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Age estimates for an adaptive lake fish radiation,
its mitochondrial introgression, and an unexpected
sister group: Sailfin silversides of the Malili Lakes
system in Sulawesi
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Abstract

Background: The Malili Lakes system in central Sulawesi (Indonesia) is a hotspot of freshwater biodiversity in the
Wallacea, characterized by endemic species flocks like the sailfin silversides (Teleostei: Atherinomorpha:
Telmatherinidae) radiation. Phylogenetic reconstructions of these freshwater fishes have previously revealed two
Lake Matano Telmatherina lineages (sharpfins and roundfins) forming an ancient monophyletic group, which is
however masked by introgressive hybridization of sharpfins with riverine populations. The present study uses
mitochondrial data, newly included taxa, and different external calibration points, to estimate the age of speciation
and hybridization processes, and to test for phylogeographic relationships between Kalyptatherina from ancient
islands off New Guinea, Marosatherina from SW Sulawesi, and the Malili Lakes flock.

Results: Contrary to previous expectations, Kalyptatherina is the closest relative to the Malili Lakes Telmatherinidae,
and Marosatherina is the sister to this clade. Palaeogeographic reconstructions of Sulawesi suggest that the closer
relationship of the Malili Lakes radiation to Kalyptatherina might be explained by a ‘terrane-rafting’ scenario, while
proto-Marosatherina might have colonized Sulawesi by marine dispersal. The most plausible analysis conducted
here implies an age of c. 1.9 My for the onset of divergence between the two major clades endemic to Lake
Matano. Diversification within both lineages is apparently considerably more recent (c. 1.0 My); stream haplotypes
present in the sharpfins are of even more recent origin (c. 0.4 My).

Conclusions: Sulawesi’s Telmatherinidae have most likely originated in the Sahul Shelf area, have possibly reached the
island by both, marine dispersal and island/terrane-rafting, and have colonized the Malili Lakes system from rivers.
Estimates for the split between the epibenthic sharpfins and the predominantly pelagic to benthopelagic roundfins in
Lake Matano widely coincide with geological age estimates of this rift lake. Diversification within both clades clearly
predates hybridization events with stream populations. For Lake Matano, these results support a scenario of initial
benthic-pelagic divergence after colonization of the lake by riverine populations, followed by rapid radiation within
both clades within the last 1 My. Secondary hybridization of stream populations with the sharpfins occurred more
recently, and has thus most likely not contributed to the initial divergence of this benthic species flock.
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Table 1 Primers used in the present study (see Methods
for PCR conditions)

Primer name Sequence Source

ND2Met 5′-CAT ACC CCA AAC ATG TTG GT-3′ [26]

ND2Trp 5′-GTS GST TTT CAC TCC CGC TTA-3′ [26]

ND2Gln 5′-CTA CCT GAA GAG ATC AAA AC-3′ [26]

ND2Asn 5′-CGC GTT TAG CTG TTA ACT AA-3′ [26]

12SF1 5′-TGA AGG AGG ATT TAG CAG TAA G-3′ [27]

12SF2 5′-TCT CTG TGG CAA AAG AGT-3′ [27]

16SR1 5′-AAG TGA TTG CGC TAC CTT CGC AC-3′ [27]
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Background
Adaptive radiations of organisms restricted to habitat
islands are among the prime model systems for investigat-
ing speciation processes in nature [1-4]. Estimations of
rates of radiation, as well as the reconstruction of past
geographic scenarios of divergence, require the incorpor-
ation of a temporal axis into phylogenetic reconstructions
[5-7]. Likewise, the dating of phylogenetic splits may con-
tribute to the understanding of other processes potentially
contributing to evolutionary divergence (and adaptive ra-
diation), such as introgressive hybridization [8,9].
The ancient lakes of Sulawesi’s central highlands are a

hotspot of aquatic diversity, strongly dominated by en-
demic species flocks, including radiations of freshwater
fishes [10]. The Malili Lakes system (Matano, Mahalona,
and Towuti) – a hydrological chain of three main lakes in-
terconnected by rivers – is the main habitat of the sailfin
silversides radiation (Atherinomorpha: Telmatherinidae).
About 30 morphospecies of these sexually dimorphic fishes
that typically possess bright male colourations are distin-
guished in the Malili Lakes drainage and a few surrounding
rivers [11]. Sailfin silversides show conspicuous colour
polymorphisms [12,13], and there are clear indications that
ecological speciation has shaped their adaptive radiation
[14-16]. Phylogenetic analyses suggest that the two lineages
of Telmatherina radiating in the hydrological head of the
lakes system, ancient graben-lake Matano, form an ancient
monophyletic group that was later compromised by intro-
gressive hybridization from stream populations [17]. This
introgression has affected only the “sharpfins”, a lineage of
predominantly epibenthic sailfin silversides, whereas their
rather pelagic sister group, the “roundfins”, show no indi-
cations of genetic exchange with stream populations
([17,18]; see [19] for discussion).
Morphological data support a clade composed of Maros-

