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observed today.

flow between the two lineages.

America in general.

Background: The glaciation cycles that occurred throughout the Pleistocene in western North America caused
frequent shifts in species’ ranges with important implications for models of species divergence. For example, long
periods of allopatry during species’ range contractions allowed for the accumulation of differences between
separated populations promoting lineage divergence. In contrast, range expansions during interglacial periods may
have had homogenizing effects via increased gene flow following secondary contact. These range dynamics are
particularly pronounced in the Sierra Nevada, California, given the complex topography and climatic history of the
area, thus providing a natural laboratory to examine evolutionary processes that have led to the diversity patterns

Results: Here we examined the role of late Pleistocene climate fluctuations on the divergence of the Sierra Nevada
endemic Alpine Chipmunk (Tamias alpinus) from its sister taxon, western populations of the Least Chipmunk

(T. minimus) from the Great Basin. We used one mitochondrial gene (cytochrome b) and 14 microsatellite loci to
examine the evolutionary relationship between these species. Mitochondrial sequence data revealed that T. alpinus
and T. minimus populations share mitochondrial haplotypes with no overall geneaological separation, and that
diversity at this locus is better explained by geography than by species’ boundaries. In contrast, the microsatellite
analysis showed that populations of the same species are more similar to each other than they are to members

of the other species. Similarly, a morphological analysis of voucher specimens confirmed known differences in
morphological characters between species providing no evidence of recent hybridization. Coalescent analysis of
the divergence history indicated a late Pleistocene splitting time (~450 ka) and subsequent, though limited, gene

Conclusions: Our results suggest that the two species are distinct and there is no contemporary introgression
along their geographic boundary. The divergence of T. alpinus during this time period provides additional evidence
that Pleistocene glacial cycles played an important role in diversification of species in Sierra Nevada and North

Background

Understanding processes that promote and maintain bio-
diversity is a key goal of evolutionary biology. Divergent
natural selection resulting from resource heterogeneity
and competitive interactions can drive population diver-
gence and speciation [1,2]. Nonadaptive divergence,
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operating via genetic drift due to isolation and founder
effects, may also play a significant role in generating
patterns of species diversity. Furthermore, hybridization
(or reticulate evolution) during and subsequent to speci-
ation can add novel genetic diversity to diverging lineages
and affect the course of adaptive divergence [3-5]. The
cyclical Pleistocene glacial and interglacial episodes have
shaped the genetic architecture of taxa across the globe, as
retraction to refugia facilitated the formation of distinct
evolutionary lineages within species [6,7] through both
vicariant processes and shifting the spatial distribution
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and extent of ecological gradients. Recurrent fragmenta-
tion and expansion provides opportunities for initial diver-
gence, repeated secondary contact, hybridization, and
demographic fluctuation [8].

Range dynamics and the complex geological and cli-
matic history of the Sierra Nevada, California has shaped
diversity patterns of the central-western United States
over the time span of most, if not all, extant species. The
late Pleistocene in particular was a time of drastic cli-
matic fluctuations in the Sierra Nevada [9] and the adja-
cent Great Basin and Mohave biomes [10] and thus a
period linked to both intra- and interspecific diversifica-
tion in many taxa (e.g., [11-14]).

The physical setting: Sierra Nevada and the Great Basin
The Sierra Nevada and the adjacent Great Basin is a
biologically diverse region with a rich glacial history
[10,15-17]. The Sierra Nevada are a narrow, elongated,
topographically complex, high, and relatively young
mountain range that spans about 640 km from north
to south and 110 km from west to east, and contains
the highest peak in the continental United States
(Mt. Whitney, 4,421 m). Given the steep elevational gra-
dient on the east side of the Sierra Nevada, the moun-
tain range casts a major rain shadow affecting the
climate and ecology of the adjacent central Great Basin
of the intermountain west. The Great Basin consists of
over 10,500 km? of valleys, basins, lakes and mountain
ranges with extreme elevational relief throughout the re-
gion. It contains the lowest point in North America
(-86 m, in Death Valley, California) as well as one of the
highest (4342 m, White Mountain Peak, CA) [17]. The
complexity of small mammal distributions in relation to
the high environmental diversity in the Great Basin, have
made this region a focus for biogeographic research
(e.g., [17-20]).

The interactions between Sierra Nevada with the Great
Basin and Mojave Desert biomes during the cyclical
glaciations of the Pleistocene created areas of recurrent
isolation and secondary contact within and between
species. The Sierra Nevada has experienced at least
six cyclical episodes of glacial expansion and retreat,
both regional and local in extent, beginning in the early
Pleistocene (1.65+ 0.7 mybp), with the most recent ad-
vance around 3.5 kbp [21], as well as three or more neo-
glacial advances ending with termination of the Little Ice
Age, which spanned 1350 to 1850 AD [22]. These epi-
sodes are intertwined with a similarly complex history of
volcanism along the eastern flank of the range over the
same time period [23]. Few glaciers remain in the Sierra
Nevada today, with most having shrunk by greater than
half in mass and aerial extent within the latter half of
the 20™ century [24]. This complex glacial history and
associated range dynamics and steep environmental
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gradients in the Sierra Nevada and the adjacent Great
Basin provide a natural laboratory to examine species
histories including the combined effects of range fluctu-
ations, oscillations between isolation and introgression,
and adaptive divergence across environmental gradients
(e.g., [25,26]).

Chipmunk diversity in western North America

The biogeographic history, radiation, and evolutionary
relationships of western North American chipmunks are
complex and include several instances of historical intro-
gression among species [27-32]. Chipmunk diversity is
centered in western North America with 23 species
[28,33] and diversification has been linked to shifting
ranges resulting from climatic cycles and subsequent
shifts in habitat preference resulting from interspecific
competition and niche partitioning over elevational
gradients [34-36]. In this study, we examine the evolution-
ary history of the Alpine Chipmunk, Tamias alpinus, a
narrow high-elevation endemic, relative to its widespread
sister species, the Least Chipmunk, Tamias minimus.

