleye populations display intermediate
divergence and higher diversity, attributable to more out-
breeding. Thus, biogeographic patterns of these widely
distributed freshwater fishes largely result from a combin-
ation of extrinsic (i.e., changes in climate and drainage
patterns) and intrinsic factors (dispersal capabilities, de-
gree of natal homing, population size, and inbreeding),
which are regulated by behavior of the species.

Contemporary genetic diversity patterns

Our data indicate relatively high genetic diversity for most
walleye spawning groups; these values mirror those re-
ported across their range using nine psat loci (Ho = 0.68)
[30]. Difference between the mtDNA and nuclear data is
attributable to the former having a slower evolutionary
rate [51,77], % effective the population size, and being
more influenced by population bottlenecks [50].

Wealleye reproducing in the lower Great Lakes (Lakes St.
Clair and Erie) have the highest diversity values, reflecting
admixture from glacial refugia and larger population sizes,
similar to results from other studies [30,40]. Some small
upper Great Lakes populations display the lowest mtDNA
diversities, but average nuclear DNA diversities. Notably,
the population from the Moon/Musquash River (site L)
has the least control region diversity but higher psat value.
Gatt et al. [78] also recovered low mtDNA diversity at this
location, attributing this to stocking and overexploitation.
Since this pattern is restricted to mtDNA alone in our
study, it likely instead reflects past bottlenecking and small
population size.

Yellow perch populations possess much lower mtDNA
control region diversity levels across their range (mean
Hp =0.31) than nuclear DNA variability (Ho =0.53, 15
psat loci) [67]. This also is true for the related European
perch [79] and Eurasian ruffe Gymmnocephalus cernua
(Linnaeus 1758) [80]. This difference among percid spe-
cies may reflect their respective evolutionary history and
behavior. Notably, strong association of European perch
in kin groups [74,75] and high proportions of yellow perch
full siblings in spawning groups [76] may lead to lower
diversity from inbreeding. Smallmouth bass spawning
groups also have lower genetic diversity than walleye in
mtDNA sequences (mean Hp = 0.50) [70] and eight psat
loci (Ho = 0.46) [64]. This may reflect higher association
of kin groups and limited lifetime migration [70]. Thus,
population genetic diversity and divergence of small-
mouth bass [64,70] and yellow perch [76] differ from
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walleye due to their respective reproductive behavior
and life history characters.

Small isolated southern populations of walleye have
lower genetic diversity values than those in once glaciated
regions. The former contain the oldest and most unique
genetic variants, reflecting long-term isolation, smaller
population sizes, and likely genetic drift and population
bottlenecks [30]. Gulf Coastal yellow perch populations
also possess the lowest diversity values, along with unique
haplotypes and alleles [67], similar to walleye. These
southern populations comprise a historic source of diver-
sity and an important genetic resource for both species.
Their adaptations to warmer habitats may provide a crit-
ical genetic reservoir in the face of climate warming.

Genetic patterns shaped by anthropogenic factors in Lake
Erie

Genetic diversity values for mtDNA and psat loci are
94% and 37% lower for historic Lake Erie walleye and
“blue pike” from 1923-49 compared with contemporary
Lakes Erie and Ontario populations. Genetic diversity
appears to have increased over the past 70+ years, which
may reflect population recovery.

Europeans settled Lake Erie shores during the 1700-
1800s, cutting down the forests and draining the marsh-
lands, which disappeared by 1900 [44,81]. As the region
developed and industrialized, untreated wastes were re-
leased into the Lake from saw mills, slaughterhouses,
and steel factories. By 1830, Lake Erie walleye comprised
an abundant and important commercial fishery. In 1874,
construction of a major shipping channel drastically
modified the Lakes Huron-Erie Corridor connection
(Figure 1). Lake Erie steadily lost much of its fish habitat
from 1900-1970s due to draining of wetlands, armoring
of shorelines, channelization, dredging, and increased
industrialization [82,83]. During the 1960s, high levels of
phosphorus caused massive algal blooms, accompanied
by oxygen depletion and marked fish die offs [82].

