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Abstract

to properly function.

Background: miRNAs are a major class of regulators of gene expression in metazoans. By targeting cognate
mMRNAs, miRNAs are involved in regulating most, if not all, biological processes in different cell and tissue types. To
better understand how this regulatory potential is allocated among different target gene sets, we carried out a
detailed and systematic analysis of miRNA target sites distribution in the mouse genome.

Results: We used predicted conserved and non-conserved sites for 779 miRNAs in 3" UTR of 18440 genes downloaded
from TargetScan website. Our analysis reveals that 3" UTRs of genes encoding regulatory proteins harbor significantly
greater number of miRNA sites than those of non-regulatory, housekeeping and structural, genes. Analysis of miRNA
sites for orthologous 3'UTR's in 10 other species indicates that the regulatory genes were maintaining or accruing
miRNA sites while non-regulatory genes gradually shed them in the course of evolution. Furthermore, we observed
that 3" UTR of genes with higher gene expression variability driven by their promoter sequence content are targeted
by many more distinct miRNAs compared to genes with low transcriptional noise.

Conclusions: Based on our results we envision a model, which we dubbed “selective inclusion”, whereby
non-regulatory genes with low transcription noise and stable expression profile lost their sites, while regulatory genes
which endure higher transcription noise retained and gained new sites. This adaptation is consistent with the
requirements that regulatory genes need to be tightly controlled in order to have precise and optimum protein level
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Background

Robustness, the ability of a system to sustain internal
and external perturbations, is deemed essential for the
integrity of biological systems, including those associated
with organismal development and responses to environ-
mental stimuli. At the cellular level, gene expression is
one of the primary factors defining molecular and cellu-
lar outcomes such as the acquisition of specific cell fates.
Because of its stochastic nature and high sensitivity to
external perturbations, gene expression is highly dy-
namic and this feature has been considered one of the
main factors affecting biological robustness [1-3]. To
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overcome transcriptional noise, several regulatory mech-
anisms are in place to control gene expression dynamics
and maintain optimal protein levels.
Post-transcriptional regulation of messenger RNAs
(mRNA) by micro-RNAs (miRNA) has been identified as
an important mechanism conferring biological robustness
and dampening gene expression noise [4-6]. miRNAs are
a class of small non-coding RNAs that can repress gene
expression by complementary base paring of their seed re-
gion to their target sites located at the 3" UTR of mRNAs
[7,8]. Most mammalian mRNAs are targeted by miRNAs
and post-transcriptionally regulated through the presence
of either conserved or non-conserved miRNA sites in
their 3° UTR [9]. Thus, numerous biological processes
and functions are influenced by miRNAs, as evidenced by
their involvement in regulating normal physiological as well
as pathological conditions [10-12]. While as many as ~50%
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of mammalian mRNAs appear to be under selective
pressure to maintain pairing to miRNAs through con-
served sites [9], there are many more functional but
non-conserved miRNA sites that can also potentially
affect multiple biological processes [13-16]. A signifi-
cant fraction of non-conserved miRNA sites can be ex-
plained by a selective avoidance model, which states
that non-conserved sites are often found in 3" UTR of
genes, which are expressed in tissues where the cog-
nate miRNA is absent [13]. However, the model does
not explain the many instances of miRNA sites [17],
which complicates the interpretation of the landscape
of miRNA and mRNA interactions.

Maintaining an optimal protein concentration is essen-
tial in most biological processes, and that deviation from
an appropriate protein level can be detrimental to the cell.
miRNAs have emerged as primary regulatory elements to
fine tune gene expression levels and maintain the protein
production at their optimal levels by filtering and buffer-
ing transcription noise and unintended fluctuations in
gene expression [4,5,18-21]. However, the depth and
breadth of this functionality and whether there exists an
evolutionary miRNA target recognition bias toward par-
ticular classes of genes, remains to be systematically inves-
tigated. In order to address this issue, we deployed a
bottom-up approach to study the landscape of all pre-
dicted conserved and non-conserved miRNA-mRNA inter-
action sites in the mouse genome. To that end, we used
predicted conserved and non-conserved sites for 779 miR-
NAs in 3" UTR of 18440 genes generated by TargetScan
tool (www.targetscan.org). Additionally, we incorporated
miRNAs sites of orthologous 3" UTR for 10 other species
along with 3° UTR and gene conservation score for com-
parative analysis. Furthermore, a high throughput gene
expression meta-data set and promoter sequence fea-
tures of mouse genes were utilized to deduce gene ex-
pression variability and transcription noise.