The divergence history of T. alpinus is not well under-
stood; however, recent work has shown that 7. alpinus
and T. minimus are paraphyletic [32]. T. minimus repre-
sents a species complex and this study focuses on the
western segment of the species, geographically adjacent
to the range of T. alpinus. Previous work by Reid et al.
[32] included geographically (and taxonomically) disparate
sequences from T. minimus individuals from California,
Nevada, Utah, Wyoming and Washington and clearly
showed that 7. alpinus is nested with western segments
of T. minimus scrutator. Here, we focus on regions of
allo/parapatry in the Sierra Nevada where these two spe-
cies come into close proximity to better understand the
evolutionary history of T. alpinus.

Our objective is to examine the relationship between
T. alpinus and T. minimus, with the goal of gaining
a better understanding of the evolutionary history of
T. alpinus. More specifically, we focus on two questions
1) did T. alpinus diverge from T. minimus in association
with late-Pleistocene glacial dynamics and 2) is there
evidence for contemporary or historical introgression as
reported in other species-pairs of chipmunks [30,31]. To
address these questions we examine morphological char-
acters and genetic variation and population structure at
one mitochondrial gene and 14 microsatellite loci. Con-
trasting patterns of nucleotide variation in the mito-
chondrial genome with patterns of genetic variation at
microsatellite markers gives us a picture of both histor-
ical and contemporary processes respectively. And al-
though differences in morphological characters between
species are well defined (see below), testing for morpho-
logical intermediacy in individuals in adjacent versus dis-
tant populations will help distinguish between genetic
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similarity due to recent speciation or similarity as a re-
sult of secondary contact and hybridization.

Methods

Study species

The T. minimus species complex contains 21 recognized
subspecies [37] and is the most widely distributed Tamias
species [38]. It occurs from western central Yukon
Territory southward along the eastern base of the Rocky
Mountains in British Columbia (BC) eastward throughout
Canada’s provinces, upper Michigan and Minnesota. It is
also found throughout the Great Basin with disjunct pop-
ulations further south in Arizona and New Mexico [37].
The subspecies, T. minimus scrutator, is the sister taxa to
T. alpinus [32] and occurs across southeastern Oregon,
south-central Washington, northern and central Nevada,
western Utah, southwestern Idaho and NE California [39],
mainly east of Sierras, with an isolated high elevation
population at the southern terminus of the mountain
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range (Figure 1). For the purposes of this study, we will
use T. minimus, to refer to the subspecies T. m. scrutator
and specifically the Californian populations adjacent to
T. alpinus (Figure 1).

T. alpinus is geographically restricted to the high
elevations of the central to southern Sierra Nevada
(Figure 1). Based on historical records and our own
surveys, 1. alpinus and T. minimus are allopatric
throughout our study area. South of Yosemite, there are
reported areas of sympatry in the central Sierra Nevada
northwest of Bishop (D. Guiliani, pers. comm.), but none
have been confirmed despite our targeted field surveys
between 2009-2013. Collections made in 1911 in the
southern Sierras recorded both species at the same
locality (Little Brush Meadow, Tulare Co.), but appar-
ently at different elevations (9750 ft for T. minimus
and 10,000 ft for T. alpinus; field notes of the collectors,
H. A. Carr and W. P. Taylor, MVZ archives). This differ-
ence in elevation signals distinctly different habitats,

D T. alpinus
D T minimus

YOSEMITE NATIONAL PARK

O T alpinus
* T minimus

SEQUOIA - KING'S CANYON
NATIONAL PARK

1530  60km T

?o
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Figure 1 Map of sampling localities in the Sierra Nevada, California, USA. Open circles indicate sampling sites of 7. alpinus, black stars show
T. minimus sampling sites. Polygons labeled with letters show geographic groupings used in population structure analyses: A) T.alp-N; B) T.alp-S;
QO T.min-N; D) Tmin-C; E) Tmin-Wht/Iny; F) Tmin-S. Inset: Distribution of T. alpinus (dark gray) and T. minimus (light gray) in California.
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where lodgepole pine (Pinus contorta) with a sagebrush
understory at the lower elevation is replaced by scattered
foxtail pine (Pinus balfouriana) and arctic-alpine forbs
near treeline. These habitats characterize the ecological
distribution of the two species in other areas where their
ranges come into close proximity.

The two species differ in morphology and habitat pref-
erences. T. minimus, among other characters, is smaller
in body mass, has a longer tail, shorter ears and darker
coloration than 7. alpinus [39] and has a different bacu-
lar (penis bone) morphology [37,40]; more specific de-
tails of these differences are summarized in Additional
file 1: Table S1. In California, T. minimus is found in arid
sagebrush habitat that ranges in elevation from 1500 m
to above 3000 m in the Sierra Nevada and mountains to
the immediate east (e.g., Sweetwater, White, and Inyo
ranges). T. alpinus is restricted to the alpine zone of the
Sierra Nevada at and above tree-line (2950 to 4100 m)
where it occupies open granite habitat, meadow edges
and talus slopes [39,41].

Study site and samples

The study area is the central to southern Sierra Nevada,
CA, USA, which includes the entire known range of
T. alpinus and that of T. minimus to the immediate east
and north (Figure 1). A total of 341 chipmunks were in-
cluded in this study. The majority of samples were col-
lected between 2003-2009, however 14 samples were
taken from museum skins that were collected between
1911-1916 and housed in the Museum of Vertebrate
Zoology (MVZ) at the University of California, Berkeley.
For the samples collected between 2003-2009, we live-
trapped animals using Sherman traps at 62 locations
between 2003-2009 (Figure 1). We used non-lethal sam-
pling (ear clips) and collected vouchered specimens,
including liver samples, now catalogued in the MVZ
(see Additional file 2: Table S4 for MVZ catalogue num-
bers and locations). Chipmunks collected in areas of
potential sympatry were identified to species in the field
based on distinct morphological differences including
body size, pelage color, and ear and tail length. More
rigorous morphological measurements on collected speci-
mens were conducted in the lab to better document
species-specific morphological differences. Sample collec-
tion was approved by the Animal Care and Use Commit-
tee (Protocol #R304-0509) at the University of California,
Berkeley.

