
1.0

0.5

0.0

0.5

1.0

1.5

1 0 1 2 3
Flexibility (MSF)

E
vo

lu
tio

na
ry

 R
at

e 
(

)

R4S

STRESS

FLEX

A mechanistic stress model of protein evolution
accounts for site-specific evolutionary rates and
their relationship with packing density
and flexibility
Huang et al.

Huang et al. BMC Evolutionary Biology 2014, 14:78
http://www.biomedcentral.com/1471-2148/14/78



Huang et al. BMC Evolutionary Biology 2014, 14:78
http://www.biomedcentral.com/1471-2148/14/78
RESEARCH ARTICLE Open Access
A mechanistic stress model of protein evolution
accounts for site-specific evolutionary rates and
their relationship with packing density
and flexibility
Tsun-Tsao Huang1,2†, María Laura del Valle Marcos3†, Jenn-Kang Hwang1,2 and Julian Echave3*
Abstract

Background: Protein sites evolve at different rates due to functional and biophysical constraints. It is usually
considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA).
However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing
Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence
variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution.

Results: We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility
Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model,
introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which
we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active
conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates
and the local stress of the mutant’s active conformation.
We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that
the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that
the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed
nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is
very little remaining correlation between sequence variability and dynamical flexibility.

Conclusions: We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a
site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is
proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the
model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility.
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Background
Due to functional and biophysical constraints, different
protein sites evolve at different rates of amino-acid
substitution [1-6]. The most popular structural correl-
ate of a site’s substitution rate is its Relative Solvent
Accessibility (RSA) [7-10]. In a thorough assessment of
many structural properties as predictors of site-specific
rates of evolution, Franzosa and Xia showed that the
only two with significant independent contributions
are RSA and CN, the Contact Number, with RSA per-
forming slightly better [9]. However, in a more recent
study, Yeh et al. compared RSA with two Local Packing
Density (LPD) measures, CN and the Weighted Contact
Number (WCN), and found that both LPD measures cor-
relate better than RSA with evolutionary rates [11]. More-
over, they found that once LPD is controlled for, the
independent contribution of RSA is small. Thus, LPD
seems to be the main structural determinant of rate of
evolution at site level. The purpose of the present work is
to study possible mechanisms that connect LPD to evolu-
tionary rates.
A possible link could be dynamical flexibility. A site’s

flexibility, quantified by its Mean Squared Fluctuation
(MSF), is approximately proportional to 1/LPD [12]. A
flexibility-based explanation assumes that a site’s rate
of evolution increases with its dynamical flexibility.
Within this framework 1/LPD would be just a “proxy”
of a site’s flexibility, which would be the actual deter-
minant of its evolutionary rate. Such interpretation
would seem to be supported by empirical correlation
studies of sequence variability vs. MSF [13] and vari-
ability vs. 1/LPD [14,15], and by a recent study based
on a different dynamical flexibility measure [16]. Such
a flexibility-based explanation not only makes some in-
tuitive sense, but it is attractive because it is in line with
the increasing acknowledgement of the role of dynam-
ics for protein function [17,18]. Therefore, we postulate
as our null model an explicit empirical Flexibility
Model according to which a site’s rate of evolution de-
pends linearly on its MSF.
The main drawback of the previous flexibility-based

interpretations, and the empirical Flexibility Model we
set up to make their underlying assumptions explicit,
is that no mechanism is proposed. To this end, here we
propose a mechanistic alternative model. We model
mutations as random perturbations of the parameters
of the protein’s potential energy landscape and natural
selection as a function of the probability that a mutant
adopts a specific active conformation. Using basic stat-
istical physics and certain simplifying assumptions, we
derive that according to this model a site’s evolutionary
rate will depend on the local stress introduced in the
active structure by mutating it. Therefore, we shall call
it the Stress Model.
We will show that the Stress Model explains both the
dependence of site-specific rates of evolution on packing
density and on dynamical flexibility in terms of the local
stress introduced by mutations on the protein’s active
structure.

