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Abstract

Background: Salinity plays an important role in shaping coastal marine communities. Near-future climate
predictions indicate that salinity will decrease in many shallow coastal areas due to increased precipitation;
however, few studies have addressed this issue. The ability of ecosystems to cope with future changes will depend
on species’ capacities to acclimatise or adapt to new environmental conditions. Here, we investigated the effects of
a strong salinity gradient (the Baltic Sea system – Baltic, Kattegat, Skagerrak) on plasticity and adaptations in the
euryhaline barnacle Balanus improvisus. We used a common-garden approach, where multiple batches of newly
settled barnacles from each of three different geographical areas along the Skagerrak-Baltic salinity gradient were
exposed to corresponding native salinities (6, 15 and 30 PSU), and phenotypic traits including mortality, growth,
shell strength, condition index and reproductive maturity were recorded.

Results: We found that B. improvisus was highly euryhaline, but had highest growth and reproductive maturity at
intermediate salinities. We also found that low salinity had negative effects on other fitness-related traits including
initial growth and shell strength, although mortality was also lowest in low salinity. Overall, differences between
populations in most measured traits were weak, indicating little local adaptation to salinity. Nonetheless, we
observed some population-specific responses – notably that populations from high salinity grew stronger shells in
their native salinity compared to the other populations, possibly indicating adaptation to differences in local
predation pressure.

Conclusions: Our study shows that B. improvisus is an example of a true brackish-water species, and that plastic
responses are more likely than evolutionary tracking in coping with future changes in coastal salinity.

Keywords: Evolutionary change, Phenotypic plasticity, Baltic Sea, Crustacea, Common-garden experiment, Balanus
(Amphibalanus) improvisus, Gompertz growth model
Background
Future climate-driven changes in the marine environ-
ment are projected to include decreased salinity in many
coastal areas due to increased precipitation and enhanced
freshwater run-off [1-3]. Most climate change research to
date has focused on effects of increasing temperatures and
ocean acidification, rather than salinity [4-6]. Salinity plays
an important role in shaping the distribution of marine
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species and future alterations in salinity may pose major
ecological challenges to organisms inhabiting coastal areas
[7]. Changes in salinity are known to have direct or indir-
ect effects on survival, metabolism, growth, reproduction,
and/or osmotic balance in aquatic organisms [8-12]. Fu-
ture salinity shifts in coastal areas may therefore impose
strong selection on species inhabiting these areas, lead-
ing to changes in species composition and the evolution
of new adaptations. Understanding how marine organ-
isms respond to environmental changes and how rapidly
new adaptations can evolve is key for predicting how
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ecosystems will respond to global environmental change
in the future.
In the Baltic Sea, salinity forms a strong environmental

gradient that determines the composition and distribution
of species [13,14]. It is one of the world’s largest semi-
enclosed brackish seas and reached its present brackish
state about 8000 years ago [15,16]. Since then, the Baltic
Sea has been colonised by organisms from both freshwater
and marine environments [16,17]. The sea surface salinity
along this gradient ranges from < 3 PSU (practical salinity
units) in the northern Bothnian Bay (Figure 1) to approxi-
mately 30 PSU at the border to the North Sea [13]. Lim-
ited water exchange with surrounding seas and almost no
tidal flow make salinity conditions in the Baltic Sea rela-
tively stable compared to many other coastal areas [18,19].
Species diversity and within-species genetic diversity are
markedly lower inside the brackish Baltic Sea compared to
adjacent areas, which to a large extent is attributed to
these marginal environmental conditions creating specific
selection pressures and promoting the evolution of local
adaptations [20-22]. Recent modelling of future climate
Figure 1 Map of the study area. The Skagerrak-Baltic Sea region is chara
were collected (shown as stars) include: Stockholm (59.286 E; 18.708 N), Kie
scenarios in the Baltic Sea indicates that increased precipi-
tation will lead to reduced salinity [3,23], which could po-
tentially result in dramatic shifts in species’ distributions.
Such shifts would also likely influence ecological interac-
tions and ecosystem functions.
Organisms can respond to changes in salinity through