Morphological methodology and analyses

Despite well-characterized differences between species,
these two taxa share a close genetic legacy, and in order
to distinguish between the possibility that this similarity
resulted from recent common ancestry versus reticula-
tion subsequent to divergence (e.g., [30,31,42]), we exa-

Page 4 of 15

mined the morphology of specimens taken from geo-
graphically adjacent versus distant localities to test for
morphological intermediacy, using the same geographic
groupings in the molecular comparison (Figure 1). We
examined three data sets separately. The first containing
external body metrics that have been used to separate
the two species including: a) color and color pattern (b)
tail length and bushiness; (c) ear length (N =36 and 129
for T. alpinus and T. minimus respectively). The second
dataset was based on comparing bacular dimensions
(N =15 and 33; shaft length, mid-shaft height, tip height,
tip angle, and keel breadth following [43]). The third
and final dataset examined craniodental features mea-
sured from preserved skulls (N =161 and 159). We used
separate conical variate analyses (CVA; JMP 5.1.1 statis-
tical software) for each dataset, which generates a classi-
fication matrix of group membership, with individual
posterior probabilities, based on multivariate discrimin-
ant functions.

DNA extraction, sequencing, and microsatellite
genotyping

DNA extraction

To extract DNA from the liver or ear tissue samples, we
used the standard Qiagen DNAeasy kit following the
manufacturer’s protocol (Qiagen). Tissue extractions
were eluted in a total of 400 pl AE buffer. All extractions
and PCR set-up on the 14 skin samples from museum
specimens (“historical” samples) were conducted in a
separate laboratory devoted to ancient DNA research.
We followed the museum skin DNA extraction protocol
described in Mullen and Hoekstra [44]. After removing
an approximately 3 mm x 3 mm square piece of skin
from the lower lip, we placed the sample in 95% ethanol
and refreshed the ethanol roughly every 3 hours over a
24-hour period to wash the sample of salts and PCR in-
hibitors. Following these washes, each skin sample was
carefully removed of hair and shaved into smaller pieces
with a scalpel and placed into a 1.5 ml locking Eppen-
dorf tube. Between each sample, the forceps and scalpel
were washed in 10% bleach, rinsed in 95% ethanol
and flamed to avoid cross contamination. We extracted
DNA using a Qiagen DNeasy Tissue Extraction kit with
the following modifications. First we diluted the AE
Buffer to 1:10 in RNAse-free H,O and warmed it to
70°C prior to elution. Second, we applied two elutions
of 50 pl of warm 1:10 AE Buffer to the spin columns
and allowed this elution step to incubate at room
temperature for 5 min prior to the final spin. We con-
ducted a negative extraction (sterilized forceps in extrac-
tion buffer) alongside all historical skin extractions. The
negative extraction was run along with a negative PCR
control in reactions to test for contamination between
samples.
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Mitochondrial DNA analysis

An 801 bp portion of the mitrochondrial gene, Cyto-
chrome b (cyt b), was amplified using universal mammal
primers, MVZ05 & MVZ16 [45]. We sequenced 139
T. alpinus and 107 T. minimus samples for a total data-
set of 246 sequences. For the 14 historical samples, be-
cause the DNA was more degraded we were only able to
amplify a fragment less than 400 bp. Therefore, we de-
veloped three pairs of genus specific primers to amplify
shorter fragments that could be pieced together to
complete a 780 bp sequence for the historical DNA sam-
ples (Additional file 3: Table S2). To ensure the species-
specific primers were not causing any irregularities in
the sequences, we also used these primers on five mod-
ern DNA samples and compared the results with the se-
quences using the MVZ universal primer pair. The
thermal cycler conditions for the mitochondrial PCRs
were as follows: 94°C for 2mins, 35 cycles of 94°C for
30s, 47-50°C for 30s, 72°C for 60s and then a final exten-
sion at 72°C for 5mins. Historical samples were se-
quenced in both the forward and reverse direction and
PCR’d and sequenced at least twice to ensure repeatabil-
ity of resulting sequence. Amplicons were sequenced on
an ABI 3730 Capillary Sequencer (Applied Biosystems,
Inc.). Resulting sequences were edited and aligned using
Sequencher 4.8 (Gene Codes Corp.).

Mitochondrial data analyses

We used two approaches to estimate genealogical rela-
tionships. First, to estimate the phylogenetic relation-
ships of haplotypes, we used the Bayesian approach
implemented in MRBAYES 3.1.2 [46]. The best-fit model
of nucleotide change was estimated using Akaike Infor-
mation Criterion as implemented in jModeltest [47].
The model of sequence evolution ranked highest by AIC
for the dataset was the Tamura-Nei model (TrN +1 + T)
but because TrN is not an option in MrBayes, and this
model is a special case of the general time reversible
model (GTR) we used GTR +1 + I'. We ran four MCMC
chains for 3,000,000 generations with trees sampled
every 300 generations. We assessed convergence by
examining the standard deviation of split frequencies,
which were <0.01 after 3 x 10° generations. A burn-in
period of 10° was discarded prior to calculating the con-
sensus tree. Three individuals of the Panamint chipmunk
(Tamias panamintinus) were used as an outgroup to
T. alpinus and T. minimus [31]. Traditional phylogeny
reconstruction approaches such as described above,
however, make several assumptions that make them
inaccurate at the population level. For example, they
assume ancestral haplotypes are no longer present in
the population. Therefore, our second approach was
to use haplotype networks to estimate the genealogical
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relationship using the statistical parsimony approach
[48] as implemented in the program TCS 2.1 [49].