Methods
Elastic network models
Let the conformation of an N-sites protein be repre-
sented by the column vector of the 3 N Cartesian coor-
dinates of its N Cα atoms: r = (x1 y1 z1 x2 y2 z2…
xN yN zN )T. ri = (xi yi zi)

T is the position vector of the ith
Cα. The vector joining sites i and j is dij = rj − ri with
length dij = dij. We use r0 for the protein’s equilibrium
conformation in which the ith site is at r0i .
An Elastic Network Model (ENM) represents the folded

protein as a network of sites connected by springs. They
have proved accurate and useful in a variety of applica-
tions [17,19]. The potential energy landscape is given by:

V rð Þ ¼ 1
2

XN−1

i¼1

XN
j¼iþ1

kij dij−d0
ij

� �2
ð1Þ

where d0
ij and kij are, respectively, the equilibrium length

and force constant of spring ij. As far as we know, all
models proposed so far assume that d0

ij ¼ dij r0ð Þ ¼ r0j −r
0
i ,

i.e. that at the equilibrium conformation r0, all springs are
relaxed.

Fluctuations and flexibility
No protein is frozen at its equilibrium conformation. At
non-zero absolute temperature, the folded protein fluc-
tuates around r0 sampling conformational space with
equilibrium Boltzmann’s probability density function:

ρ rð Þ ¼ e−βV rð Þ

ZF
ð2Þ

where β ¼ 1
kBT= , with T the absolute temperature and

kB Boltzmann’s constant. The denominator of Eq. (2) is
the partition function of the folded protein:

ZF ¼
Z

e−βV rð Þdτ ð3Þ

where ∫… dτ stands for integration over the whole of
conformational space.
The dynamical flexibility (mobility) of a site is ordinar-

ily quantified using its Mean Square Fluctuation:

MSFi≡ ri−r0i
�� ��2D E

¼
Z

ri−r0i
�� ��2ρ rð Þdτ ð4Þ

To calculate MSFi using Eq. (4), the potential energy
function Eq. (1) is approximated using a second-order
Taylor expansion around its equilibrium conformation.
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First, the Hessian matrix H of second derivatives of the
potential Eq. (1) with respect to the atoms’ Cartesian co-
ordinates is calculated. Then, H is inverted to obtain the
3N × 3N variance-covariance matrix C, which is com-
posed of a 3 × 3 Cij block for each pair of sites. Finally, a
site’s MSF is given by [20]:

MSFi ¼ Tr C iið Þ ð5Þ

An empirical flexibility model
Several studies have investigated the correlation be-
tween site-specific rates of evolution or other sequence-
variability measures and the corresponding flexibility.
Since such studies use Pearson’s correlation coefficients
as measure of association, the underlying assumption is
that there is a linear relationship between rate of evolu-
tion and flexibility. To make such assumption explicit,
here we postulate the following Flexibility Model:

ω̃i
FLEX ¼ aFLEXP þ bFLEXP

˜MSFi ð6Þ

where ω̃i is the relative rate of substitution of the ith
site. In general, for site-specific scalar properties we will
use relative values obtained by z-score normalization.
For any given site-specific property xi, we the z-score
normalized values are ~xi ¼ xi− xh ið Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2h i− x2h i
p , where the

averages are calculated over all sites of the same protein.
The subscript P is used to note that a priori the coeffi-
cients may depend on the protein considered. We
emphasize that the Flexibility Model is empirical: rather
than derived from first principles, it is postulated, based
on the intuitive notion that flexible sites should accom-
modate mutations more easily.

A mechanistic stress model
We introduce here a mechanistic model that includes
explicitly the effects of mutations and natural selection.
We consider mutations as random perturbations of the
wild-type ENM potential [21-23]. A random mutation
at site i results in a mutant whose potential Vmut is ob-
tained from Eq. (1) by adding perturbations to the equi-
librium length of each of its springs: d0

ij→d0
ij þ δij: We

further assume that the springs are independently per-
turbed and that perturbations are spring-independent,
randomly drawn from a distribution with zero mean
and constant variance α2:

δij
� � ¼ 0; δ2ij

D E
¼ α2: ð7Þ

As we mentioned above, when the wild type is at its
equilibrium conformation r0wt , all springs are relaxed by
construction. In contrast, when the mutant is at r0wt , the
mutated site’s springs will be stressed (stretched or
compressed). For further reference, we define the Mean
Local mutational Stress (MLmS) as follows:

MLmSi≡ Vmut r0wt
� 	

−Vwt r0wt
� 	� �

mut@i ð8Þ
where 〈… 〉mut@ i stands for averaging over random mu-
tations at the ith site.
To complete the model, we derive a simple selection

function. First, we assume that there is a single specific
active conformation ractive. Next, we acknowledge fluctu-
ations and assume that the protein’s activity (either the
wild-type’s or a mutant’s) is proportional to the concen-
tration of the active conformation ractive. Finally, we as-
sume that ractive ¼ r0wt and, accordingly, we model the
acceptance probability of a mutant as:

paccept≡
CF

mutρmut r0wt
� 	

CF
wtρwt r

0
wtð Þ ð9Þ

Where CF
mut and CF

wt are the concentrations of folded pro-
tein for the mutant and wild type, respectively. From statis-
tical mechanics, the Folded-Unfolded equilibrium constants
for the wild-type and mutant proteins are, respectively,

CF
wt=Cwt

U ¼ ZF
wt=Zwt

U and C
mut
F

=Cmut

U ¼ Z
mut

F
=Zmut

U . We

further assume that the partition function and concentra-
tion of unfolded protein is the same for the mutant and

wild type. Therefore C
mut

F
=Cwt

F ¼Zmut

.
Zwt

. Replacing this

relationship and Eq. (2) into Eq. (9) we find:

paccept ¼ e−β Vmut r0wtð Þ−Vwt r0wtð Þ½ � ð10Þ
Finally, averaging over random mutations at site i and

using Eq. (8) we obtain the acceptance rate:

ωi ≡ paccepti

� �
mut@i ¼ e−β Vmut r0wtð Þ−Vwt r0wtð Þ½ �D E

mut@i
≅1−β MLmSi

ð11Þ
Where β may be thought of as representing not just

temperature but also selection pressure, and we have as-
sumed that βΔV << 1 (mild selection) to approximate the
exponential to first order. To finish, we z-normalize the
variables of Eq. (11) to get the relative rates of evolution:

ω̃i
STRESS ¼ aSTRESSP þ bSTRESSP

˜MLmSi : ð12Þ
This equation specifies the stress model.

Relationship of flexibility and stress with packing density
The purpose of this work is to investigate why LPD cor-
relates with rate of evolution at site level. The previous
models relate rates of evolution with MSF (Eq. 6) and
MLmS (Eq. 12). Here we derive the relationship between
these properties and LPD measures.



˜

Huang et al. BMC Evolutionary Biology 2014, 14:78 Page 4 of 9
http://www.biomedcentral.com/1471-2148/14/78
First, we relate flexibility and stress with the potential
energy parameters of Eq. (1). Let us define:

ki≡
X
j≠i

kij ð13Þ

Regarding flexibility, replacing Eqs. (1), (2), and (3)
into Eq. (4), following [12], and using Eq. (13), it can be
found that:

MSFi≅
3

2βki
ð14Þ

Regarding stress, from Eqs. (1), (7), and (8), after some
algebra, we get:

MLmSi ¼ 1
2
α2ki ð15Þ

Note that Eq. (14) is an approximation while Eq. (15)
is an identity.
Second, to relate the previous models to LPD we need

to specify the ENMs spring constants. A variety of ENMs
have been developed (see [24] for a recent comparison).
Here, we consider two models. First, the “parameter-free
Anisotropic Network Model” (pfANM) [25], which uses:

kij ¼ 1

d0
ij

� �2 ð16Þ

Second, the “Anisotropic Network Model” (ANM)
[20], for which:

kij ¼
1 d0

ij ≤ Rcut

0 d0
ij > Rcut

(
ð17Þ

where Rcut is typically between 10 Å and 18 Å.
From Eqs. (13), (16), and (17) and z-normalizing we

find:

~ki ¼˜LPDi ð18Þ
where for the pfANM, LPD is the Weighted Contact
Number (WCN) of [26], and for the ANM, it is the Con-
tact Number (CN): the number of sites closer than Rcut.
Finally, from Eqs. (14) and (18) it follows:

˜MSFi ≅ k̃i−1 ¼˜LPDi
−1 ð19Þ

Similarly, from Eqs. (15) and (18) we get:

˜MLmSi ¼ k̃i ¼˜LPDi ð20Þ
Note that while MSF is approximately equal to 1/LPD,

MLmS is exactly equal to LPD (for relative z-normalized
values).
Calculation details
We used the dataset of 213 monomeric enzymes of Yeh
et al. [11]. The dataset includes proteins of diverse sizes,
functional, and structural classes (Additional file 1:
Table S1).
We used the evolutionary rates of [11]. They were in-

ferred from multiple alignments of homologous se-
quences using Rate4Site, which builds the phylogenetic
tree using a neighbour-joining algorithm and estimates
rates with an empirical Bayesian approach and the JTT
model of sequence evolution [27,28]. To keep in mind that
we are not dealing with the (unknown) “true rates”, but
with Rate4Site-inferred rates, we use the notation ω̃R4S

i .
From the pdb equilibrium structure of each protein we

calculated the spring constants of pfANM (Eq. 16) and
ANM (Eq. 17), for which we used a cut-off distance of
13 Å [11]. Given a protein and ENM model, we calculated
the Hessian matrix, inverted it to obtain the variance-
covariance matrix, and calculated the site-specific flexibil-
ity values˜MSFi using Eq. (5) and z-normalizing. Regard-
ing stress, we obtained the relative site-specific values
MLmSi using Eq. (15) and z-normalizing.
Since we always use z-normalized relative values, for

the sake of notational simplicity, we shall use ωR4S, MSF,
and MLmS to refer to z-normalized values from now on.
We performed two analyses. In a protein-by-protein

analysis, we performed linear fits of ωR4S with either
MSF (Flexibility Model) or MLmS (Stress Model) using
the lm() function of the base package of R for each pro-
tein. In a global analysis we pooled together all sites of
all proteins and performed similar global fits.
To assess the goodness-of-fit of a model to the data,

we used the Akaike Information Criterion AIC = 2k − 2
ln L, where k is the number of parameters and L is the
model’s likelihood given the data. When comparing
models, the AIC weight of evidence for each model is

given by w AICð Þ∝e‐12Δ AICð Þ , where Δ(AIC) = AIC ‐min
(AIC) [29,30].
We also calculated Pearson’s correlation coefficients

between evolutionary rates and the independent variable
that defines each model. When comparing two models,
we calculated partial correlation coefficients of evolu-
tionary rates with the independent variable of each
model controlling that of the other.
Results and discussion
We aim to elucidate whether a site’s rate of evolution
depends on flexibility or mutational stress as measured
by MSF and MLmS, respectively. To address this issue,
for each site of each of the 213 proteins of a dataset of
monomeric enzymes, we used the Rate4Site program to
estimate its relative evolutionary rate ωR4S, we calculated
its MSF using both the pfANM model and the ANM
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model using Eq. (5), and we calculated its MLmS for the
pfANM and ANM models using Eq. (15). We also consid-
ered as a measure of flexibility the B-factors of the pdb files.
As described in Methods, all relative site-specific values
were z-score normalized for each protein. All these values
for the 77141 sites of the 213 proteins can be found in
Additional file 2: Table S2.

Stress vs. flexibility: protein-by-protein analysis
We started by performing a protein-by-protein compari-
son. For each protein, we fit the competing Stress and
Flexibility models to the evolutionary rates ωR4S. Results
for each protein can be found in Additional file 3: Table
S3 and Additional file 4: Table S4. Summary information
is shown in Table 1. The total AIC (summed over all
proteins) is lower for the Stress Model than for the
Flexibility model for either ENM potential. The mean
AIC weight of evidence is much larger for the Stress
Model than for the Flexibility Model. Moreover, mean
AIC weights are consistent with counting the number of
proteins for which one model outperforms the other: for
the pfANM case, the Stress Model is best for 206/213
proteins and for the ANM case for 209/213 proteins.
The (absolute value of the) average Pearson correlation
is larger for MLmS than for MSF for both ENMs. More-
over, for both ENMs, while the mean partial rate-stress
correlations are large, the mean partial rate-flexibility
correlations, controlling for stress, are very small. In
other words, MSF makes very little independent contri-
bution to the explained variance of site-specific evolu-
tionary rates.
We think that it is most meaningful to compare be-

tween MLmS and MSF calculated using the same poten-
tial energy landscape (pfANM or ANM). However, the
z-normalized MSF values can also be obtained from the
B-factors available from the pdb files. We compared the
Stress Model, both pfANM-based and ANM-based with
a B-factor-based flexibility model and the conclusions
are the same (results not shown). In general B-factor
based Flexibility Models are the worst (see Additional
file 3: Table S3 and Additional file 4: Table S4). This is
not surprising because B-factors usually depend very
Table 1 Model comparison: protein-by-protein analysis