plastic responses involving molecular (e.g. gene expres-
sion), physiological, morphological, behavioural or life his-
tory trait changes, without genotypic changes occurring
through selection [24]. Here, we mainly consider pheno-
type plasticity in the context of “phenotypic buffering”, i.e.
a plasticity that maintains a functional phenotype despite
external disturbances [25]. From an evolutionary perspec-
tive, it has been suggested that phenotypic plasticity can
act as a buffer against selection that may delay or even
preclude the evolution of local adaptations. However, it
can also be considered a source of novel opportunities
upon which selection can act, e.g. by facilitating the transi-
tion to new fitness levels while maintaining a large popula-
tion size [26-28]. In either case, phenotypic plasticity is
likely to play an important role in the ability of species to
cterized by a strong salinity gradient. The sites where the barnacles
l fjord (54.327 E; 10.185 N) and Tjärnö (58.881E; 11.134 N).
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tolerate future environmental changes [29]. Being highly
plastic is often assumed to involve a cost, which would ex-
plain why plasticity is not universal [30,31]. Consequently,
it has been suggested that in more stable environments,
where (costly) high plasticity is not required, adaptations
to a narrower range of environmental conditions may be
selected for, resulting in a loss of phenotypic plasticity
[32-34]. Adaptation, in contrast to phenotypic plasticity,
always involves a genetic change, resulting from selection
acting on fitness-related phenotypic traits. Although there
is mounting evidence that local adaptation may be com-
mon in the marine environment, there are few studies
on the relative role of evolutionary responses versus
plasticity to changing salinity in marine invertebrates
[35], but see [36].
Barnacles (Crustacea; Cirripeda) generally display high

tolerance to fluctuating environments. They make up an
important component of intertidal and estuarine com-
munities, where they are frequently exposed to variation
in salinity, as well as fluctuating temperature and desic-
cation [37]. The bay barnacle Balanus (Amphibalanus)
improvisus [38] is the only barnacle species recorded
from the Baltic Sea, but it is also found in other coastal
areas and estuaries worldwide [39]. B. improvisus is be-
lieved to originate from the eastern North America and
was first recorded in the Baltic Sea in the mid 1800’s
[40]. Compared to most other barnacle species, B. impro-
visus can tolerate a very wide range of salinities, from <1
to 35 PSU, however, salinities below 3 PSU have been re-
ported to have long-term negative impacts on fitness
[41-43]. The molecular and cellular mechanisms behind
this broad salinity tolerance are poorly known, although it
has been proposed that B. improvisus can alternate be-
tween being a passive osmoconformer in high salinities
(>15 PSU) and actively osmoregulate in salinities below 15
PSU [41]. It was recently shown that alternatively spliced
variants of Na+/K+ ATPases were differentially expressed
in response to reduced salinity giving further support for
plasticity through active osmoregulation [44].
If there is indeed a cost to the euryhalinity (maintaining

high physiological plasticity in relation to salinity) of B.
improvisus, then this capacity may be reduced, or even
lost, in populations living in a stable and low salinity en-
vironment such as the Baltic Sea. Previous studies com-
paring the effects of salinity in different barnacle species
found that B. improvisus had a broad tolerance and fed ac-
tively in most salinity conditions, and that the response
depended on previous salinity history [45]. More specific-
ally, B. improvisus from the Baltic Sea showed highest ac-
tivity in low salinities (6 PSU), compared to populations of
B. improvisus from England (higher salinities), potentially
indicating local adaptation to the Baltic environment [45].
This may indicate that rapid evolution had occurred in
Baltic Sea populations of B. improvisus over a timescale of
a few hundred years after colonisation. However, the study
by Davenport [45] only tested short-term exposures to dif-
ferent salinities without appropriate acclimation of barna-
cles collected from the field, which limits the ability to
draw conclusions about the degree of local adaptation. By
performing long-term controlled experiments, starting
from early post-settlement and following barnacles until
sexual maturity, we can better understand how salinity af-
fects a wide range of phenotypic traits and reveal which
traits may be more exposed to selection in different salin-
ity conditions, potentially resulting in local adaptations.
Here, we investigated whether the broad distribution of

B. improvisus along the strong salinity gradient of the
Baltic Sea can be explained by physiological plasticity or if
local adaptations to various salinity regimes have evolved
in populations along the gradient. We used a common-
garden experiment in which multiple barnacle populations
sampled along the salinity gradient were grown from im-
mediate post-settlement to reproductive maturity under
different salinity treatments. We measured several fitness-
related traits including growth, mortality, shell strength
and reproductive maturity.