Here, we report that the 3" UTRs of genes whose
products are involved in regulatory processes such as
transcription factors (TFs), contain on average more
sites for miRNAs compared to those in housekeeping
and non-regulatory genes. Furthermore, the likelihood of
genes with higher expression variability and inherent ex-
pression noise to be targeted by miRNAs is significantly
higher than that of genes with stable expression level.
Interestingly, the extent of miRNAs targeting 3" UTR of
a gene is linearly correlated with the extent of gene ex-
pression noise driven by its promoter DNA sequence
content. We propose an evolutionary conjecture that
may explain the presence of widespread interaction be-
tween miRNAs and mRNAs in distant species. Specific-
ally, the results of our analyses reveal that the 3" UTR of
genes that are more resistant to transcriptional fluctua-
tions have in aggregate lost miRNA sites whereas, likely
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as a result of selective pressure, the 3" UTR of regulatory
genes and genes with higher expression noise have on
average gained additional miRNA sites, potentially sta-
bilizing their inherent fluctuation rate.

Results

The 3' UTR of regulatory genes are enriched for miRNAs
recognition sites

For a genome wide analysis of miRNA targets, we
employed the TargetScan Mouse data sets of ‘Conserved
site context + score’ and ‘Nonconserved site context +
score’ (Methods). The distributions of the number of
miRNA targets and number of distinct miRNAs sites
per genes are illustrated in Figure 1-A and B respect-
ively. A single miRNA can target many genes, and con-
versely a single gene can be targeted by several distinct
miRNAs [9]. However, for many genes, the total number
of miRNAs targeting their 3’ UTR exceeds the expected
value, prompting an inquiry into the significance of this
phenomenon. The absolute number of binding sites for
each gene is highly correlated with the number of miRNAs
targeting that gene, and therefore, as it is detailed in the
method section, in our analysis we counted multiple sites
of the same miRNA in 3" UTR of the gene as one binding
sites (Additional file 1: Figure S1). We started our analysis
by defining two groups of genes. The first group in-
cludes genes with low number of miRNAs sites (less
than 15- 1st quartile), while the second group consists
of genes with high number of miRNAs sites (more than
53- 4th quartile). Comparative functional analysis on
these two groups returned GO terms significantly enriched
in the 4th quartile gene list (Figure 1-C). These include
“regulation” of biological process, of transcription and gene
expression, of metabolic process, “regulation” of localiza-
tion and etc. Additionally, the 4th quartile gene list
was enriched for GO-cellular components such as;
intracellular part, neuron projection and synapse, cell
junction, etc. (Additional file 1: Figure S2-A). More-
over, GO-molecular functions such as sequence specific
DNA binding, protein binding, chromatin binding were
among the highly significant categories (Additional file 1:
Figure S2-B).

Examination of the 1st quartile gene list revealed
that, unlike the 4th quartile, these genes were not in-
volved in regulatory processes, and specifically the list
was enriched for terms such as sensory perception of
smell and stimuli, extracellular regions, ribosome, ol-
factory receptor activity, among others (Figure 1-D,
and Additional file 1: Figure S2-C,D). Complete GO ana-
lysis results and the list of predicted miRNAs for genes
are provided in supplementary table (Additional file 2).