Many native Lake Erie fish populations experienced
steady declines from 1900-1970s, including the lake trout,
lake sturgeon Acipenser fulvescens Rafinesque 1817, and
walleye [81,84]. Industrial outputs resulted in heavy metal
contamination and declining fish health, manifested with
neoplasms, tumors, and lesions on walleye and other spe-
cies [85]. In 1970, walleye fisheries from Lakes Huron
through Erie were closed due to high mercury levels. By
1978, fisheries managers declared Lake Erie walleye as
being in crisis from overfishing and pollution [82].

Lower allelic numbers and diversity for historic walleye
and “blue pike” from 1923-49 likely reflect these popula-
tion declines. The rare haplotypes and alleles we identify
in historic walleye may have disappeared. Most haplotypes
and almost all alleles in historic Lake Erie samples are
common and widespread today. The historic samples
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appeared to possess more haplotypes that trace to the
Atlantic Refugium, whereas those from the Mississippian
Refugium dominate today’s walleye populations [21,25,41].
This change merits further testing, but may be a response
to climate warming.

Genetic diversity of other Great Lakes fishes similarly
was lower in 1927-59 and higher in 1995-2005, attributed
to population declines from environmental conditions and
overexploitation [86,87]. Notably, lake whitefish Coregonus
clupeaformis (Mitchill 1818) from Lakes Huron and Erie
in 1927 had lower diversity at seven psat loci (0.60) than
in 1997-2005 (0.65) [87]. Lake trout from Lakes Superior,
Michigan, and Huron were less variable in 1940-59 (0.47)
than in 1995-99 (0.51) using five psat loci [86]. Similarly,
Atlantic cod Gadus morhua Linnaeus 1758 declined in
diversity and number of alleles from 1954-80s, then
increased from 1980-98 according to archived otolith
samples and three psat loci [88]. That study moreover
documented that genetic composition changed, similar
to the pattern here for Lake Erie walleye, hypothesizing
recovered diversity via immigration from a nearby
spawning group.

Contemporary Lake Erie walleye populations also may
have been influenced by migration and recruitment.
Walleye is described to natally home, with chemical
cues presumably facilitating recognition of reproductive
grounds [89,90]. Olson and Scidmore [89] discerned
lower homing in areas with high habitat degradation.
Some contemporary western Lake Erie spawning group
samples appear genetically similar to those from Lake
St. Clair, suggesting possible genetic exchange. Walleye
movement between these lakes during non-spawning
times is well known from tagging [91,92] and Lake Erie
walleye may have migrated to spawn at a recently aug-
mented reef in the Detroit River [53].

Lake Erie walleye appear to have recovered from de-
clines in diversity and numbers (~10 million in 1978), after
the fishery's closure from 1970-76 [93], implementation
of the 1970 Canada Water Act, the 1972 U.S. Clean Water
Act, and the 1972 Canada-U.S. Great Lakes Water Quality
Agreement [82]. Increasing water temperature —especially
in the shallow western basin— changed the Lake Erie fish
community from cold water (e.g., lake trout) to warmer
water species, favoring walleye and yellow perch. De-
clining numbers of colder water competitors presum-
ably enhanced walleye abundance [84]. By 1988, Lake
Erie had rebounded to ~80 million (8x 1978), decreas-
ing to ~18 million walleye in 2013 [94]. Genetic analyses
[38] revealed temporal consistency in genetic diversity
from 1995-2008 for three primary Lake Erie walleye
spawning groups (Maumee and Sandusky Rivers in the
west, and Van Buren Bay in the east). Whether this con-
tinues remains to be discerned, as genetic variability
may decline with population sizes.
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Other walleye populations have shown a mixture of
temporal stability and decline. Walleye spawning in
Escanaba Lake, Wisconsin displayed consistent diversity
levels from 1952-2002 (mean Hg=0.76) using eight
psat loci [95] (six of those here). Garner et al. [96] like-
wise described consistent diversity levels for walleye in
Lake Superior’s Black Bay from 1966—2010 (mean Hg =
0.62) employing nine psat loci (six of those here). How-
ever, the Escanaba Lake and Black Bay populations were
stocked, likely circumventing fluctuations. MtDNA re-
striction fragment length polymorphism diversity of
walleye spawning in Lake Huron’s Georgian Bay de-
clined over three decades (0.50 in the 1960s to 0.15 in
the 1990s), attributed to exploitation and stocking [78].
Our study recovers similarly low mtDNA control region
variability for walleye spawning in the Moon/Musquash
Rivers of Georgian Bay today. However, this bottleneck
effect is restricted to mtDNA, since we denote average
levels of nuclear DNA variability.