Methods
Sampling of brood stock barnacles and larval culture
Several hundred adult barnacles (Balanus (Amphibala-
nus) improvisus) were collected on settling panels from
three different populations in: i) the Stockholm archipel-
ago, Baltic Sea (Sweden, 4-6 PSU [19]; 59.286 E; 18.708 N),
ii) the Kiel Fjord, Baltic Sea (Germany, 14-17 PSU [46];
54.327 E; 10.185 N) and iii) Tjärnö, Swedish west coast
(Sweden, 22-30 PSU [47]; 58.881E; 11.134 N) during July
to August 2011 (Figure 1). Settled barnacles were trans-
ported to the laboratory at Tjärnö (Sven Lovén Centre for
Marine Sciences) and kept in large re-circulating systems
at their native mean salinities (6, 15 and 30 PSU) and at
a constant temperature of 19°C. Adult barnacles were
fed daily with newly hatched Artemia sp. ad libitum. As
in other barnacle species, B. improvisus produces free-
swimming larvae (six nauplius stages followed by a non-
feeding cyprid stage) with pelagic dispersal for up to
several weeks before they settle on hard substrates and
metamorphose into the adult stage [48]. Nauplius larvae
were obtained through natural spawning of the adults in a
modified laboratory culture system described previously
[49]. Nauplii were cultured (at maximum 500 nauplii L−1)
until the cyprid stage in their native salinities, which were
created by mixing filtered seawater (0.2 μm) with filtered
tap water (0.2 μm) and fed with a mixture of the microal-
gae Thalassiosira pseudonana and Skeletonema marinoi
(at a ratio of 40:60, respectively, and in ad libitum). These
microalgae were also cultured at different salinities (10
PSU, 15 PSU and 30 PSU) in order to reduce osmotic dis-
turbances when transferring algae to the larval cultures.
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We took into account the possible natural variability be-
tween larval batches by collecting larvae from the adult
barnacle cultures (consisting of several hundred individ-
uals each) on four different occasions during two weeks
in September-October 2011, representing four replicate
batches of larvae (presumably with different parents,
and thus different genotypes). Larval batches were used
as level of replication for each population, since natural
variability in larval performance between batches has been
observed previously [50]. Cyprid larvae from each batch
were settled on acrylic plastic (Plexiglas) panels and were
transferred to the experimental system (see below) after
eight days, leaving enough time for the larvae to attach
and metamorphose before the start of the experiment.

Experimental setup
The experiment involved three salinity treatments (6, 15
and 30 PSU), corresponding to the native mean salinities
for the three barnacle populations studied (Stockholm,
Kiel and Tjärnö, respectively). From each of the four
batches obtained per population, two panels with newly
settled barnacles (eight days old) were placed in separate
aquaria in each of the three salinity treatments, resulting
in a split-plot design [51]. Three large independent re-
circulating systems (370 l each) were used, each consisting
of 24 aquaria (6 l each). The flow through each aquarium
was 20-25 l/h. Each system had a biological filter (Fluval
filter 405) with coral rubble, activated charcoal and nitrify-
ing bacteria added to maintain water quality and avoid
build-up of nitrogenous waste products. In addition, water
in each system was completely replaced every two weeks,
at which time the culture systems were cleaned, drained
and treatment combinations were moved to a new system
within the same room to avoid confounding the effects of
salinity with effects of aquarium location within the room.
The experiment was maintained at 20°C and a light re-
gime of 14:10 h (L:D). The different salinities were ob-
tained by mixing filtered deep saltwater (0.2 μm) from the
Kosterfjord (30-34 PSU, total alkalinity, AT, of 2186-
2290 μmol l−1) with filtered tap water (AT of 369 μmol
l−1). Water quality variables including temperature, salin-
ity, AT, NH3 and NH4 were monitored routinely during
the experiment (Additional file 1: Table S1). Salinity was
adjusted by adding freshwater whenever needed. Barnacles
were fed a mixture of microalgae (Skeletonema marinoi
and Chaetoceros calcitrans) at ~ 20,000 cells ml−1 and
30,000 cells ml−1, respectively. Algal cell concentrations
were checked regularly using a Multisizer™ 3 Coulter
Counter (Beckman Coulter) and levels were adjusted to
maintain stable concentrations ad libitum throughout
the experiment. The algal cell concentration in the sys-
tems never reached below 5,000 cells ml−1. Chlorophyll
content of the algal cultures and experimental systems
were also checked for possible degradation of food quality,
assessed by a spectrophotometric trichromatic method
[52], which showed no signs of degradation. After four
weeks, the barnacle diet was complemented with newly
hatched Artemia (ca. 3,000 Artemia per aquarium) added
every second day. Barnacles were cultured in the experi-
mental systems for a total of nine weeks.

Growth modelling and condition index
Barnacle growth was recorded photographically every
two weeks, (Olympus E5 DSLR, 50 mm F1.8 Macro lens).
To avoid overcrowding, excess barnacles were removed
from panels during the first two weeks, and subsequently
whenever barnacles came in contact with each other. At
the end of the experiment 5 - 96 barnacles remained on
each panel (mean 43 ± 15 (SD)). The different barnacle
densities were evenly distributed between populations and
salinity treatments. Digital images were converted to bin-
ary files using ImageJ (version 1.43). An image analysis
script in MATLAB (R2012a) was developed to track and
measure maximum basal plate diameter (rostro-carinal)
for each barnacle at four time points (after 2, 4, 6, and
9 weeks). Only barnacles that remained alive at the end of
the experiment were included in the analysis. Two differ-
ent growth models were fitted to the size data for each in-
dividual barnacle. The first model was the von Bertalanffy
growth equation [53]:

Y tð Þ ¼ Smax 1−be−kt
� � ð1Þ

where Y(t) is the shell diameter at time t, Smax is the
asymptote of the curve, b is the lag phase (initial growth),
and k is the growth rate. The second model was the Gom-
pertz growth equation [54]:

Y tð Þ ¼ aebe
ct ð2Þ

where Y(t) is the shell diameter at time t, a is the max-
imum shell diameter (asymptote), b is the lag phase or
early growth phase and c is the maximum growth rate
(how quickly the individual reaches the asymptote; note
b and c are negative numbers) (Figure 2). The von
Bertalanffy growth model is widely used, especially in
fisheries studies, but it has also earlier been fitted to
barnacle growth data [55]. The Gompertz growth model
is commonly used to describe growth in fish [56], but
has also been used in studies on marine invertebrates
[57]. The von Bertalanffy model assumes that growth
rate declines over time, whereas the Gompertz model
includes assumptions of slower growth in the beginning
and at the end of the growth phase (sigmoid curve). It
has been suggested that a sigmoid curve (such as the
Gompertz model) is more applicable to data for larval
and early juvenile stages [58]. Since barnacle larvae go
through a metamorphosis to become adults, including the
formation of a calcareous shell, this could potentially



Figure 2 Illustration of the Gompertz growth model. The Gompertz growth model is a sigmoid function described by three parameters; a
(asymptote), b (lag phase) and c (maximal growth rate). Model parameters for each replicate panel with barnacles, were obtained by first fitting a
model (thin lines) to shell diameter data (circles) for each barnacle on a panel (measurements at four different times) and then calculating an
average model from these fittings for each replicate panel (thick line).
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result in reduced initial growth rate. We fitted both
growth models to our data and compared them using the
coefficient of determination, R2, and root mean square
error (rmse). We found no statistically significant differ-
ence in fit between the two models (t = 0.23, df = 90, P =
0.82) based on rmse, although the Gompertz growth equa-
tion provided a better fit than von Bertalanffy in a majority
of cases (47/68). We therefore used Gompertz curves in
all further growth analysis. Estimates of the three Gom-
pertz model parameters were obtained for each individual
barnacle (Figure 2) and the mean value for all barnacles
on each replicate panel was used in subsequent statistical
analysis. Dry weight (DW) of barnacles from each batch
and treatment combination was determined for 20 hap-
hazardly selected individuals from each panel. Samples
were dried (80°C, 48 h) and weighed to the nearest
0.0001 g (Sartorius CP analytical balance). Dried sam-
ples were then burned (20 h, 500°C) and the remaining
inorganic material was weighed (ash weight, AW), and
ash-free dry weight (AFDW) calculated. We calculated a
condition index (CI) defined as the body-mass to shell-
mass ratio (AFDW/AW). This measure has previously
been used to evaluate physiological stress under envir-
onmental changes in invertebrates, e.g. [59,60]. Results
are presented as norms of reaction, a common way to de-
scribe the relation between the genetic background (differ-
ent populations) and the phenotypic responses (growth
parameters) across a range of environments, e.g. different
salinities [61].
Shell strength
To investigate whether salinity affected shell strength,
the strength of 20 haphazardly chosen barnacles on each
panel was determined using a TAXT2i Texture Analyzer
(Stable Micro Systems, 25-1 measuring cell). The pres-
sure (compressive force) required to break the barnacle
shell from above (“breaking stress”) was determined ac-
cording to [59]. Maximum “breaking stress” was measured
using a cylinder of 2 mm diameter pushing onto the ros-
tral plate with a speed of 1.0 mm s−1. Measured shell
strength (in MPa) was further normalised by dividing by
the maximum shell diameter of each individual barnacle.

Reproductive maturity
Twenty barnacles from each batch were inspected under
a dissection microscope to determine their state of repro-
ductive maturity. Gonad maturity and reproductive status
could easily be determined since B. improvisus broods its
offspring for up to several weeks before releasing them
into the water column. The proportion of individuals with
well-developed gonads (ovaries and/or testes – B. improvi-
sus is an hermaphrodite) or fertilized eggs was recorded at
the end of the experiment.

Mortality
Mortality was estimated by comparing the number of liv-
ing barnacles on each panel after two weeks with the
number alive after nine weeks. Mortality estimates for the
first two weeks of the experiment could not be obtained
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due to missing data (missing photographs), although no
major mortality events were observed during this period.
Mortality estimates were corrected for removal (culling)
of barnacles during the experiment.
Statistical analyses
General and generalized linear models (“aov” and “glm”
respectively in R) were fitted using R-Studio (version
096.331) and SPSS (version 21). Effects of salinity and
population origin on growth, shell strength, DW, AW,
AFDW, CI and mortality were tested using a 2-factor
ANOVA, with ‘salinity’ and ‘population’ as fixed factors.
Batch was used as the level of replication in all analyses.
For all the response variables we evaluated the main ef-
fects of salinity, population, and their interaction (an indi-
cator of local adaptation). Significant interactions between
salinity and population would indicate that populations re-
spond differently to different salinity environments, which
could be a result of local adaptations to a specific salinity
regime. Assumptions of normality and homogeneity of
variances were checked using Q/Q-plots, box plots and
Levene’s test. AW was log-transformed and per cent mor-
tality was arcsin-transformed prior to analysis. Tukey’s
HSD test was used post-hoc to further resolve significant
differences between means. Due to high frequencies of
zero count data, fecundity (measured as the proportion
of barnacles with fertilized eggs or mature gonads) was
analysed using generalized linear models (with a Poisson
distribution in R) with salinity and population as the
main factors in the models. Significance of these factors
was evaluated using log likelihood tests of full versus re-
duced models.
To test the effects of salinity and population on the