atherina ladigesi from south-west Sulawesi, and Kalypt-
atherina helodes from the islands Batanta and Misool off
the Vogelkop peninsula (Birds’ Head, New Guinea), as sister
group of the Telmatherinidae in and close by the Malili
Lakes [20]. However, only Marosatherina has been consid-
ered as an outgroup to the lakes radiation in genetic studies
so far [11,21]. Likewise, Telmatherinidae are represented
only by Marosatherina, a species available worldwide by
the aquarium trade, in most phylogenetic studies targeting
relationships within the Atherinomorpha (e.g., [22-24]).
Here, we use mitochondrial data to (i) assess the relation-

ship of Kalyptatherina relative to Marosatherina and the
Malili Lakes Telmatherinidae, (ii) estimate the age of the
sailfin silverside radiation of the Malili Lakes, and (iii) pro-
vide an estimation of the age of the mitochondrial intro-
gression present in Lake Matano’s sharpfin Telmatherina.
For this, we combine sequence data of the Telmatherinidae
with data of representatives of the Melanotaeniidae, the
closely related rainbowfishes from Australia and New
Guinea [22-25], and estimate divergence times using both
indirect and geological calibration points, and substitution
rates suggested by [24] as telmatherinid fossils are missing.

Methods
DNA extraction, amplification and sequencing
DNA from 99 specimens, representing 74 taxa or popula-
tions (Additional file 1), was extracted using the QIAGEN
DNeasy® Blood & Tissue Kit following the manufacturers’
instructions. Two mitochondrial loci were amplified by using
the Sigma Taq-Polymerase system: partial NADH dehydro-
genase subunit 2 (ND2, 830 bp length) and a combined
fragment comprising partial 12S rRNA, tRNA-Val, and par-
tial 16S rRNA (“12S-16S fragment”; ca. 1,275 bp length).
All PCR reactions were conducted using the same condi-
tions: 6 min at 94°C (initial denaturation); 45 cycles: 1 min
at 94°C (denaturation); 1 min at 45°C (annealing); 1.5 min at
72°C (elongation). Two sets of primer pairs (ND2) and
three different primers (12S-16S fragment) were used for
both amplification and sequencing (Table 1). The 12S-16S
fragment could not be amplified for all Kalyptatherina
helodes specimens; the same applies to the ND2 fragment
for Melanotaenia lacustris (AP00419) and Melanotaenia
boesemani. Missing data was replaced by Ns for these speci-
mens. PCR products were purified using the enzymatic di-
gestion system USB ExoSAP-It. Sequencing was carried out
by the Sequencing Service of the Ludwig-Maximilians-
Universität Munich, Department of Genetics using a ABI
3730 48 capillary sequencer. All sequences are deposited in
GenBank at the NCBI [ND2, GenBank:KJ667866-KJ667963;
12S-16S, GenBank:KJ667771-KJ667865].

Phylogenetic analyses and estimation of divergence times
Single gene sequences were aligned using MAFFT ([28];
default settings; http://www.ebi.ac.uk/Tools/msa/mafft) and
corrected by eye; ambiguous sites at the 5′ end of the 12S-
16S fragment were removed manually. Both single gene
alignments were concatenated using SequenceMatrix v.
1.7.8. [29] resulting in a total alignment of 2,102 bp. The
GTR+G substitution model was used for maximum likeli-
hood (ML) analyses using RAxML BlackBox ([30]; partition

http://www.ebi.ac.uk/Tools/msa/mafft
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model; 100 bootstrap replicates) and Bayesian infer-
ence (BI) using MrBayes v. 3.1.2 ([31]; partition model;
ngen = 10,000,000; nchains = 4; samplefreq = 500; bur-
nin = 10,001). Iso rhotophilus was used as outgroup in
all analyses as suggested in [32]; phylograms were visu-
alized and re-rooted in FigTree v. 1.4 (available at:
http://tree.bio.ed.ac.uk/software/figtree).
Single-gene datasets were reduced to unique haplo-