Other alternatives may explain lower diversity levels
in the historic samples. Our contemporary samples
were adults collected from spring spawning runs at spe-
cific spawning sites. In contrast, historic samples were
collected from July—November, when walleye intermix.
Thus genetic diversity may have been lowered due to
population admixture via a Wahlund effect [97]. For
historically archived samples, such as ours, Nielsen and
Hansen [98] recommended including positive and nega-
tive controls, having a separate laboratory space and
separate chemicals, testing for null alleles with Micro-
Checker, using samples with complete documentation
of biological information, testing for HWE, and apply-
ing more than one statistical test to validate patterns.
We followed all of these precautions to ensure reliability
of data from our formalin fixed historic samples. Some
studies have documented issues with historic samples
having biased amplification of shorter length alleles
[99,100]. We found slight suggestion of null alleles in
historic samples, with shorter allele lengths being more
prevalent. Lower template quality may have resulted
from DNA shearing with formalin fixation [101], leading
to partial repeat amplification if primer sites were unavail-
able for binding [102]. However, our Micro-Checker tests
and other analyses demonstrate lack of statistical support
for such problems. Our mtDNA sequences reveal the
same pattern as the psat analyses. Additional analysis of
historic walleye and “blue pike” samples from intermediate
decades may help to further interpret temporal population
genetic patterns.

Taxonomic status of historic “blue pike” and
turquoise-mucus variants

We discern that the historic “blue pike” appears genetic-
ally indistinguishable from walleye populations. It has no
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unique genetic variation in our database, rendering S.
vitreus “glaucus” invalid. It fails to meet the criteria of
the Evolutionary Species Concept (ESC) [103] or the
Phylogenetic Species Concept (PSC) [104]. The “blue
pike” is not “an entity that kept its identity from others
over time and space and that had its own independent
evolutionary fate and historical tendencies” and possesses
no bootstrap or posterior probability support, lacks recip-
rocal monophyly, diagnosable synapomorphies, and de-
marcation from the walleye as required by the ESC and
PSC [103,104]. It also does not show interspecific variation
10x greater than the mean intraspecific variation of wall-
eye [105]. In fact, the “blue pike” has no mtDNA sequence
differentiation and its psat variation is identical to that
among typical walleye spawning groups and populations.
In contrast, many walleye populations across North America
possess much more pronounced genetic variation, par-
ticularly from the New (X) and North Rivers (Y). Walleye
spawning in those southerly locations meet more of the
criteria of being distinct taxa. However, we regard those in
the New and North Rivers as divergent populations of
walleye, and not as separate taxa, and believe that most
ichthyologists and systematists would concur. Our find-
ings thus indicate that the “blue pike” does not constitute
a separate genetic taxon from walleye, and does not merit
species or subspecies recognition.

Slight morphological variations between historic walleye
and “blue pike” samples suggest some possible population-
level differences. However, single individuals of the historic
“blue pike” and walleye cannot be identified morphologic-
ally or genetically as either “blue pike” or walleye. Their
coloration also is not a reliable identification character as
it was/is very variable among historic as well as contem-
porary walleye [44,48]. Ichthyologists from the era of the
“blue pike” reported a large numbers of intergrades in
color, as well as among all morphological traits [44,48,49].