Further analysis of all enriched categories and genes
belonging to them confirmed that the 4th quartile group
comprises mainly regulatory genes (i.e., genes with
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Figure 1 Genes involved in regulatory processes are disproportionally targeted by miRNAs. (A) Distribution of miRNAs targets. (B)
Distribution of number of distinct miRNA targeting 3" UTR of genes. The two vertical lines (in blue) indicate 25 (left line) and 75 (right line)

their 3/ UTR ( 4th quartile set). (D) A list of the over-represented GO biological process terms in the set of genes with less than 15 predicted

percentiles values. (C) A list of the over-represented GO biological process terms in the set of genes with more than 53 predicted miRNA sites in

miRNA sites in their 3" UTR ( 1st quartile set).

regulatory functions are likely to be targeted by many dis-
tinct miRNAs.) To test this hypothesis, we evaluated
whether TFs, well-known elements of gene regulatory net-
works, are preferentially enriched in the 4th quartile set.
Indeed, we found that TFs are enriched in the upper quartile
group (4th quartile) (Hypergeometric, p-value =5.1e-12),
and depleted in the lower quartile group (Ist quartile)
(Hypergeometric, p-value = 3.68e-20). Moreover, 3° UTRs
of TF mRNAs have, on average, more miRNA sites com-
pared to non-TF genes (Wilcoxon rank sum test, p-value =
5.6e-26). Additionally, the 3" UTRs of tissue specific
TFs contain sites for a larger number of distinct miRNAs
than that of non-TF tissue specific genes (Additional file 1:
Figure S3-A). Similarly, tissue specific genes of highly
complex organs, like the brain, are targeted by more dis-
tinct miRNAs (Additional file 1: Figure S3-B).

To verify that the above results, derived from de novo pre-
dicted miRNA sites, accurately reflect the in vivo biological
regulation by miRNAs, we utilized CLIP-Seq data, the
in vivo data uncovering mRNA-miRNA interactions. To
that end, we used a publicly available Argonaut HITS-
CLIP data set (GSE41285) [22]. Total of 4165 genes were
identified as being targeted by miRNAs, out of which 937
genes were noted to have more than 5 distinct miRNAs
sites. Majority of these genes (70%) fall in the 4th quartile
group. Furthermore, GO analysis of these 937 genes re-
vealed that the list is enriched for categories such as
regulation of transcription, DNA binding, transcription
factor activity, regulation of RNA metabolic process, etc.
(Additional file 3). Although this data set is limited and
represents only an instance point in a multi-dimensional
space of possible regulatory interactions of miRNAs, it
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indicates that regulatory genes which are predicted to be
targeted by many distinct miRNAs are also more likely
to be targeted by miRNAs in vivo. Altogether, these ob-
servations are consistent with a role of miRNA in fine-
tuning gene expression, and indicate that genes involved
in regulatory processes have an increased probability to
harbor miRNA binding sites in their 3'UTRs, perhaps
to insure a steady-state level of their corresponding
mRNAs.

Genes with higher expression variability are preferentially
targeted by several distinct miRNAs

The observation that regulatory genes and TFs more
frequently undergo post-transcriptional regulation than
other genes prompted us to postulate that these genes
may have higher expression variability across different
conditions. If this assumption is correct, it should be
possible to capture higher expression variation for this
group of genes by employing a mega data set of expres-
sion profiles across many experimental conditions. We
tested this possibility by parsing the public ArrayExpress
database for mouse transcriptional data (www.ebi.ac.uk/
arrayexpress/). We used the E-MTAB-28 dataset, an inte-
grated, high quality mouse expression data across 886
samples (http://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-28/) [23].

To assess the variability of transcription across samples,
we calculated a measure of expression variability for each
gene as the level of variability in relation to the average ex-
pression profile, or what is commonly known as the coef-
ficient of variation. Coefficient of variation is defined as
the ratio of the standard deviation to the mean,

o

9:
U

Next, we compared the distribution of this measure
for two groups of genes, previously referred to as the
1st and 4th quartile groups. Interestingly, we observed
statistically significant difference in distributions of the
variability measure between two groups (p-value = 1.68e-54,
Kolmogorov-Smirnov test) (Figure 2-A). Moreover, a sig-
nificant correlation was observed between the extent of
gene expression variability and the number of distinct
miRNA targeting the 3" UTR region (Figure 2-B).