Genetic variation among sequences within species was
quantified as haplotype diversity (hg), and nucleotide
diversity (0,.. 0s). To quantify mtDNA differentiation
between species and/or populations we calculated the
average and the net number of nucleotide substitutions
per site (Dxy and Da, [50]). To visualize divergence pat-
terns we clustered individuals by geography and species
and used Dxy to produce a neighbour-joining tree in
MEGA version 4 [51]. All diversity and distance calcula-
tions were estimated in program DNAsp version 5 [52].
We used an Analysis of Molecular Variance (AMOVA)
implemented in the program ARLEQUIN [53] to exam-
ine the population structure of sequence diversity.
F-statistic analogues (¢) were calculated to estimate the
differentiation among groups (¢pcr) among populations
within groups (¢psc) and within populations (¢st). Popu-
lations were grouped according to their species designa-
tion and sampling locality (Figure 1). We tested the
statistical significance of the AMOVA with 10000 per-
mutations and corrected the p-values associated with
the ¢ values using Bonferroni correction for multiple
tests. To test for historical population expansion or con-
traction in each species we calculated Tajima’s D [54]
and Fu’s Fs statistic [55] and the 95% confidence interval
around these statistics using the bootstrap method
(with no recombination) offered in DNAsp [53] with
5000 replicates.

Microsatellite analyses

We amplified the DNA at 14 microsatellite loci in
T. alpinus and T. minimus (Loci names: EuAmMS26,
EuAmMS37, EuAmMMS41, EuAmMS86, EUAMMS94, AC
A2, AC A101, AC A108, AC B12, AC B111, AC C2, AC
C122, AC D107 and AC D115). The first five were taken
from the literature [56], and the remaining nine were de-
veloped in T. alpinus. Primer sequences of all 14 loci are
available in Additional file 3: Table S2. Reverse primers
were fluorescently labeled with one of the following
dyes: PET, NED, FAM, or HEX, forward primers were
unlabeled. PCR reactions with a volume of 8.0 pl con-
tained reagents in the following concentrations: 0.5-1 pl
DNA template, 0.25 pM each primer, 0.2 mM each
dNTP, 0.8 pl 10X BSA, 0.8 pl 10X PCR buffer (Roche),
1.5 mM MgCl, and 04U of Tag DNA polymerase
(Roche). The thermal cycler consisted of 94°C for 2 min,
followed by 30 cycles of 94°C for 40s, 51-60°C for 40s,
and 72°C for 40s, and ending with a final extension at
72°C for 10mins. Locus-specific annealing temperatures
are shown Additional file 1: Table S1). PCR products
were sized by capillary electrophoresis on an ABI 3730
sequencer (Applied Biosystems, Inc.), and alleles were
scored manually using program GENEMAPPER Ver. 4.0
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software (Applied Biosystems, Inc.). Positive and nega-
tive controls as well as three replicate samples were run
on each PCR plate for each locus. Repeat genotypes
showed high repeatability.

We tested for linkage disequilibrium and deviations
from Hardy-Weinberg equilibrium (HWE) in each locus,
across populations and overall with an exact test using
(10000 permutations; [57]. Significant heterozygote defi-
ciencies were used to identify the presence of null alleles
as well as using the program FreeNA [58] to detect the
frequencies of null alleles in our dataset. Bonferroni cor-
rections for multiple tests were applied to p-values [59].
To examine population structure, we applied the Bayes-
ian approach implemented in the software Structure
2.3.3 [60] to identify clusters of randomly mating indi-
viduals with minimum HW deviations and linkage
disequilibrium. We ran the admixture model with corre-
lated allele frequencies with five replicates of 10° Markov
Chain Monte Carlo (MCMC) iterations after a burnin
of 10° from K (number of parental populations) =1 to
K =10. To provide the most accurate estimation of K,
we used the statistic AK introduced by Evanno et al.
[61]. We averaged coefficients of membership across the
five replicates using the software CLUMMP 1.1 [62] and
DISTRUCT 1.1 [63] was used to plot the graphical
representation of this membership. To further examine
genetic structure we used the program Arelquin [53]
to calculate pair-wise Fgt values. To visualize the genetic
distance, we generated a neighbor-joining tree using
the pairwise Fgr distances in the program MEGA version
4 [51].

Divergence dynamics

To infer the divergence history between T. alpinus and
T. minimus, we used the coalescent-based isolation-
with-migration (IM) model [64] implemented in the pro-
gram IMa2 [65]. We estimated the following parameters:
effective population size of T. alpinus (Nearp), T. mini-
mus (Neymy) and their common ancestor (N.u), the mi-
gration rate from 7. alpinus into T.minimus (MaLp_-yN)
and from T. minimus to T. alpinus (mym-arp), and
finally time since divergence (t). IMa2 first uses a
Bayesian Markov Chain Monte Carlo (MCMC) approach
to integrate over the space of possible genealogies and
divergence times then uses the genealogies to estimate
the posterior distribution of effective population sizes
and migration rates to calculate joint posterior probabil-
ity of all model parameters [65-67]. We used 10 loci
(cyt b sequences, and 9 microsatellite loci: EuAMMS26,
EuAmMS41 EuAmMS86, EuAmMS94, EuAmMS37,
ACA101, ACA108, ACC2, ACD115) partitioned by spe-
cies in this analysis. Five microsatellite loci used in the
population genetic analyses have complex repeat motifs
and therefore may not follow a strict step-wise mutation
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model. We sub-sampled the entire dataset to improve
computational efficiency. Thirty individuals from the
microsatellite dataset and twenty individuals from the
sequence dataset were randomly chosen from each spe-
cies for the analysis, with assurance that each geographic
area was represented. We used a two-population model
where each species was considered a “population”. A
series of preliminary runs were used to estimate upper
bounds on priors and assess mixing. Our final run
consisted of 60 chains (geometric heating scheme set
h, =0.980, hy, = 0.50), a burnin of 3 x 10° steps followed
by 30 x 10° steps sampling trees from each locus every
300 steps (ESS >50). We did two replicates of the final
run starting with a different random number seed. Each
run took approximately 72 days to finish and both
returned parameter estimates that were near identical.
Two hundred thousand saved genealogies (100,000 from
each run) were used to calculate the joint posterior
probability of the parameters in L-mode of IMa2. We
used a general mammalian nucleotide substitution rate
weighted across sites of 8.2 x 107 [31]; see also [68]) to
calculate the locus-wide mutation rate for the 801 bp
segment of cyt b to be approximately 6.6 x 107°, and
the average mutation rate for the microsatellites as 1.0 x
107* [69]. These mutation rates were used to convert the
parameter estimates into demographic units (i.e., time in
years, population size in individuals and migration rates
as individuals/generation). Finally, nested models were
tested to determine if the full model fit the data signifi-
cantly better than models when population sizes and/or
migration rates were set to equal or zero.