Some fishes, including lake trout, whitefish Coregonus
spp., and Arctic char Salvelinus alpinus (Linnaeus 1758),
have been regarded as multiple morphological races that
developed through adaptation to northern proglacial
lakes [106], but possess low genetic divergence [20]. The
“blue pike” was reported to inhabit deeper waters, have
slower growth [107], and a larger eye [42,this study]
compared to walleye. Slower growth likewise character-
izes walleye in eastern Lake Erie today [108]. We find
that although “blue pike” and walleye display some slight
morphological variation, this is rather negligible, and
unaccompanied by population genetic distinction, ren-
dering its subspecies status invalid. “Blue pike” were
walleye, and fell within the normal range of walleye
population variation.

The turquoise-colored mucus walleye from McKim
Lake (site D) do not genetically differ from co-occurring
yellow walleye. Stepien and Faber [41] likewise analyzed
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several assorted turquoise mucus walleye from a variety
of Canadian Shield lakes using entire mtDNA control
region sequences and found no genetic distinction from
the normal variation of walleye. Paradis and Magnan
[109] morphologically compared sympatric yellow and
turquoise mucus walleye in five Canadian Shield lakes
near Quebec, reporting longer head lengths and smaller
interorbital distances in some of the latter. However,
early fishery biologists found that these turquoise mucus
walleye did not possess the morphological characteristics
of “blue pike” [49]. Laporte et al. [110] alleged slight
genetic difference between turquoise mucus and yellow
walleye populations sampled within a lake using amplified
fragment length polymorphism markers and assignment
tests, but lacked diagnostic alleles and their genetic dis-
tance analyses showed no significant bootstrap support. It
may be that there are some population-level variants
within some lakes across the range of the Canadian Shield;
many such distinctions among walleye spawning groups
are found in the present study and others [30,39], but
these do not warrant taxonomic recognition.

Occasional steel-blue colored walleye regularly are re-
ported from Lake Erie and other waters, including the
Ohio River drainage [44,48]. Yellow perch that are dark
blue in color also co-occur [44]. We analyzed mtDNA
control region from a steel-grey/blue walleye individual
sampled in western Lake Erie near Sandusky OH and
found it had mtDNA haplotype 1, the most common
walleye haplotype. A skin scraping revealed no turquoise
mucus. Wayne Schaeffer (pers. comm., University of
Wisconsin, September 2013) also found no turquoise
mucus or sandercyanin in Lake Erie walleye using the
methods of Yu et al. [47]. Overall, no diagnosable gen-
etic or morphological characters have been found that
distinguish historic “blue pike” from walleye, rendering
its subspecies status invalid.

Effects of climate change on walleye populations

Global temperatures are predicted to increase over the
next 50 years, with the Great Lakes region rising by 5—
5.5°C, becoming more like today’s Gulf Coast [111].
Today, Lake Erie houses the largest walleye abundance
[45] and greatest genetic diversity. Increased tempera-
tures are predicted to shift walleye distribution north-
ward [23]. Fringe populations may experience declines
and increased isolation, with bottlenecks and drift re-
ducing genetic variation, accompanied by loss of
unique haplotypes and alleles. Hence, valuable genetic
resources may disappear as unconnected populations
become sequestered.

High connectivity in Great Lakes’ watersheds allows
ample dispersal opportunities, which may homogenize
gene pools of distinctive spawning groups as they move
northward and mix, producing a Wahlund effect. Thus,
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climate change may lead to decline of divergence patterns
from today’s walleye spawning groups. Walleye likely will
remain abundant and adapt, but unique variants may be
lost. Common alleles may increase in frequency, raising
concerns for retaining adaptive potential, which should
become a management priority. It might be possible to
utilize unique warm-adapted variants to the south (e.g.,
the North River, Y) and southeast (Ohio/New Rivers,
W-X) to aid future walleye populations.