It has been shown that promoter sequence composition,
which can affect the number and affinity of TF binding
sites as well as nucleosome occupancy, is greatly respon-
sible for transcriptional noise [24-26]. Along the same line,
it has been demonstrated that lowering nucleosome occu-
pancy by adding nucleosome-disfavoring sequences to the
promoter reduces expression variability and noise [26-28].
Furthermore, the GC content of a sequence is a promin-
ent factor defining nucleosome occupancy [29]. Therefore,
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the GC content of promoters can be employed as a good
predictor of gene expression noise, so that the higher pro-
moter’s GC content, the higher the expression variability.
Notably, we found that genes with higher GC content in
their promoter sequences have higher number of miRNA
sites in their 3" UTR (Figure 2-C and Additional file 1:
Figure S4-A). Similar results were observed when consid-
ering the ratio of nucleosome favoring (GC, CG, GG) and
disfavoring (AA, CA, AC) di-nucleotide usage in the pro-
moter sequences of these two groups of genes (Figure 2-D,
and Additional file 1: Figure S4-B). Furthermore, as we
would expect, similar relationship between transcriptional
variability and number of miRNAs targeting 3" UTR was
observed when using miRNAs predicted sites from a dif-
ferent algorithm like miRanda [30] instead of TargetScan
(Additional file 1: Figure S5-A-D)

Gene expression noise and variability can be reduced
through a negative feedback mechanism [31,32]. If the ex-
pression of miRNAs is coherently coupled with that of
their target mRNAs encoding regulatory proteins, it guar-
antees that their interaction with target mRNAs reduces
transcriptional noise, thus stabilizing gene expression. Co-
herent transcriptional regulation of miRNA and target
regulatory genes would be expected to require significant
co-localization of miRNAs near to or in intronic regions
of regulatory genes. Indeed, we found that among 568 an-
notated miRNAs in UCSC genome browser website (mm9
assembly), 417 miRNAs are co-localized within —/+20 kb
of 480 genes. When we subjected the identified genes to
GO analysis, genes involved in regulation of biological
process and gene expression were significantly and prom-
inently over-represented (Additional file 1: Figure S3-C).
Overall these results suggest that regulatory genes are
often subjected to greater transcriptional variability, which
imposes the requirement for a correction mechanism.
Fine-tuning gene expression by means of miRNAs can ful-
fill this requirement, which in turn teleologically warrants
the selective inclusion of a greater number of miRNA sites
in the 3" UTR of regulatory genes.

The 3' UTR of regulatory genes are most conserved

To further understand the apparent miRNA recognition
bias toward mRNA of regulatory genes, we first ques-
tioned whether a greater number of miRNA sites could
be explained based on the length of 3" UTR regions of
regulatory genes. Although we observed, confirming an
earlier report [33], a positive correlation between the 3’
UTR length and the number of distinct miRNA sites
(Figure 3-A), the length alone could not explain the
presence of a larger number of miRNA sites at 3" UTR
of regulatory genes. We found that 3" UTR regions contain-
ing repeat elements such as LTR and SINE are longer
than the 3" UTRs devoid of these elements (Additional
file 1: Figure S6-A). Also, 3" UTRs which contain repeat
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elements have the median number of distinct miRNA
sites equals to 45 compared to the median of 24 sites
for 3'UTRs without repeat elements (Additional file 1:
Figure S6-B). Consequently, higher fraction of genes in the
4th quartile group contains LTR/SINE elements compared
to the 1st quartile groups (60% vs. 17%). Nonetheless,
within the 4th quartile group, the median number of dis-
tinct miRNA sites was not higher for LTR/SINE containing
3'UTRs than that for 3" UTRs devoid of LTR/SINE ele-
ments (66 sites vs. 66 sites). Therefore, within the 4th
quartile group we could not find statistically significant as-
sociation between the presence of the repeat elements or
length and the number of miRNA sites (p-value =0.15,
Wilcoxon rank sum test). For some of these 3’'UTRs, the
repeat elements may explain the presence of other regula-
tory elements such as binding sites for DNA or RNA
binding proteins [34,35]. A useful approach to interrogate
element functionality relies on sequence conservation
[36-38]. Therefore, we evaluated the relationship between