Results

Morphological data

Individuals identified either as T. alpinus or T. minimus are
strongly separable by bacular, external, or craniodental-
mandibular characters in the multivariate canonical variates
analyses of each character set (Figure 2, Additional file 4 on
morphological analyses Table S3, Figure S1, S2 & S3). A
few individuals of both species display intermediate poster-
ior probabilities of group membership in external and
craniodental-mandibular characters, but the number is
minimal (<2% for crandiodental-mandibular characters)
and not unexpected given the large number of compari-
sons. Importantly, there is no bias in the distribution of
misclassified individuals to the geographically adjacent sam-
ples of each species (i.e., misclassified alpinus individuals
from the T.alp-N sample are not placed in the adjacent, but
non-overlapping T. min-N sample), which would be ex-
pected if there had been, or was continuing interbreeding.

Mitochondrial sequence data
Our dataset consisted of 246 sequences with 81 variable
sites, 40 singleton sites and 47 haplotypes. We found 28
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haplotypes appear in T. alpinus, 23 haplotypes appear in
T. minimus dataset and four shared between species
(Table 1). All individual identification numbers, their
locality information, and haplotype are provided in
Additional file 2: Table S4. Sequences are available on
GenBank (GenBank: KJ452863-KJ453106).

There were four haplotypes that were shared by both
species. Three shared haplotypes occurred between the
T.alp-N and T.min-N sampling localities and one was
shared between T.alp-S, T.min-Wht/Inyo and T. min-C
groups (Figure 3). The first shared haplotype (AlpMinl)
was the second most frequent haplotype present in
T. alpinus (29% of all individuals) where it was confined
to individuals from the Yosemite area (T.alp-N) and two
from the northern sampling area of T. minimus (T. min-
N; Figure 3; Additional file 5: Figure S4). AlpMinl was
the most frequent haplotype found in a northern hap-
logroup we named “North1”. The next shared haplotype
(AlpMin2) was the most frequent haplotype found in
T. minimus (24%) and detected in only one T. alpinus

individual from Bullfrog Lake (T. alp-S). All T. minimus
individuals with the AlpMin2 haplotype were from the
White Mountains, the Inyo Mountains or the central
part of our sampling area (Figure 3; T. min-Wht/Iny &
T.min-C). Interestingly, this was the only haplotype that
was shared between southern 7. alpinus individuals and
any of the T. minimus groups. The third shared haplo-
type (AlpMin3) was in low frequency (6%) and only
found at one site in Yosemite National Park in 7. alpi-
nus (Vogelsang Lake, T. alp—N) and in one 7. minimus
sampled nearby at Bohler Creek (T. min—N). The fourth
and last shared haplotype (AlpMin4) was also in low fre-
quency in both species (7. alpinus: 1.4%; T. minimus:
2.8%) from the northern part of our sampling area. The
geographic pattern of shared haplotypes is consistent
with historical hybridization events in both the northern
and southern portion of T.alpinus’ range.

The statistical parsimony haplotype network for T.
alpinus and T. minimus had a 95% parsimony limit of
12 steps (Figure 3a). The mtDNA phylogenetic tree

Table 1 Sample size, number of haplotypes detected, haplotype diversity (hy) nucleotide diversity (0,, 8s) and tests of
population expansion/contraction (Tajima’s D, Fu’ Fs statistics) in T. minimus and T. alpinus, and geographic groups of

each species (Figure 1) at the mitochondrial gene, cyt b

Species N No. of haplotypes O Os Tajima’s D Fu's Fs
T. alpinus 139 28 0.797 0.014 0.021 -1.581 0.094
T. minimus 107 23 0.891 0.016 0.012 0.932 1.624
Geographic groups

T. alp-N 113 12 0.695 0.012 0.008 09191 7317
T. alp-S 26 17 0.951 0.026 0.038 -1492 -0489
T. min-N 40 11 0.863 0.012 0.010 1.015 3.186
T. min-C 1 4 0.764 0.002 0.002 0433 0.164
T. min- Wht/Iny 26 6 0.517 0.008 0.008 0.0976 4.225
T. min-S 30 6 0.655 0.001 0.002 -1.309 -1.697
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Figure 3 Haplotype network and map of major haplogroups. a) 95% Statistical parsimony haplotype network for cyt b. Haplotypes are
indicated as ovals and scaled by frequency (also noted within oval unless haplotype is unique). Gray represents T. alpinus haplotypes, white
represents T. minimus haplotypes and numbered shapes represent shared haplotypes 1) AlpMin1, 2) AlpMin2, 3) AlpMin3, and 4) AlpMin4. Large
ovals show groups of individuals with similar haplotypes ("haplogroups”) from the same geographic region. There are two distinct northern haplogroups
(North1 and North2) and two distinct southern haplogroups (South1 and South2). If haplotypes are not encompassed within an oval, no geographic
pattern exists (i.e, found throughout sampling area); b) Pie charts showing the percentage of individuals from each geographic sampling group
belonging to the major haplogroups and shared haplotypes (Alomin 2, 3, & 4; note that Alpmin1 is within Haplogroup North1).
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estimated by the Bayesian analysis was weakly resolved
but supports the network analysis and demonstrates a
lack of clear genealogical separation between the two
species (Additional file 5: Figure S4). There are four
groups of haplotypes that are separated by at least 5
base pair changes and show some geographic structure
(Haplogroups Northl, North2, Southl and South2,
Figure 3b) and three out of four of these contain individ-
uals of both species (Northl, North2 and South2).
Southl is made up of only T. alpinus individuals from
the southern portion of their range. A map of the hap-
logroups and shared haplotypes shows that genetic simi-
larity is more defined by geography than by species
identity (Figure 3b). Two southern T. alpinus haplotypes
were more than 12 steps away from the others in the
network and are not shown in Figure 3.