Conclusions

This study increases understanding of historic and contem-
porary walleye genetic diversity and divergence patterns via
a genetic window approach. Population patterns have been
shaped by climate change and drainage connections, with
northern ones tracing to post-glacial recolonization.
Genetic diversity and abundance of Great Lakes' walleye
appear to have rebounded after drastic habitat changes
and industrialization of the early 1900s through the
1970s. The next step is to identify adaptations that
underlie these genetic diversity and divergence patterns,
via genomics [112,113]. Such applied knowledge will aid
efforts to sustain natural populations in the face of on-
going climate change and new anthropogenic stressors.
Our goal is that the present results will aid future wall-
eye diversity and adaptedness.

Methods

Sample collection for genetic analysis

Fin clips of 1125 contemporary spawning adult walleye
were sampled at 23 spawning locations (labeled A—P, S-Y)
across the native range during the spring spawning runs
(Figure 1, Table 1, Additional file 10), avoiding sites with
documented anthropogenic introductions. Samples were
collected directly by federal, state, and provincial agencies
according to their regulations and permits, and by
Stepien’s Great Lakes Genetics/Genomics Laboratory
(University of Toledo’s Lake Erie Center, OH) under
Ohio Division of Wildlife permit #140160 (issued to
CAS). Samples were labeled, immediately placed in 95%
ethanol, and archived at the Great Lakes Genetics/
Genomics Laboratory. Genetic comparisons were made
to historic formalin-preserved museum specimens of
Lake Erie walleye (1923-49, site Q, N = 20 for mtDNA,
N =31 for psat) and historic “blue pike” paratype indi-
viduals (1923, R, N =20, 25). The latter had been iden-
tified by Hubbs [42] and are housed at University of
Michigan’s Museum of Zoology, while some of the
walleye came from Ohio State University's Museum of
Biological Diversity (see Additional file 11 for list of in-
dividuals used). We also evaluated contemporary yellow-
(N =10) versus turquoise-colored mucus (N = 10) walleye
sympatric in McKim Lake, Ontario, Canada (site D,
Figure 1).
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DNA extraction

DNA was extracted following standard protocols from
previous studies [38,53]. To circumvent contamination,
museum sample extractions were conducted in a separ-
ate clean laboratory using separate autoclaved materials.
Gloves were changed at all stages and between samples.
Pre-extraction, formalin fixed tissues and controls were
soaked in 10 mL phosphate buffered saline on an orbital
shaker for 48 hours, changing buffer after 24 hours.
Historic walleye and “blue pike” samples were extracted
at separate times, with negative (no tissue) and positive
controls (Lake Erie Maumee River walleye #AZE31); the
latter were handled after all solutions were added and
tubes were closed.

Mitochondrial DNA sequence data collection and analyses
MtDNA control region sequence data (733 bp) were
collected from a representative subset from each of the
23 contemporary walleye spawning groups (N=711,
11-25 per site; Table 1) used for the nuclear psat loci.
Methods for amplification and sequencing of the 733 bp
control region segment followed Haponski and Stepien
[53] using the primers LW1-F [78] and HN20 [114]. We
additionally sequenced formalin fixed historic Lake Erie
walleye (N = 20) and “blue pike” (N = 20). Since formalin
fixation often shears DNA into smaller fragments [101],
we designed additional internal primers to amplify the
control region in overlapping segments: LW1-F [78]
and SandercrIR (5 — CATTCATACTATTTTCTTGC - 3)),
SandercrIF (5 - AGTACATACTCTGTTACC - 3) with
HN20 [114], SandercrIF with SvicrIR2 (5 - GTGATTTC
CACTATTTATGC - 3), and SvicrIF (5 - GCAAGAAAA
TAGTATGAATG - 3) with HN20. Walleye haplotypes
were referenced to Stepien and Faber [41], who sequenced
the entire mtDNA control region (~1,086 base pairs (bp)).
These were trimmed to 733 bp, omitting the 5 repeat
section, thereby retaining seven of their 14 haplotypes
(our haplotypes 1-7 [GenBank:U90617, JX442946—52]).