3'UTRs sequence conservation score and the number of
miRNA sites. The sequence conservation scores, calcu-
lated by multiple alignment of 30 vertebrates genome se-
quences using PhastCons method [39], were downloaded
from UCSC genome browser website. The results of this
analysis revealed a shift to the right in the distribution of
the 3"UTR conservation score for 4th quartile genes com-
pared to 1st quartile group, which suggests that the 3’
UTRs of genes in upper quartile group are more con-
served than those of the lower quartile group (Figure 3-B).
This positive correlation was even more evident when
plotting the average 3" UTR conservation score versus the
average number of distinct miRNA sites for each of the 20
vigintiles (Figure 3-C). Unexpectedly, the correlation be-
tween the number of miRNA sites and the conservation
score of regions encompassing the coding region of genes
was negative (Figure 3-D). Together these results suggest
that, even though the coding regions of regulatory genes
are less conserved when compared to housekeeping and
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non-regulatory genes, their 3° UTR regions are better
conserved and encompass more miRNA sites.

Interaction between miRNAs and mRNAs were
widespread in distant species

In the preceding sections we have established the case
for a significant over-representation of miRNA target
sites in the 3" UTR of regulatory genes. However, how
such selective mechanism could have evolved remains to
be explained. As part of an effort to address this ques-
tion, we seized on our observation that 3" UTR regions
of non-regulatory genes show lower conservation than
their coding regions (Figure 3). Such relative diversity of
the 3" UTRs can be due to a higher rate of accumulated
mutations, which in turn may result in scrambling of
miRNA target sites. To qualitatively evaluate this possi-
bility, we hypothesized that the bias in the distribution
of miRNA sites is a result of the evolutionary process,
where originally unbiased distribution of miRNA sites
among all genes independent of their function resulted

in a relative loss of the sites among non-regulatory genes
and conservation or even gain of the sites among regula-
tory genes.

To evaluate this conjecture, we investigated whether
the 1st quartile genes are targeted by more miRNAs in
distant species. To do this we took advantage of pre-
dicted miRNAs sites in orthologous 3" UTR for other
species in the same TargetScan data set. In addition to
the mouse genome, a reference genome in this study,
these data sets include predicted sites for human, chim-
panzee, rat, cow, horse, dog, chicken, opossum and frog,
among others. Similar to that of mouse, we obtained
binary matrices of mRNA-miRNA interactions for ortho-
logous 3" UTR in other species. In each species, we ob-
tained the number of distinct miRNAs targeting each
gene and normalized it to the average number of miRNA
sites in that species. This normalization is necessary since
these species have different number of identified miRNAs
and the comparison across species without normalization
is unreliable and uninformative. Our assertion was
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supported by the observation that the average number of
miRNA sites for the 1st quartile gene set incrementally in-
creased with evolutionary distance between each species
and mouse (Figure 4-A). To determine whether this result
was due to the normalization procedure or a random
observation, we examined the 4th quartile gene list and
found that the relationship between the number of
miRNA sites and the evolutionary distance is opposite
to that observed for the 1st quartile group (Figure 4-B).
Both results convincingly support our “selective inclusion”
model according to which non-regulatory genes lost and
regulatory genes gained miRNA sites during evolution.