overall fitness of barnacles (based on all phenotypic traits
measured in this study), PERMANOVA (two-factorial, or-
thogonal permutational MANOVA) was applied, using
Euclidian distance matrices with 9999 permutations. We
also ran PERMANOVA pair-wise post-hoc tests for mul-
tiple comparisons. Possible trade-offs between individual
phenotypic traits in different salinities were visualized and
evaluated using a canonical analysis of principal coordi-
nates (CAP) [62,63]. This type of analysis differs from un-
constrained ordinations (e.g. MDS and PCA), because it
identifies axes that maximize differences among groups
rather than maximizing the variance explained, and thus
allows a clearer focus on explicit hypotheses about e.g. sal-
inity effects [63,64].
Ethics statement
This work has been conducted according to relevant na-
tional and international guidelines for ethics and animal
welfare, which do not include any specific requirement
for barnacles.
Results
For all the response variables we investigated the effects
of salinity and population, as well as their interaction
(an indicator of local adaptation). None of the interac-
tions were statistically significant, with the exception of
shell strength (see below) (Additional file 1: Table S3, S4
and S5).

Growth
Salinity had a small but statistically significant effect on
the size of barnacles (maximum shell diameter, as de-
scribed by parameter a in the growth model; Figure 2)
from all three tested populations (F = 3.362, P = 0.0497;
Additional file 1: Table S3 and Figure 3a). Barnacles
growing in 15 PSU had on average 8% larger shells than
those in 30 PSU (Tukey’s HSD: P = 0.039), but were not
significantly different from those in 6 PSU (Tukey’s
HSD: P = 0.360; Figure 3a). The length of the early lag
phase in growth (parameter b in growth model; Figure 2)
was clearly influenced by salinity, where the start of
growth of barnacles in 6 PSU was significantly delayed
compared to the two higher salinities (15 and 30 PSU; F =
16.554, P < 0.001; Additional file 1: Table S3 and Figure 3b).
There were no significant differences in maximum growth
rate (parameter c; Figure 2) between salinities or between
populations (Additional file 1: Table S3 and Figure 3c). Al-
though sample sizes were small (n = 4 panels), the fitting
of growth curves was good with average r2 = 0.994 ± 0.001
(SE) (Figure 2). The advantage of fitting a growth model
described by several parameters, instead of simply analys-
ing one endpoint, is that it provides a more detailed un-
derstanding of how salinity affects complex and dynamic
growth patterns.
Ash weight (AW) was significantly influenced by salinity

(F = 6.463, P < 0.005; Additional file 1: Table S4), where
barnacles in 6 PSU had lower AW after 9 weeks, com-
pared to barnacles in the higher salinities (15 and 30 PSU;
Figure 4a). We found no statistically significant difference
in AW between populations, although in 30 PSU barna-
cles from the Stockholm population had lower AW than
the other populations (Tjärnö and Kiel; Figure 4a). AFDW
did not differ significantly between salinities or popula-
tions (Additional file 1: Table S4 and Figure 4b).

Condition index and shell strength
The highest body-mass to shell-mass ratio (CI) was found
in barnacles in low salinity (6 PSU), and CI decreased with
increasing salinity (F = 8.658, P = 0.001; Additional file 1:
Table S4 and Figure 4c). There were no differences in CI
between populations (Additional file 1: Table S4). Further-
more, low salinity (6 PSU) resulted in weaker shells com-
pared to higher salinities (15 and 30 PSU; F = 8.432, P =
0.001; Additional file 1: Table S4 and Figure 5). Import-
antly, however, there was a significant interaction between