Haplotype relationships were analyzed with evolution-
ary trees [50] via maximum likelihood in PhyML v3.0
[115] and Bayesian analyses in MrBayes v3.2.1 [116].
Corrected Akaike information criteria from jModeltest
v2 [117] selected the TPM3uf model [118], including
invariant sites (I =0.3910) and the gamma distribution
(a =0.2750). Trees were rooted to the sauger S. canaden-
sis (Griffith and Smith 1834), which is the sister species of
walleye [52]. A statistical parsimony haplotype network
was constructed with TCS V1.21 [54]. Analyses in com-
mon between the mtDNA and nuclear psat data sets are
below in “Population genetic data analyses”.

Nuclear microsatellite data collection and analyses
We evaluated population genetic structure among 23 con-
temporary walleye spawning groups (1125 individuals;



Haponski and Stepien BMC Evolutionary Biology 2014, 14:133
http://www.biomedcentral.com/1471-2148/14/133

Table 1, Additional file 10), adding 259 individuals and six
spawning sites to the 866 individuals and 17 locations pre-
viously analyzed for nine psat loci (Svi2, 4, 6, 7, 17, 18, 33,
L6, and L7) in our laboratory [30,38] (Additional file 11).
Data were compared with museum specimens sampled
from Lake Erie, including 31 walleye (1923-1949) and 25
“blue pike” (1923) (Additional file 11).

PCR amplifications followed previous studies [38,53],
including a positive control and a negative control. Loci
were run individually for the formalin material. Svil7
and L7 failed to amplify in historic samples and thus
were dropped, leaving seven for analyses. Allele scores
were manually verified [38,53].

Analyses followed Stepien et al. [30] and Haponski and
Stepien [53]. Conformance to HWE expectations and link-
age disequilibrium was tested in Genepop v4.0 [119] and
significance levels adjusted with sequential Bonferroni cor-
rection [120]. Loci were tested for possible selection using
Fst outlier comparisons in Lositan [56] and examined for
null alleles, scoring errors, or large allele dropout with
Micro-Checker v2.2.3 [57]. If null alleles were indicated,
their frequencies per population and locus were estimated
and potential influence on Fgr values evaluated in FreeNA
[58]. Number of alleles (N,), inbreeding (Fis), overall gen-
etic deviation (Fir), and divergences (Fst) were calculated
across loci and samples with Fstat v2.9.3.2 [121,122].

Structure v2.3.4 [61] was employed to evaluate hypoth-
eses of differentiation among population groups, for con-
temporary spawning groups from K =1 (null hypothesis of
panmixia) to K =29 (sites A—P, S-Y) and contemporary
versus historic walleye from K=1 to K= 11 (nine contem-
porary Lakes Erie (O-P) and Ontario (S-U) spawning
groups, historic walleye (Q), and “blue pike” (R)), with
250000 burn-in replicates followed by 1000000 genera-
tions. Optimal K was selected according to the Evanno
et al. [123] method. Geneclass2 [59] assigned individuals
to putative populations of origin for contemporary wall-
eye, historic walleye, and “blue pike”, using 1000000 simu-
lations. Colony v2.0.5.0 [55] was employed to test for
possible kin relationships (full siblings) in samples.

Population genetic data analyses with both data sets
Genetic diversity comparisons included haplotype diver-
sity (Hp) and number of haplotypes (Ny) for sequence
data in Arlequin v3.5.1.3 [124] and those for nuclear
psat loci were observed (Hp) and expected (Hg) hetero-
zygosities in Genepop, and Fis, N, and allelic richness
(ARr) in Fstat. Significant differences were determined
with ANOVA in R v2.15.2 [125], followed by Tukey’s
post hoc tests [126]. Convert v1.31 [127] calculated
number and proportion of private haplotypes (Npy) and
alleles (Npa), i.e., those unique to a sample.