The average and the net number of nucleotide substitu-
tions per site were lower between species (Dxy =0.018,
Da =0.003) than between the northern and southern
T. alpinus populations (Dxy =0.021, Da =0.005). The
northern 7. alpinus population was most similar to the
northern 7. minimus population (Dxy = 0.015, Da = 0.003,
Table 2; Additional file 6: Figure S5). The southern T.
minimus samples are the most genetically distinct group
sampled, being most different from the northern T.
minimus population (Dxy =0.024, Da =0.017; Table 2,
Additional file 6: Figure S5). There were no significant sig-
nals of population expansion or decline (or deviations
from neutrality) in either species or geographic popula-
tions of species according to Tajima’s D or Fu’s F; statistics
in any of the groups tested (Table 1).

Consistent with the above, the AMOVA attributed
28.63% of the genetic variation across haplotypes to
be between species (pct =0.28, p =0.34), 37.6% to be
among populations within species (psc = 0.52, p < 0.001)
and 33.8% of the variation to differences within species
(dsT =0.66, p <0.0001). By comparison, the AMOVA for
the analysis of nuclear loci (see next section) attributed
62% to variation among groups (pct = 0.62, p = 0.14), 5.1%
among populations within groups (¢psc =0.13, p <0.001)
and 32.9% to variation within populations (pst =0.67,
p <0.001). The AMOVA analyses reveal that mtDNA

Table 2 Pairwise comparisons of Tamias populations
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variation is not explained by differences among species or
geographic groups, but rather differences within species
and populations.

Microsatellite data

Deviations from H-W equilibrium were observed across
all loci within species however this is not unexpected
given the observed genetic substructure. Within geo-
graphic groups, there were deviations from HWE in the
T. alpinus N group but again, there is known substruc-
ture in this group [70] so deviations from HWE are ex-
pected. A high frequency null allele was detected at the
D107 locus in the T. alpinus. We ran the STRUCTURE
analysis with and without this locus and the results
did not change, therefore, we chose to run the analysis
with all 14 loci. No significant linkage disequilibrium
was detected after Bonferonni correction. Genetic diver-
sity was highest in the T. min-N group (A =7.6; H, =
0.84), followed by T. min —Wht/Iny (A =6.8; H, =0.84;
Table 3). The northern T. alpinus samples had the low-
est genetic diversity of all sampled groups (A =4.7,
H =0.63). Microsatellite genotype data is available in
Additional file 7.

Population structure

The estimated number of parental populations for the
microsatellite dataset using the Evanno method was K =2,
however the mean likelihood values were higher at K =5
and above. The results of the cluster analyses at K =2 sep-
arated individuals into two groups by species, with admix-
ture in the T. alp-S (Figure 4a). However, the pairwise Fgt
values between T.alp-S and T.alp-N, and T.alp-S and all
of the T. minimus sampling localities show significant gen-
etic differentiation (e.g., pairwise Fst =0.116 between
T.alp-N & T.alp-S and 0.092 between T.min-N & T.alp-S,
p <0.005, see Table 2), suggesting that hybridization is
not ongoing. There was a higher mean likelihood value at
K =5 and above, than at K =2, also indicating that K =5
more likely exhibits the genetic structure of these two spe-
cies across our study area (Additional file 8; Figure 4b).
The individual membership graph for K =5 shows further
geographic subdivision within 7. minimus (Figure 4b),

T. alp-N T. alp-S T. min-N T. min-C T. min-Wht/Iny T. min-S
T. alp-N 0.020 0.015 0.017 0.016 0.023
T. alp-S 0.116 0.022 0.020 0.021 0.024
T. min-N 0.167 0.092 - 0.017 0.015 0.024
T. min-C 0.166 0.103 0.018 0.005 0.019
T. min-Wht/Iny 0.167 0.114 0.028 0.042 - 0.020
T. min-S 0.227 0.168 0.118 0.124 0.147 -

Statistically significant Fst values shown in bold font (P < 0.005, 10000 permutations).
Pairwise Dxy values from the mtDNA data are given above the diagonal and pairwise Fst-values from the microsatellite data below the diagonal.
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Table 3 Sample size (N), average allelic richness

(A; corrected for differences in sample size), observed
and expected heterozygosity (H,, H. & standard
deviation (sd)) in T. alpinus and T. minimus at 14
microsatellite loci

Species Locality N A H, (sd) He (sd)
T. alpinus North (YNP) 149 47 057019 063 (0.21)
South 17 60 071019 075(0.17)
T. minimus North 57 76 073014 084 (0.07)
White/inyo mtns 33 68 0.71(0.18) 0.82 (0.09
Central 42 64 062(0.12) 0.78(0.10)
South 29 5.1 0.58(0.23) 068 (10.18)

with T.alp-S highly differentiated from T.alp-N. Based on
cluster membership percentages, T. min-N & T.min-C is
one genetic cluster showing evidence of gene flow with
T.min-Wht/Iny, while T.min-S is well differentiated.
(Additional file 8, Figure 4a & b). K values above five did
not greatly improve likelihood scores but do reveal subdiv-
ision between T.min-N & T.min-C and within T.alp-N
(graphs not shown). The T.alp-S sample appears as a dis-
tinct cluster, with one exception. There is one T. alpinus
individual from Bullfrog Lake (MVZ224480) in the T.alp-S
geographic group that was assigned to T.Min-N based on
its genotype at 14 loci (Figure 4b). This individual had a
divergent mtDNA haplotype shown with arrow on Bayes-
ian tree (location shown with green triangle on the map of
Additional file 5: Figure S4) and morphologically is unam-
biguously identified as a T. alpinus.