Figure 3 Effects of salinity on growth. Effects of salinity on
growth in barnacles from three different populations (Stockholm,
Kiel and Tjärnö), described by the growth model parameters
(a, b and c, labelled respectively) obtained from the Gompertz
growth model fitted to barnacle shell diameter data (± standard
error (SE), n = 4). Parameter a estimates the maximum shell diameter
of the barnacles, b estimates the lag phase during early growth and
c estimates the maximal growth rate, i.e. how rapidly barnacles
approach the asymptote.
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the effects of salinity and population on shell strength
(F = 2.876, P = 0.042; Additional file 1: Table S4 and
Figure 5). Barnacles from the high salinity environment
(Tjärnö) had stronger shells in their native salinity (30
PSU) compared to the other two populations (Tukey’s
HSD: P = 0.042; Figure 5). This positive relationship be-
tween shell strength and native salinity was not observed
for the Kiel and Stockholm populations (Figure 5).
Reproductive maturity
Barnacles with mature gonads were observed in all three
salinity treatments and in all three populations, but not
in all combinations (Figure 6). Mature gonads were mostly
observed in barnacles growing at intermediate and high
salinities (15 and 30 PSU; Figure 6a). Barnacles brooding
fertilized eggs, however, were only observed in the two
lower salinities (6 and 15 PSU; Figure 6b). Generalized lin-
ear modelling revealed that mainly salinity but also to
some extent population (but not their interaction) signifi-
cantly influenced reproductive status (presence of fertil-
ized eggs or mature gonads) (Additional file 1: Table S2).
The analyses showed that the number of barnacles with
fertilized eggs was best explained by a model including
only salinity (P < 0.0001; Additional file 1: Table S2). This
result was strongly driven by the absence of individuals
with fertilized eggs in 30 PSU, (Figure 6b). For barnacles
with mature gonads, but not carrying fertilized eggs, a
model containing salinity and population gave the best fit
(P < 0.003; Additional file 1: Table S2). For all populations,
the greatest numbers of barnacles with mature gonads
were observed in 30 PSU, followed by 15 PSU and 6 PSU.
Barnacles from Kiel generally had the highest proportion
of individuals with mature gonads in all salinities.
Mortality
Mortality was low in all treatments and populations,
ranging from 2 to 15% (Figure 7). Mortality was signifi-
cantly higher in 30 PSU than in 6 PSU (F = 5.597, P =
0.013; Additional file 1: Table S4), however, we detected
no population-specific differences in mortality (Additional
file 1: Table S4).



Figure 4 Effects of salinity on ash weight, ash-free dry weight
and condition index. Effects of salinity on a) ash weight, b)
ash-free dry weight, c) condition index (ratio between ash-free dry
weight and dry weight) in barnacles from three different populations
(Stockholm, Kiel and Tjärnö) that were grown in different salinity
treatments (mean ± SE, n = 4).
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Trade-offs between phenotypic traits in response to
salinity
The CAP analysis that we used to explore effects of sal-
inity and population on trade-offs between phenotypic
traits revealed differences between salinity treatments,
but not among populations (Figure 8). The first and the
most important axis (δ2 = 68.1) separated the barnacles
into three groups, based on salinity. This analysis con-
firmed that the traits that contributed most to this pattern
were related mainly to shell strength and reproduction, al-
though these were not 180 degrees opposed to each other
as would be expected if the trade-off was complete. In
high salinity (30 PSU), barnacles generally had stronger
shells but delayed reproduction, whereas in low salinity (6
PSU), barnacles had weaker shells, but more fertilized
eggs. In contrast, maximum size of barnacles (parameter a
in the growth model) and AFDW did not contribute to
the observed effects of salinity.

Discussion
Our study shows that B. improvisus can tolerate a broad
range of salinities and thus displays high phenotypic
Figure 5 Effects of salinity on shell strength. Effects of salinity on
shell strength in barnacles from different populations (Stockholm,
Kiel and Tjärnö) that were grown in different salinity treatments
(mean ± SE, n = 4). Shell strength was standardised by dividing the
force required to break the shell (in MPa) by the maximum shell
diameter of each barnacles.



Figure 6 Effects of salinity on reproduction. Effects of salinity on
reproduction in barnacles from three different populations
(Stockholm, Kiel and Tjärnö). a) Percentage of barnacles with mature,
but not yet fertilized, eggs (mean ± SE, n = 4); b) Percentage of
barnacles with fertilized eggs (mean ± SE, n = 4).

Figure 7 Effects of salinity on mortality. Effects of salinity on
mortality (week 2 to week 9) in barnacles from three different
populations (Stockholm, Kiel and Tjärnö) that were grown in
different salinity treatments (mean ± SE; n = 2–4).