Patterns of genetic divergence were evaluated using
unbiased Fgr estimates [128] in Fstat and pairwise exact
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tests of differentiation ()(2) [129] in Genepop. Genetic di-
vergence results were used to identify true populations
or taxa, i.e., those with significantly divergent gene pools,
to address the question of the identity of the “blue pike”
and other possibly distinctive groups. We also tested
genetic isolation by geographic distance (nearest water-
ways) in Genepop and identified genetic discontinuities
across the range with Barrier v2.2 [26]. Population rela-
tionships additionally were analyzed with neighbor-joining
trees [130] of Nei’s [131] D genetic distances in Phylip
v3.68 [132] and 2000 bootstrap pseudo-replications [133].
The tree was rooted to sauger. Hierarchical partitioning of
genetic variation was evaluated with AMOVA [60] in
Arlequin, including: (a) between historic and modern sam-
ples, (b) among drainages, and (c) between lake and river
spawners.

Morphological comparisons

Morphological and meristic data were collected and
compared between preserved historic Lake Erie walleye
(N =51 individuals) and “blue pike” samples (N =52,
including 30 paratypes; all individuals are listed in
Additional file 11). We compared nine morphometric
measurements and five meristic characters from Hubbs
and Lagler [45], using identical standard protocols
taken by a single investigator (AEH). Measurements
(to 0.1 mm) included: standard, head, cheek, upper and
lower jaw lengths, body depth, head and interorbital
widths, and orbit diameter, with Mitutoyo vernier calipers
(Aurora, IL). Measurements were taken to the bone of in-
dividual fish, to rule out influence of preservation tech-
nique. Meristic characters included: numbers of anal, first
and second dorsal, pectoral, and pelvic fin rays, with a
Leica Microsystems dissecting microscope (Buffalo Grove,
IL). We also analyzed orbit: interorbital and upper: lower
jaw ratios, reported by Trautman [44] to vary between
walleye and “blue pike”.

Morphometric measurements first were standardized by
removing size-dependent variation per Elliott et al. [134],
and then log-transformed. Meristic data were not trans-
formed; therefore morphometric and meristic data sets
were analyzed separately, encompassing univariate and
multivariate analyses in R. Each character was evaluated
for departure from univariate normality with Shapiro-
Francia tests [135]. Standard length, body depth, and orbit:
interorbital ratio were the sole normally distributed char-
acters. Their means were compared with Student’s #-tests,
whereas Mann—Whitney U tests evaluated those that were
not normally-distributed [126]. Nonparametric MANOVA
[136] compared the overall difference between historic
walleye and “blue pike”. Their overall morphological vari-
ation also was explored with PCA, using the covariance
matrix. MANOVA and Wilks' lambda [126] tests evalu-
ated among PCs, followed by individual ANOVAs.
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DFA [137] compared historic walleye and “blue pike”
in SAS v9.2 (SAS Institute Inc., Cary, NC). y* evaluated
use of linear or quadratic DFA for significant covariance
matrix heterogeneity, rejecting linear DFA (morphometric:
x> =103.216, df=45, p<0.001; meristic: x*=32.253,
df =15, p =0.006). Thus, quadratic DFA was used, which
based each character on its own variance-covariance
matrix, with leave-one-out jackknife re-sampling examin-
ing taxon assignment [138].

Data set availability

The data sets supporting the results of this article are avail-
able in the Dryad digital repository [http://doi.org/10.5061/
dryad.nk470] [139] and GenBank:U90617, JX442946-56,
KC819843-54, and KF954732-35.