Discussions

The discovery of microRNAs has unveiled a new mode
of gene regulation for these relatively small molecules
with important roles in many cellular processes. Large
numbers of miRNAs have been identified across a var-
iety of species, and most are known to interact with
mRNAs to degrade, stabilize, or inhibit their translation
[4]. It has been shown that miRNAs, by fine-tuning gene
expression, play a critical role in cell programming, dif-
ferentiation, proliferation, and cell death [6,10,12,40].
miRNAs regulate their target mRNAs in a sequence spe-
cific manner by complementary pairing of miRNA seed
sequence mainly to the 3" UTR of target transcripts.
Since the seed sequence consists of only 7-8 base pairs, it
provides the opportunity for a given miRNA to interact
with many transcripts. On the other hand, the sequence
content of the 3" UTR of a single transcript offers a plat-
form for interaction with a number of miRNAs. To better
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understand the nature of distribution of miRNA target
sites, we carried out genome-wide and comparative ana-
lysis of miRNA targets. We found that transcription fac-
tors and genes involved in regulatory processes are
preferentially targeted by many distinct miRNAs. The ana-
lysis of GO terms associated with genes harboring a large
number of miRNA sites revealed that these genes are
mainly involved in regulation of biological and cellular
processes, i.e., regulatory genes. In contrast, the set of
genes with relatively small number of miRNA sites were
depleted of regulatory genes and primarily comprised of
genes encoding structural cellular and extracellular com-
ponents. Additionally, transcription factors, a bone fide
class of regulatory proteins, are targeted by higher than
expected number of miRNAs. This result is consistent
with the previous observation that functionally important
genes are tightly regulated by miRNAs [33].

When comparing gene expression variability, we found
that genes with higher variability and expression noise,
which are also enriched for regulatory genes, have a
higher chance of being targeted by miRNAs. On the
contrary, transcripts of housekeeping genes character-
ized by stable levels do not require being under con-
stant fine tuning, as indicated by a very low number of
distinct miRNA sites in their 3" UTR. Additionally, we
observed that genes with higher transcriptional noise
driven by promoter sequence content are targeted by
more miRNAs compared to transcript with small noise
level, suggesting the existence of coupled or coordinated
mechanism for transcriptional and post transcriptional
regulation.

A

0.9,
0.8f
0.7F
0.6f
0.5F

0.4F

Averaged/Normalized Number of miRNA Sites

03 . *

a’umzn Chimp Rhesus Mouse Rat Horse Cow Dog Opossum Chicken Frog

based on their evolutionary distance to mouse genome.

Figure 4 miRNA target recognition is evolutionarily biased in favor of regulatory genes. (A) Species-specific loss of miRNA sites for
non-regulatory genes (1st quartile). (B) Species-specific gain, or retention, of miRNA sites for regulatory genes (4th quartile). Species were ordered

2r
*
19k
1.8
£
<
g 17F .
E *
| ¢ .
g 1.6 . * .
H
z
H
2 A5F
g
3
£
g .
4 -
g *
<
1.3F
1.2
.
I1-ﬁ]man Chimp Rhesus Mouse Rat Horse Cow Dog Opossum Chicken Frog




Zare et al. BMC Evolutionary Biology 2014, 14:74
http://www.biomedcentral.com/1471-2148/14/74

These observations complement the notion and further
suggest the presence of a feedback loop between miRNAs
and regulatory genes such as TFs [41-44]. Transcriptional
noise or increased transcription of a regulatory gene may
result in increased expression of miRNAs targeting its 3’
UTR. By virtue of regulatory genes 3" UTR encompassing
many miRNA sites, it is highly likely that one of these
affected miRNAs interacts with the regulatory gene's
mRNA to dampen its expression. In agreement with the
existence of a feedback mechanism, we found that sig-
nificant numbers of annotated miRNAs are located
nearby or inside regulatory genes.

To understand how evolution could have affected the
interactome landscape of miRNAs and their targets, we
analyzed the sequence content of miRNAs targets’ in 3’
UTR and the whole gene regions. In addition, we carried
out comparative analysis of miRNAs targets across spe-
cies for orthologous 3" UTR regions. We found that the
relative degree of conservation of whole gene (or CDS
region) and 3" UTR regions is inversed for two groups
of genes with high and low number of miRNA sites.
Specifically, genes with a low number of miRNA sites
are more conserved than their 3" UTRs alone, whereas
genes with a high number of miRNA sites can be char-
acterized by a greater degree of conservation of their 3’
UTR regions. Analysis of orthologous 3'UTR’s revealed
that the regulatory genes likely have gained and the non-
regulatory genes have lost miRNA sites in the course of
evolution. For structural and housekeeping genes, which
are expected to be stably expressed across all time and
spatial domains, this result is consistent with selective
avoidance mechanism postulating that genes have evolved
to selectively avoid (or exclude) sites for co-expressed
miRNAs [13].