types using DAMBE v. 5.1.1 [28]. Substitution models
were selected using jModelTest ([33]; AIC and BIC se-
lected GTR + G for both partitions). Divergence times
were estimated in BEAST v. 1.7.4 [34] on the CIPRES
Science Gateway web portal [35]. Each analysis was run
twice using the following settings: separate partitions
used; ingroup monophyly enforced; uncorrelated log-
normal relaxed-clock model; ngen = 40,000,000; sample-
freq = 2,000; burnin = 10,001; Yule model; calibration
points with normal distribution; the RAxML tolopolgy
was used as starting tree for all analyses. Four different
analyses were: [A] indirect calibration of the root height
using the estimated divergence time of the split of Iso–
Melanotaenia obtained from [36] (93–113 Mya): Root
height was set to 106.0 +/−10.0 My; [B] indirect calibra-
tion of the melanotaeniid northern–southern split in-
ferred from a recent molecular clock analysis by [24]
(23.8-30.8 My): Node 9 (see Figure 1), representing the
split of northern and southern clades of New Guinean
melanotaeniids was set to 27.3 +/−3.5 My; [C] a separ-
ate run was performed using a substitution rate of 1%/
My for mtDNA suggested and used by [24]; [D] geo-
logical calibration of the Central Highlands formation
in New Guinea (10–14 Mya; [37]) putatively resulting in
the geographical separation of the two major melano-
taeniid clades (“northern” and “southern”; see also [24]):
Node 9 (see Figure 1), representing the split of northern
and southern clades of New Guinean melanotaeniids and
is probably related to the abovementioned orogeny was set
to 12 +/−2.0 My. See Table 2 for results among datasets.
Log files of replicates were visualized in Tracer v. 1.5 [38]
for congruency and combined in LogCombiner v. 1.7.4
(BEAST package; 50% burnin). Log files were visualized in
Tracer v. 1.5; ESS values for each parameter never dropped
below 200 except for analysis [C] (low values for some pa-
rameters such as ‘prior’ and ‘posterior’, however ‘likelihood’
is >1,000). Tree files were combined in LogCombiner v.
1.7.4 (50% burnin) and summarized in TreeAnnotator v.
1.7.4 (BEAST package; no burnin; MCC trees =maximum
clade credibility trees).

Results
Phylogenetic relationships and age estimates
The phylogenetic reconstructions show a well to highly sup-
ported sister group relationship between Melanotaeniidae
and a clade comprising species of the genus Pseudomugil
(Pseudomugilidae) and all representatives of the family Tel-
matherinidae (Figure 2 and node 6 in Figure 1). Inferred
mean ages for the split (node 6) range from 23.6-75.9 My
among the four molecular analyses performed in BEAST
(Table 2). Basal relationships among atherinid, atherinop-
sid and bedotiid species are not well resolved in ML, BI
and BEAST analyses, and estimated mean ages for these
basal nodes are strikingly different and range between 31.3
and 103.1 My for the root height (node 1) and the first
basal split (node 2: 28.7-93.5 My).
The Melanotaeniidae form a highly supported mono-

phyletic group, including Rhadinocentrus ornatus from
Queensland, and all species of the genera Melanotaenia,
Chilatherina and Glossolepis analyzed. In this group, R.
ornatus represents the sister taxon to three distinct and
highly supported clades from New Guinea (and surround-
ing islands), and northern Australia (Figure 1). Interest-
ingly, Glossolepis dorityi and G. pseudoincisus share one
haplotype (Figure 1), which is most likely due to gene flow
between the two species inhabiting the very same river
system in the northern lowlands of New Guinea. Two
Melanotaenia species from the Bird’s Head (M. angfa)
and Batanta Island (M. batanta) form a monophyletic
group, being sister to two separate clades comprising
Melanotaenia (sub)species from southern New Guinea
and northern Australia, and species of the genera Chi-
latherina, Glossolepis and Melanotaenia from northern
New Guinea (cf. “western”, “southern”, and “northern”
clade in [24]; Figure 1). This is largely congruent with find-
ings of [24]. The inferred mean age estimates for the west-
ern–northern/southern split (node 8 in Figure 1) and the
northern–southern split (node 9 in Figure 1) range from
12.7-40.8 and 10.9-34.5 My, respectively, depending on if
node 9 was enforced in the respective analysis (see Table 2,
analyses [B and D]).
Phylogenetic reconstructions (ML and BI) show a well to

highly supported clade comprising members of the genus
Pseudomugil (P. signifer, P. reticulatus, P. furcatus, and P.
pellucidus; note that the Pseudomugilidae are paraphyletic;
see also below), and the Telmatherindae. Within the Tel-
matherinidae, Marosatherina ladigesi from the Maros
karst (southwest Sulawesi) is basal to the clade including
Kalyptatherina helodes (Batanta and Misool) plus the
sailfin silversides from the Malili Lakes system in Central
Sulawesi, Indonesia (node 14; mean age range: 8.5-28.9
My). Estimated divergence times range from 18.1-57.8 My
for the split of Telmatherinidae and the most recent
Pseudomugilidae clade (node 11), and are quite similar for
the first diversification events within each family (12.3-
37.9 My for node 12 for the most recent Pseudomugil
clade, and 12.9-42.9 My for node 13, respectively).
Three different genera belong to the Malili Lakes