Potential Model y x AIC

pfANM Stress ω MLmS 1905

Flexibility ω MSF 1986

ANM Stress ω MLmS 1941

Flexibility ω MSF 2072

NOTE: Potential is the ENM potential, Model is either the Stress Model or Flexibility Mo
the independent variable of each model. AIC is the Akaike Information Criterion summ
model (same ENM). Nprot is the number of proteins for which each compared model (s
coefficient between variables y and x. <pR> is the average partial correlation coefficien
All variables were z-score normalized for each protein before fitting.
strongly on several factors including experimental con-
ditions, method used to estimate them, crystal disorder,
etc. (see [31] and references therein).
To summarize, whether using the pfANM or the ANM

potentials, stress (MLmS) predicts evolutionary rates bet-
ter than dynamical flexibility (MSF) for almost all proteins
of the dataset and the independent contribution of MSF is
very small once MLmS is controlled for.

Stress vs. flexibility: global analysis
To consider the total evidence in favour of each model we
performed a global analysis. We obtained linear fits of the
ωR4S evolutionary rates to the Stress (Eq. 12) and Flexibil-
ity (Eq. 6) models for all 77141 sites of the dataset pooled
together. Results are shown in Table 2. From AIC it fol-
lows that the Stress Model is better than the Flexibility
Model for either pfANM or ANM. The Δ(AIC) values
(within the same ENM) are so large that the total weight
of evidence for the Stress Model, compared with the Flexi-
bility Model, is w(AIC) = 1 whether using pfANM or
ANM. The Pearson correlation coefficient R follows the
same trend. We note, that even though smaller, the correl-
ation coefficients for rate vs. MSF are significant, which
agrees with previous findings [14,32,13,15]. However, par-
tial correlations (pR) show that once stress (MLmS) is
controlled for, the rate-MSF correlation almost disappears:
the sequence-flexibility correlation is indirect. Similar re-
sults are obtained when using B-factors to estimate MSF
(results not shown). In summary, the total evidence in
support of the Stress Model is very strong.

Evolutionary rates vs. flexibility and stress
What does the dependence of evolutionary rates on flexi-
bility and stress look like? Figure 1 compares the inferred
rates with the predictions of the Stress and Flexibility
models. The models were globally fit as described in the
previous section. Clearly, the Stress Model fits the inferred
rates nicely over almost the whole range, in evident con-
trast with the Flexibility Model, for both pfANM (top
panels) and ANM (bottom panels).
Even though previous sequence-flexibility studies used

Pearson correlations, which, rigorously, make sense only
<w(AIC)> Nprot <R> <pR>

08 0.97 206 −0.54 −0.33

62 0.03 7 0.45 −0.06

54 0.98 209 −0.52 −0.39

58 0.02 4 0.35 −0.04

del, y is in all cases the site-specific rate of evolution inferred using Rate4Site, x is
ed over all proteins. <w(AIC)> is the average of the AIC weight for each compared
ame ENM) is the best one. <R> is average over proteins of Pearson’s correlation
t when controlling for the x variable of the contrasting model (same ENM).



Table 2 Model comparison: global analysis

Potential Model y x AIC w(AIC) R pR

pfANM Stress ω MLmS 191424 1.00 −0.55 −0.32

Flexibility ω MSF 199645 0.00 0.47 −0.04

ANM Stress ω MLmS 194589 1.00 −0.52 −0.40

Flexibility ω MSF 207993 0.00 0.36 −0.02

NOTE: Results of global fits for all sites of the dataset. Potential is the ENM
potential. Model is either the Stress Model or Flexibility Model. y is in all cases
the site-specific rate of evolution inferred using Rate4Site, x is the independent
variable of each model. AIC is the Akaike Information Criterion, that quantifies
the goodness of fit of a model (the lower the better). w(AIC) is the AIC weight
of evidence for each compared model (same ENM). R is Pearson’s correlation
coefficient between variables y and x. pR is the partial correlation coefficient
when controlling for the x variable of the contrasting model (same ENM). All
variables were z-score normalized for each protein before fitting.
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for linear relationships, they already found nonlinear
sequence-flexibility plots similar to those of Figure 1 (left
panels) [14,32,13]. In spite of this, they either dismissed
the nonlinear part [14]or interpreted it in terms of dif-
ferent selection regimes [13]. From Figure 1 (left panels)
it is clear that the nonlinearity follows naturally from the
proposed Stress Model, suggesting that evolutionary
rates depend nonlinearly on MSF because they depend
(approximately) linearly on MLmS, and MSF ≈ 1/MLmS,
which can be derived from Eqs. (19) and (20).
To conclude this subsection, we must observe that in-