Figure 8 Trade-offs between phenotypic traits in response to
salinity. Bi-plot from canonical analysis of principal coordinates
(CAP) on barnacles from three populations, exposed to different
salinity treatments (grouped by salinity). The first canonical axis
explained 68% of the variation whereas the second axis only
explained 15%. Vectors (lines) indicate the influence of different
phenotypic traits in explaining the differences in responses between
salinities (correlations are scaled by multiplying the original value by
0.5 to fit plot size). The phenotypic traits included are: Gomp_a,
Gomp_b, Gomp_c (Gompertz growth parameters; see methods), AW
(=ash weight), DW (=dry weight), AFDW (=ash-free dry weight), CI
(=condition index), shell strength, % Mature and % Fertilized
(=proportion of barnacles with mature gonads vs. fertilized eggs).
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plasticity throughout its post-settlement life. Nonetheless,
long-term exposure to different salinities had significant
effects on fitness-related phenotypic traits such as shell-
strength and fecundity. We also found evidence for a
possible trade-off between traits (e.g. shell strength and
reproduction), which may have important consequences
in coping with changing environmental conditions. Over-
all responses to different salinities were similar in all pop-
ulations, although differences in shell strength between
populations in high salinity indicate possible local adapta-
tion related to differences in natural predation pressure
between the Baltic Sea and North Sea.
The broad salinity tolerance of B. improvisus was first

observed by Darwin who found the species living in almost
freshwater conditions in the La Plata River (Uruguay)
during his voyage with the Beagle in 1831 [38]. Since then,
several studies have documented the euryhaline abilities of
B. improvisus [41,43,45,65]. Few other barnacle species
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show similar tolerance to low salinities [66,67], however
most studies have investigated effects of short-term expos-
ure, focusing on behavioural responses in adults, e.g. [45]
or larval development, e.g. [42]. Few studies have investi-
gated long-term effects of salinity on the post-larval life
stages of barnacles [11,68]. Our study therefore contributes
important new knowledge about long-term fitness-
related effects of salinity exposure during the juvenile
post-settlement stage until reproductive maturity.
Despite better performance in low and intermediate

salinities in terms of e.g. maximum size and survival
(Figures 3a and 7), our experiments revealed that long-
term exposure to low salinity had negative effects on
other fitness-related traits in B. improvisus. Growth dur-
ing the first weeks after metamorphosis is recognized as
a vital phase of a barnacle’s life [69], and therefore our
observation of delayed onset of growth in barnacles at 6
PSU (Figure 3b) may have important consequences. Tur-
payeva and Simkina [43] observed a similar delay in early
growth in response to low salinity in B. improvisus. Fitness
advantages of rapid initiation of growth include improved
competition for space [70], increased tolerance to fluctuat-
ing environmental stressors [71,72] as well as size-based
predator avoidance [73]. Reduced growth under environ-
mental stress has been shown in other marine species
[74,75]. The delay in early growth that we observed in 6
PSU may be due to altered physiology (e.g. increased
osmoregulatory needs), resulting in re-allocation of energy
[41] and/or increased shell production costs in low salin-
ities due to low CaCO3 content in the water [76].
Salinity had a clear effect on reproduction in all popu-

lations with the highest reproductive activity (sum of in-
dividuals with fertilized eggs and/or mature gonads) in
15 PSU. Although mature gonads were found in barna-
cles in 30 PSU, no individuals with fertilized eggs were
observed even after nine weeks of study, indicating that
reproduction may be delayed in high salinity. This may
be a result of more energy initially being invested in shell
production in high salinities, revealing a trade-off between
two important fitness-related traits: reproduction and de-
fence against predators by producing hard shells (i.e. sur-
vival). A similar trade-off between shell morphology and
reproduction has also been reported by [77] for the bar-
nacle Chthamalus anisopoma. Alternatively, it is possible
that reproduction is delayed or disrupted in high salinities,
i.e. not representing an adaptive trade-off per se, but rather
the result of physiological dysfunction. In either case,
delaying reproduction will result in fewer broods per year,
and thereby affect recruitment dynamics [78,79], however
the importance of this delay may be overwhelmed by the
effects of season on reproductive activity. Studies on other
barnacle species have suggested that exposure to low sa-
linities markedly reduces the reproductive output [80,81].
This does not seem to be the case for B. improvisus,
providing further support for the conclusion that B.
improvisus is a truly brackish species.
The calcareous outer shell of a barnacle offers protec-

tion against predation but also aids in regulating expos-
ure to extreme conditions such as desiccation or salinity
changes [82,83]. The reduction in shell strength we ob-
served at low salinities (Figure 5 and Additional file 1:
Table S4) was most likely caused by limited amounts of
dissolved CaCO3 at low salinity [84,85]. Reduced shell
strength and ash weight in response to low salinity has also
been found in other invertebrate species, including mussels
(Mytilus edulis) and oysters [86,87]. Extreme high salinities
(>40 PSU) were also found to reduce shell strength of B.
amphitrite [55], indicating that shell strength may not only
be limited by available CaCO3 in the water, but may also
be associated with other physiological stress in response to
changes in salinity.
Interestingly, we found that barnacles from the highest