Additional files

Additional file 1: Phylogenetic tree of contemporary and historic
walleye mtDNA control region haplotypes. Above branches =
Bayesian posterior probabilities (pp) and Maximum likelihood bootstrap
pseudoreplications. Nodes with 20.50 pp and 250% bootstrap support
are reported. * = haplotypes found in historic walleye and “blue pike”
samples; the latter had no unique haplotypes. All “blue pike” individuals
had haplotype 3, which is one of the most common walleye haplotypes.

Additional file 2: MtDNA control region haplotype frequencies for
population samples, including 23 contemporary walleye spawning
groups, historic Lake Erie walleye, and “blue pike”.

Additional file 3: Summarized genetic variation per microsatellite
locus for population samples, including 23 contemporary walleye
spawning groups, historic walleye, and “blue pike” samples,
totaling 1181 individuals. Table shows PCR annealing temperature (T),
number of alleles (N,), allelic size range (base pairs, bp), genetic deviation
across all combined samples (Fir), mean genetic divergence among loci
(Fsy), inbreeding coefficient (Fs, average divergence within a spawning
group), and neutrality test from the program Lositan [56].

Additional file 4: Allelic sizes and distribution for seven nuclear
psat loci among samples, including: contemporary walleye from
Lakes Erie (the western and eastern basins) and Ontario, historic
Lake Erie walleye, and the “blue pike”. Site labels (letters) match those
in Table 1.

Additional file 5: Genetic isolation by geographic distance
comparison among 23 contemporary spawning groups of walleye.
A mtDNA control region (y = 0.64x-367, R*=0.10, p < 0.001) and B seven
nuclear psat loci (y = 0.06x-0.29, R>=0.23, p = 0.005). Results from the
seven loci are identical to those for nine loci (data not shown; see
Stepien et al. [30]). Letters correspond to spawning group labels from
Table 1.

Additional file 6: Pairwise exact tests of genetic differentiation
among population samples (lettered) for control region sequence
data (below diagonal) and seven nuclear psat loci (above diagonal).
Results are congruent to Fsy comparisons and those from the seven
nuclear psat loci data are identical to values calculated based on nine
loci (data not shown; also see Stepien et al. [30]), with difference at just
the thousandth decimal place. Inf. = Infinite value denoted by Genepop
[119], bold = significant following sequential Bonferroni corrections,

italics = significant at a = 0.05, and normal text = not significant.

Additional file 7: Geneclass2 [59] assignments among
contemporary walleye spawning groups. Values = percentage
assignment, parentheses = number of individuals assigning to that group,
bold = self-assignment, and italics = greatest assignment. Numbers in
parentheses next to spawning group denote sample size.
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Additional file 8: Graph of K vs. AK based on Evanno et al. [123],
showing the optimal K A contemporary walleye spawning groups
and B contemporary Lakes Erie and Ontario and historic Lake Erie
walleye (with “blue pike”).

Additional file 9: Population genetic distance neighbor joining tree
for contemporary walleye Sander vitreus vitreus spawning groups,
historic walleye, and “blue pike” S. v. “glaucus” in relation to sauger
S. canadensis. Tree is based on combined frequencies of mtDNA control
region haplotypes and alleles from the seven nuclear psat loci.

Additional file 10: Latitude (Lat.) and longitude (Long.) for each
contemporary walleye spawning group used in analyses. Letters
correspond to locations from Figure 1 and Table 1.

Additional file 11: Materials examined, including A museum
specimens and B additional contemporary specimens that
augmented prior work reported by Stepien et al. (2009, 2010,
2012). Institutional abbreviations follow Leviton et al. [140]. Sample
information is listed as follows: museum — lot number, number of
samples, size range (SL, mm), locality, sampling date, and collector.
Individuals that also were analyzed with molecular data are listed in the
“Molecular Samples” section with their respective lot numbers and
GenBank accession numbers. Individuals analyzed solely for molecular
data are listed under “Molecular Samples” with lot number, number of
samples, locality, sampling date, collector, and GenBank accession
number.
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