The pairwise Fst values between clusters showed signifi-
cant differentiation across all clusters and ranged from
0.018 between T.min-N and T.min-C to 0.227 between
T.alp-N and T.min-S (Table 2). In contrast to the results
for mtDNA, the neighbor-joining tree based on Fs shows
that groups of the same species are genetically more simi-
lar to each other than to the other species (Additional file
8: Figure S7) although the southern populations of both
species (T. alp-S and T.min-S) are both differentiated from
their more northern conspecifics.

Coalescent analysis of divergence history
Using IMa2, we estimated the following parameters: ef-
fective population size of T. alpinus (Neayp), T. minimus
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(Nepymny) and the common ancestor (Ney) the migration
rate from T. alpinus into T.minimus (Marpoyvn) and
from T. minimus to T. alpinus (my_-arp) and time since
divergence (t) (Table 4). The split between 7. alpinus and
T. minimus lineages was estimated by IMa2 to have oc-
curred in the mid-Pleistocene, at approximately 450 ka.
There is a sharp peak in the posterior density plot at this
value however, the plot plateaus at a low, but non- zero
value for higher values of t, including when a higher upper
bound on the divergence time prior is used (results not
shown). The mean effective population size (N,) of 7. alpi-
nus was estimated to be much smaller than T. minimus
with non-overlapping confidence intervals (T. alp mean
N, =430,625. 95% HPD 230,019- 648,519; T. min mean
N, = 1,448,317, 95% HPD 833,365-2,095,096). The size of
the daughter populations is small compared to the ances-
tral population (N.y =6,680,761). Migration estimates
between the two species showed strong evidence for uni-
directional migration from 7. minimus into T. alpinus
(2N, =0.5441, p <0.001). Migration from T. alpinus into
T. minimus (2 Nm = 0.002) was not significantly different
from zero (Table 4; Figure 5). Testing of 24 nested models
using the Likelihood Ratio Test (LRT) rejected models
with zero migration rates and the nested model with the
strongest support allowed migration from 7. minimus into
T. alpinus but zero migration in the other direction. This
nested model had the same log-likelihood as the full
model, and had the highest log likelihood out of all 24
models tested, providing strong support that the unidirec-
tional migration model is a good description of the data.

Discussion

We examined the evolutionary relationship of T. alpinus
and T. minimus using cytochrome b and microsatellites
to help elucidate the divergence history of T. alpinus in
the Sierra Nevada. Microsatellite analyses were used to
provide a contemporary view of this relationship and to
examine details of population genetic structure within
and across species. We found that 7. alpinus and T.
minimus populations share mitochondrial haplotypes
with no overall geneaological separation, and that diver-
sity at this locus is better explained by geography than
by species’ boundaries. This pattern indicates either
recent speciation of T. alpinus from T. minimus with

T.alp-N

T. alp-S
b=

T.min Wht/iny.

T. min-N T. min-C ———— T.min-S
T - .

2 i

Figure 4 Bayesian analysis of nuclear genetic structure of Tamias populations based on 14 microsatellite loci. Each individual is
represented by a vertical line, which is partitioned into colored segments that indicate individual’s membership in (a) 2 or (b) 5 parental populations.
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Table 4 Parameter estimates from IMa2 runs for T. alpinus and T. minimus

Ne Nea t 2N, T.min to T. alp 2N, T.alp to T.min
T. alpinus 430625 6680761 446538 0.5441 0.002
HPDOI5 low-high 230019-648513 778846-18058846* 115 -* 0.1986-0.9981* 0-0.9463*

1448317
833365-2095096

T. minimus

HPD95 low-high

*HPD may not be useful because posterior density does not reach low levels near upper (Nea, t) or lower (2 Nm) limit of prior. In the case of Nea & t, even with
higher values set for the prior, the posterior density plot plateaus at low but nonzero values (see Figure 5).

Bold font shows significance of p < 0.001.

N, estimates are mean values and migration rate parameters are the HiPt of the posterior probability.

retention of ancestral polymorphism, or extensive intro-
gression subsequent to splitting. In contrast to the
mtDNA sequence data, the analyses of nuclear microsat-
ellite loci and morphology revealed that the two species
are genetically distinct. Although there are highly differ-
entiated populations within species, populations of the
same species are more similar to each other than they
are to members of the other species. This suggests that
contemporary hybridization is not widespread along the
geographic boundary between T. minimus and T. alpi-
nus. Coalescent analysis of divergence history revealed
mid to late Pleistocene divergence and low, but signifi-
cant gene flow between the two lineages. Overall, our
study suggests that: speciation between 7. alpinus and
T. minimus is relatively recent, secondary contact and
historical introgression has occurred, and there is little
evidence or opportunity for contemporary hybridization
given the current distribution of these two species.

Differentiating between the genetic signature of in-
complete lineage sorting and historical hybridization is
difficult; however, distinguishing between the two is im-
portant in addressing non-concordance among charac-
ters in closely related species [71]. The spatial pattern of
genetic variation across species can help to provide an
objective assessment of which process is more likely to
have occurred because each should produce a specific
spatial pattern [30,72]. The results of our mitochondrial
sequences show no strong spatial structure within spe-
cies. Both the Bayesian tree and haplotype network indi-
cate the two species are completely intermingled across
the landscape. Recent hybridization should show a clus-
tered pattern, where introgressed alleles are more com-
mon at or near the contact zone of the two species; in
contrast, ancestral polymorphism should be diffuse and
uniform across space [30]. However, the spatial patterns
described above assume a contact zone between species,
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Figure 5 Posterior density plots of parameters from Isolation with Migration (IMa2) analysis. Top left: effective population size of T. alpinus
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and for this study, we were unable to obtain samples of
both species from the same location. The one site where
they were collected in close proximity in 1911 (Little
Brush Meadow, Tulare Co., CA) showed distinct and di-
vergent haplotypes between species. The single T. mini-
mus taken from this locality had a unique haplotype that
clustered with the southern minimus haplogroup in the
network (South2 Figure 3, Additional file 5: Figure S4)
whereas the T. alpinus from that location and three
other T. alpinus from the general area collected at the
same time, all clustered within southern 7. alpinus hap-
logroup (Southl). Overall, the distribution of shared
haplotypes reflects geographic proximity, not current
contact; northern T. alpinus and T. minmus shared three
haplotypes and southern 7. alpinus and central and
southern T. minimus shared one. This geographic pat-
tern, along with the results of the IMa2 analysis suggest
that hybridization occurred at some point in the past
but given the results of the microsatellite analysis and
current distribution of the two species, hybridization is
not currently ongoing.