salinity environment (Tjärnö) built stronger shells in 30
PSU compared to the other two populations (Figure 5
and Additional file 1: Table S4). The absence of many of
B. improvisus’ main predators (e.g. Nucella lapillus, Car-
cinus maenas and Asterias rubens) from lower salinity
environments in the inner Baltic Sea [87,88] may have
resulted in lower selection pressure for strong shells,
especially when CaCO3 is limited. Similar, population-
specific differences in the ability to build thick shells
have been shown for blue mussels (Mytilus edulis) from
the Baltic and North Seas [88]. Interestingly, barnacles
from Kiel (15 PSU) only showed a modest increase in
shell strength in 30 PSU, compared to barnacles from
Tjärnö (Figure 5 and Additional file 1: Table S4) even
though the predators A. rubens and C. maenas are abun-
dant in that habitat [89]. We can only speculate with re-
gard to the predation pressure that these species exert
on B. improvisus in Kiel, however it is clear that other
factors such as maternal effects [90], trade-offs between
shell-strength and reproductive output (CAP analysis,
Figure 8), and physiological constraints may also have
influenced our results. Furthermore, the influence of gene
flow from populations further inside the Baltic Sea (with
lower predation pressure) to Kiel is estimated to be higher
than the gene flow from Tjärnö to Kiel, based on oceano-
graphic modelling, which could partly explain the ob-
served pattern [91,92].
With the exception of the population-specific responses

in shell strength, no evidence of local adaptation was
detected in the other measured traits. Several scenarios
could explain this result: i) Balanus improvisus was first
observed in the Baltic Sea relatively recently (<200 years
ago [17,93], and this may have been insufficient time for
new adaptations to arise – especially if standing genetic
variation was low in the founding populations, which is
often the case after biological invasions [94-96]; ii) B.
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improvisus has free-swimming pelagic larvae that drift
with ocean currents for up to several weeks, potentially
creating high levels of gene flow that prevent local adap-
tation from evolving [97,98]. In addition, B. improvisus
is a major fouling organism on ships and human medi-
ated dispersal may enhance gene flow between popula-
tions [99]. However, there are several examples in the
literature that show that adaptations can evolve rapidly
[100,101] and that adaptations can be maintained despite
high gene flow [25,102,103]; iii) B. improvisus displays
broad phenotypic plasticity, which can facilitate establish-
ment in new environments without the need for strong se-
lection/adaptation of local populations [104].
Phenotypic plasticity has also been suggested to play an

important role in organisms’ ability to cope with current
and future climate change [105]. Recent modelling of fu-
ture climate scenarios in the Baltic Sea indicate that in-
creased precipitation may lead to reduced salinity [23],
which could potentially result in dramatic shifts in species’
distributions. According to the most extreme climate sce-
nario of Meier et al. [23], the surface salinity of 5 PSU,
today situated in the northern Baltic Sea (63° N), would
move south to the waters around Bornholm (55° N) by
the end of the 21st century (Figure 1) Although hypothet-
ical [3], this type of environmental shift would have dra-
matic consequences, especially in ecosystems with already
low species richness and genetic diversity, such as the Bal-
tic Sea. Our results indicate that it is unlikely that climate-
related shifts in salinity will have strong negative effects
on B. improvisus populations, but may rather favour the
species. It should be remembered, however, that climate
change involves multiple environmental parameters, as
well as shifts in ecosystem composition, and it is there-
fore hard to predict the likely effects of salinity changes
on the ecology of B. improvisus or the ecosystems in
which it lives.

Conclusions
In conclusion, we have shown that B. improvisus is a
highly euryhaline species with strong capacity to tolerate
a range of salinities through primarily plastic responses.
For almost all response variables, B. improvisus performed
slightly better at low and intermediate salinities, supporting
the idea that B. improvisus is one of few truly brackish spe-
cies. However, the negative effects of low salinity on early
initiation of growth as well as reduced shell strength sug-
gest trade-offs between traits in different environments in
order to maximise fitness. Population-specific responses in
shell-strength indicated the possibility of local adaptation,
perhaps in relation to different predation pressures along
the salinity gradient. The existence of these population-
specific responses, despite recent colonization, high poten-
tial dispersal and broad tolerance, supports earlier work
indicating that evolutionary changes can occur rapidly.
Projected future climate-driven reductions in salinity in the
Baltic Sea will most likely not have major impacts on B.
improvisus populations, however, further work is needed to
clarify the interactions between salinity tolerance and other
stressors such as temperature, acidification and food limi-
tation [106,107]. Furthermore, selection experiments using
multiple generations of B. improvisus are needed to
elucidate the respective roles of phenotypic plasticity,
trans-generational effects, and adaptations in response
to locally strong selection pressures. Finally, population
genomic studies in the Baltic Sea could help to elucidate
population structure and identify (candidate) genes in-
volved in both phenotypic plasticity and local adaptations.
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growth model parameters. Table S4. Results of ANOVA testing effects of
salinity and population on fitness-related traits in barnacles; including
ash weight, ash-free dry weight, condition index, shell strength, and
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