ferred rates are larger than stress-based predictions for the
slowest sites and smaller for the fastest. A reason could be
that inference methods overestimate small rates and
underestimate large ones [33]. However, close inspection
of the rate vs. stress curves (right panels of Figure 1) indi-
cates that despite the very good fit of the linear Stress
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panels: parameter-free Anisotropic Network Model (pfANM). Bottom
from the sequence alignments using Rate4Site. Vertical segments: 99%
d line: Flexibility Model predictions. For the rate vs. flexibility plots
Square Fluctuation (MSF) dynamical flexibility measure, and then MSF and
t panels), sites were evenly split into bins according to their Mean Local
ch bin. All variables were z-normalized for each protein.
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Model, there still seems to be some remaining nonlinearity
of the ωR4S vs. MLmS plots. A possible reason is the weak-
selection approximation used to linearize the exponential
in Eq. (11), however, resolving this issue is beyond the
scope of the present report.

pfANM vs. ANM
To finish this section, we compare ANM with pfANM.
Figure 1 shows that both pfANM and ANM result in
similar qualitative dependence of rate vs. flexibility (left
panels) and rate vs. stress (right panels). However, the
pfANM potential (top panels) results in better fits to the
inferred rates than the ANM potential (bottom panels).
Accordingly, the AIC values (Table 1 and Table 2) show
that the pfANM-based stress model is better than the
one based on ANM. This is in agreement with the find-
ing that WCN correlates better than CN with evolution-
ary rates [11].

Conclusion
We introduced a mechanistic Stress Model of protein
sequence evolution. Mutations are modelled as random
perturbations of the protein’s potential energy landscape,
represented using Elastic Network Models. To model
natural selection, we used basic statistical physics to de-
rive the expected probability that a mutant samples a
specific functional structure. From this, we deduced a
linear relationship between a site’s mean evolutionary
rate and the mean local mutational stress (MLmS) of the
functional conformation. We compared this model with
an empirical Flexibility Model that postulates that a site’s
evolutionary rate is linearly dependent on its flexibility
(measured by its MSF). We compared both models and
found strong support for the Stress Model. Moreover,
the independent contribution of flexibility is negligible
once stress is controlled for.
The MLmS is proportional to Local Packing Density

and, therefore, the Stress Model provides a mechanism for
the connection between a site’s LPD and its evolutionary
rate. Regarding the sequence-flexibility relationship, previ-
ous empirical correlation studies had already found that
the sequence-flexibility relationship is nonlinear and either
dismissed the nonlinear parts or attempted an interpret-
ation in terms of different selection regimes [14,32,13].
We found the nonlinearity follows naturally from the
Stress Model: evolutionary rates depend nonlinearly on
MSF because they depend (approximately) linearly on
MLmS, and MSF ≈ 1/MLmS. To summarize, the Stress
Model accounts for the observed site-dependency of evo-
lutionary rates and its relationship with packing density
and flexibility.
A note of caution is in order here. For the Stress Model

mutational stress was not postulated to be the determin-
ant factor a priori but, rather, it was derived from the
assumptions of the model that are essentially two (1) there
is a single active conformation and (2) mutants are flexible
and therefore can sample the active conformation so that
they are at least partly functional. Therefore even though
Stress Model was chosen to designate this mechanistic
model, it should be kept in mind that it demonstrates the
importance of protein flexibility.
It is worthwhile to mention some of the possible caveats

and further developments of the Stress Model. First, we
assume a single active conformation. In principle, it would
be reasonable to assume that only changes of the active-
site conformation should affect fitness. However, we note
that if protein sites are strongly coupled, which is often
the case, any conformational change will affect the active
site conformation. For a strongly coupled elastic network
forcing the active site to adopt a given conformation
makes the rest of the protein move accordingly. Therefore,
assuming that the whole protein conformation must be in
the “active conformation” for the protein to function is
not necessarily an important limitation. However, for cases
where the coupling is not very strong, if the active site is
known, this could be easily tackled using a modified ver-
sion of the selection function that integrates away all coor-
dinates except for those of the active site (i.e. uses marginal
conformational distributions rather than the full ones in
the definition of selection function).
Second, in Eq. (11) we performed a linear approximation

of the exponential function. This is reasonable a priori
only for weak selection, and a posteriori by the good fit of
the resulting model to the data. We should note, however,
this approximation can be easily removed, and the actual
mean of the exponential can be calculated via simulation.
Further work is needed to explore this possibility.
Third, we note that the z-normalized MLmS values,

on which the Stress Model is based, are identical to the
z-normalized LPD measures WCN (for the pfANM po-
tential) and CN (for the ANM potential). For other po-
tentials this need not be the case and it is for that
reason that we chose to keep the notation MLmS in the
present tables and figures, to make them comparable
with further research based on estimating MLmS using
different, perhaps better, potential energy functions.
To close, we note that the mutational part of the