There were potential problems with the parameter es-
timates using IMa2, in particular, that for divergence
time. The first is that our microsatellite data exhibit gen-
etic structure within lineages (recall that in this analysis,
each species was considered a “population”), which may
lead to an overestimation of divergence time [73]. Sec-
ond, the right tail of the posterior density plot reached
low but non-zero values potentially making the 95%
HPD high and low estimates unreliable (i.e. posterior
density distribution did not converge within prior range).
Given these caveats, the estimate of divergence time be-
tween T. alpinus and T. minimus from IMa2 is about
450 ka with some support of it being as recent as 110 ka
(the lower 95% HPD of t). This timeframe occurs in the
mid to late Pleistocene, a time of extreme climate fluctu-
ations in the Sierra Nevada including several major gla-
ciations with prolonged glacial rather than interglacial
periods [9]. The coalescent analysis also supports low
but significant gene flow subsequent to splitting from
T. minimus into T. alpinus. Given the relatively small
population size estimated by the IMa2 analysis for
T. alpinus compared to T. minimus and considering that
T. alpinus is a range restricted endemic, it is conceivable
that the 7. alpinus population would receive more genes
from T. minimus than the other way around.

The Pleistocene shaped the genetic structure and dis-
tributions of many species (reviewed in [7]) and its role
in the speciation in several North American taxa, though
sometimes debated, is clear (e.g., [74-76]). It is plausible
that a founding population of T. alpinus became isolated
in a refugium from an adjacent T. minimus population.
A recent study that used sequence data from reproduct-
ive protein genes showed that 7. alpinus, characterized
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by strongly divergent sequences, is a monophyletic
group nested within 7. minimus species complex [32].
This nested pattern is consistent with expectations for a
peripheral isolate of a widespread species providing fur-
ther support to our results suggesting that speciation of
T. alpinus is recent. The IMa2 analysis also supports this
notion with a parameter estimate for the effective popu-
lation size of T. alpinus (Nearp =430,625), substantially
smaller than the estimate of the effective population size
of T. minimus (Neyn = 1,448,317). Finally, although
the estimates of migration between species were low
(95% HPD high <1 from T. minimus to T. alpinus), there
is significant evidence of historical genetic introgression
between species, adding to the complexity of the diver-
gence dynamics between these two species. The results
of this study adds to the growing number of studies that
have highlighted the importance of glacial-interglacial
refugia in recently derived species across taxa in the cen-
tral and southern Sierra Nevada (e.g., [12,14]).

Hybridization can play an important role in the evolu-
tion of species [77-79]. It was previously accepted that
the morphological differences in bacular morphology
in western chipmunks mechanically prevented hybridi-
zation between species and was considered a strong pre-
mating barrier to gene flow [43,80]. However, several
recent studies have documented both historical and on-
going hybridization in two non-sister species of Tamias
and suggest that it may be more common in the genus
than previously thought [30,31,42]. Our analyses provide
little or no evidence for current introgression across the
species boundaries; however, the potential for contem-
porary gene flow between these species where they come
into close proximity in the southern portion of their
range exists. One apparent hybrid individual, morpho-
logically determined to be a T. alpinus with a divergent
T. alpinus haplotype, was more similar to 7. minimus
than T. alpinus based on 14 microsatellite loci. The as-
signment of this individual to the T.min-N population is
puzzling because the two localities are far apart geo-
graphically (at least 80 km). Despite extensive survey
effort along the eastern flank of the Sierra Nevada,
we have not found a locality of co-occurrence where
there is direct potential for hybrid matings. Furthermore,
our morphological analyses show no evidence of hybri-
dization and species were easily discriminated based on
the measured morphological characters.

Conclusions

Speciation is a prolonged process that likely has phases
in different spatial contexts [81,82]. Here, we provided
evidence of recent speciation with limited yet significant
post-divergence gene flow between the Alpine chipmunk
and its closest relative. Our approach revealed an inter-
esting and complex pattern of shared and intermingled
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haplotypes across species and highly differentiated popu-
lations within. The presence of geographic structure of
shared haplotypes between these closely related lineages
could be a result of allopatric speciation with secondary
contact, but the same pattern could be a result of zones
of primary parapatric speciation. As theory suggests, any
mechanism that can cause divergence in allopatry can
also occur in parapatry, as long as the selective gradient
acting on differentiation is strong enough to counterbal-
ance continuous gene flow [83]. In order to further
examine the genetic patterns that emerged in this study,
future work comparing genome-level patterns of diver-
sity between these two species may reveal regions of
the genome under strong divergent selection; a pattern
not expected in an allopatric speciation scenario [84].
Additionally, environmental niche models (ENMs) used
to predict historical ranges aid in the identification of
areas of isolation and the potential for secondary contact
in the past. The environmental modeling results can be
combined with genetic data to test alternative hypoth-
eses of allopatric speciation with secondary contact or
primary parapatric speciation (e.g. [85]). A multifaceted
approach including building historical ENMs and gen-
omic data combined with increased sampling could fur-
ther improve our understanding of the evolutionary
history of Alpine chipmunk, a species that appears to be
under threat due to recent climate change [70,86]. A
clear understanding of this species evolutionary history
could help us understand its vulnerability in the face of
environmental change.
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