Conclusions

We deployed a bottom-up approach to systematically
study the landscape of all predicted conserved and non-
conserved miRNA-mRNA interaction sites in the mouse
genome. On the basis of our results, one can envision a
model according to which the interaction of miRNAs
with mRNAs were widespread early on, but during evolu-
tion, through a selective pressure, non-regulatory genes
with low transcription noise and stable expression profile
lost their sites, while regulatory genes which endure
higher transcription noise retained and gained new sites.
This adaptation is consistent with the requirements that
regulatory genes need to be tightly controlled in order
to have precise and optimum protein level to properly
function.

Materials and Methods
We used the current version (release 6.2) of TargetScan
mouse data set (http://www.targetscan.org/mmu_61/).
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TargetScan was originally developed by [45] for prediction
of miRNA targets in vertebrates and further improved
[9,14,46]. This software predicts biological targets of
miRNAs by searching for the presence of conserved
8-mer and 7-mer sites that match the seed region of each
miRNA and rank them based on the context + scores of
the sites [9,46]. Weak microRNA sites were filtered out,
and only sites with context + score above 50 and 75 per-
centile for conserved and non-conserved sites were con-
sidered, respectively. The resulting data were converted
into binary matrix of gene-miRNA interactions between
18440 genes and 779 miRNAs. An element of matrix for
a given gene and a specific miRNA was set to 1 if a site
for the miRNA was present in the mRNAs 3'UTR.
Therefore, several occurrences of sites for the same
miRNA at defined 3" UTR were altogether considered
as a single site for that specific miRNA. Similarly, a site
predicted to interact with two or more distinct miRNAs
is counted twice or more. The binary matrices corre-
sponding to interactions of orthologous 3" UTR and
miRNA in other species (human, chimpanzee, rat, cow,
horse, dog, chicken, opossum and frog) were generated
in a similar manner from the same data sets. Conserved
and non-conserved predicted sites for Mouse miRNAs
using miRanda algorithm [30] were downloaded from
(http://www.microrna.org). Only data sets with good
“mirSVR” score [16] were used in our analysis.

Comparative GO analysis of 1st and 4th quartile miRNA
target gene sets was carried out using Gorilla web tool
(http://cbl-gorilla.cs.technion.ac.il/) [47], by setting 4th
quartile gene set as the list of interest and 1st quartile
gene set as a background set and vice versa. Tissue spe-
cific gene were downloaded from “TiSGeD: a database of
tissue specific genes” [48].

Gene expression variability was estimated using pro-
moter DNA sequence features (surrounding +/-1 kb of
transcription start sites (TSS)) of all UCSC annotated
genes, mm9 assembly. G + C content and occurrence of
nucleosome favoring and disfavoring di nucleotides were
used as an substitute to nucleosome occupancy to infer
intrinsic gene expression noise [26,28,29,49]. The number
of occurrences of nucleosome favoring di-nucleotides GC,
CG and GG and nucleosome disfavoring di-nucleotides
AA, CA and AC in +/-1 kb of TSS were counted, and the
ratio of the total count of nucleosome favoring di-
nucleotides to the total count of nucleosome disfavoring
di-nucleotides was calculated as a measure of nucleosome
occupancy. Gene and 3" UTR conservation score were
downloaded from UCSC genome browser websites. We
used data from vertebrate conservation (phastCons30way)
primary table for the regions of annotated genes over-
lapped with consensus coding sequence (CCDS) and 3’
UTR regions alone. The mean score columns of tables
were used for analysis presented in this paper.
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