Stress Model accounts for observed patterns of evolu-
tionary divergence of protein structure and dynamics
[21-23]. Regarding structural divergence, unselected
random mutations reproduce very well the evolutionary
conservation of a “structural core” and account for the
observation that structures diverge mainly within the
space spanned by a few low-energy collective normal
modes [21,22]. Regarding protein motions, unselected
random mutations explain the higher conservation of
the low-energy normal modes in terms of their muta-
tional robustness [31,23]. In general, those studies could
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found no evidence of natural selection at the levels of
structural or dynamical divergence. Clearly, without nat-
ural selection, all sites would evolve at the same rate,
which is not the case. The Stress Model proposed here ac-
counts rather well for the variation of rates of evolution
among sites. It would be interesting to study the effect of
the selection function introduced here on structural and
dynamical divergence and compare the observed patterns
with those that result from unselected mutations. This
could advance our understanding of the effect of selection
at the levels of structure and dynamics. In general, we
think the Stress Model provides a possible unifying frame-
work to study evolutionary protein divergence at the levels
of sequence, structure, and dynamics.
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Additional file 1: Table S1. Protein Dataset. Protein: pdb code; chain:
protein chain; EC.class: Enzyme Comission class; SCOP class: structural
class of domains according to the SCOP classification; Domains: number
of domains; Year: year in which the structure was determined; Resolution:
resolution of the X-ray experiment; Sites: number of sites of the protein
chain; Number.of.Sequences: number of sequences of the multiple
sequence alignment used for site-specific rate inferences.

Additional file 2: Table S2. Site-specific rates, flexibility, and stress
measures. pdb: pdb identifier of the protein; chain: protein chain; site:
protein site; zwr4s: z-normalized site-specific rate of evolution inferred
using Rate4Site; zbfactor: z-normalized B-factor; zmsf_pfanm: z-
normalized Mean Square Fluctuation (MSF) obtained with the pfANM
model; zmlms_pfanm: z-normalized Mean Local mutational Stress (MLmS)
obtained with the pfANM model; zmsf_anm: z-normalized MSF for the
ANM model; zmlms_anm: z-normalized MLmS for the ANM model.

Additional file 3: Table S3. Protein by protein goodness-of-fit mea-
sures. pdb: pdb identifier of the protein; chain: protein chain; aic.
zmlms_pfanm: Akaike Information Criterion (AIC) of the pfANM-based
Stress Model; aic.zmsf_pfanm: AIC of the pfANM-based Flexibility Model;
aic.zmlms_anm: AIC for the ANM-based Stress Model; aic.zmsf_anm: AIC
for the ANM-based Flexibility Model: AIC.zbfactor: AIC for a B-factor based
Flexibility Model; r.zmlms_pfanm: Pearson correlation coefficient (R) of
the pfANM-based Stress Model; r.zmsf_pfanm: R of the pfANM-based
Flexibility Model; r.zmlms_anm: R for the ANM-based Stress Model; r.
zmsf_anm: R for the ANM-based Flexibility Model; r.zbfactor: R for a
B-factor-based Flexibility Model.

Additional file 4: Table S4. Protein by protein comparison of pairs of
models. pdb: pdb identifier of the protein; chain: protein chain; waic.m1.
m2 is the Akaike Information Criterion weight of evidence w(AIC) of m1
in an m1 vs m2 comparison. pr.m1.m2 is the partial correlation of
site-specific rates of evolution with the independent variable defining
m1, controlling that of m2. Models considers are: pfANM-based Stress
Model (zmlms_pfanm); pfANM-based Flexibility Model (zmsf_pfanm);
ANM-based Stress Model (zmlms_anm); ANM-based Flexibility Model
(zmsf_anm); B-factor-based Flexibility Model (zbfactor).
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