species flock, namely Paratherina, Tominanga, and
Telmatherina (node 15 = sailfin silversides split: 5.2-

http://tree.bio.ed.ac.uk/software/figtree
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Figure 1 (See legend on next page.)
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Figure 1 BEAST MCC tree showing general melanotaeniid and telmatherinid relationships for the concatenated dataset. Topology
derived from analysis [D]. Numbers on branches denote RAxML bootstrap values, MrBayes posterior probabilities and BEAST posterior probabilities
(from top to bottom); numbers on nodes correspond to node numbers given in Table 2, i.e., divergence time estimates across all four analyses
performed. Nodes 1 and 9 were used as indirect and geological calibration points, respectively (see Methods for details). Abbreviations used for
sailfin silversides: MAH = Lake Mahalona; MAT = Lake Matano; TOW = Lake Towuti. See text and Figure 3 for details on the Lake Matano
telmatherinid radiation. Map shows current distribution of Kalyptatherina, Marosatherina, and the Malili Lakes telmatherinds.
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17.4 My). The morphologically and nuclear distinct Para-
therina (Lakes Mahalona and Towuti; node 24 = TMRCA,
time to most recent common ancestor of Paratherina and
Telmatherina: 3.0-10.2 My, node 27 = ‘speciation’, the first
intra-clade diversification within Paratherina: 1.6-5.1 My)
Table 2 Divergence time estimates for selected nodes

Mean age

Analysis [A] [B]

Node

1 103.09 (82.70, 122.15) 70.36 (39.70, 10

2 93.46 (69.89, 116.89) 64.19 (36.83, 95

3 83.62 (59.92, 107.04) 57.69 (33.54, 85

4 67.20 (40.38, 93.53) 46.10 (22.62, 70

5 41.45 (18.04, 65.92) 22.64 (8.27, 39

6 75.85 (53.25, 98.86) 52.00 (29.69, 76

7 54.59 (35.08, 75.21) 39.49 (24.69, 56

8 40.78 (24.86, 58.33) 30.34 (20.55, 40

9 34.50 (20.65, 49.72) 25.85 (18.83, 32

10 64.76 (43.47, 86.22) 43.85 (25.27, 65

11 57.80 (37.80, 78.33) 38.95 (22.54, 59

12 37.88 (18.74, 56.83) 25.00 (11.00, 39

13 42.86 (25.60, 62.34) 27.17 (14.37, 42

14 28.90 (15.01, 43.48) 19.15 (9.56, 30

15 17.43 (8.21, 27.65) 11.99 (5.78, 19

16 9.59 (3.52, 17.08) 7.13 (3.21, 12.2

17 6.43 (2.40, 11.60) 4.45 (1.95, 7.6

18 3.66 (1.18, 7.03) 2.45 (0.81, 4.3

19 3.05 (0.90, 5.81) 2.24 (0.73, 4.1

20 13.94 (6.35, 22.44) 10.15 (4.84, 16

21 3.60 (0.73, 7.77) 2.92 (0.64, 6.2

22 1.21 (0.22, 2.61) 0.92 (0.17, 1.9

23 1.20 (0.08, 2.97) 0.96 (0.08, 2.4

24 10.23 (4.58, 17.24) 7.24 (3.09, 11.9

25 6.14 (2.08, 11.43) 4.39 (1.44, 8.0

26 2.36 (0.64, 4.63) 1.68 (0.50, 3.2

27 5.05 (1.54, 9.36) 3.84 (1.09, 7.0

Resulting rate [% / My] 0.33 (ucld.mean) 0.47 (ucld.mea

Bold-marked cells denote nodes used for prior calibration; [A]: root height = 106.0 +
show striking differences between the present analysis (first column) and the node
Figure 1 for details.
and Tominanga (Lake Mahalona; node 21 = TMRCA of
Tominanga and Telmatherina: 1.2-3.6 My, node 23 = ‘spe-
ciation’: 0.4-1.2 My) are both clearly supported as mono-
phyletic. In contrast, species of the genus Telmatherina
fall in three distinct mitochondrial clades. Node 25 (1.8-
(lower and upper 95% HPD) [My]

[C] [D]

6.48) 33.15 (23.43, 43.20) 31.31 (16.40, 48.90)

.98) 30.46 (22.53, 39.22) 28.65 (14.92, 43.70)

.19) 27.47 (20.40, 34.95) 26.03 (13.56, 39.08)

.57) 21.88 (13.85, 31.38) 20.40 (9.07, 32.21)

.89) 10.44 (3.89, 17.11) 9.95 (3.14, 18.18)

.73) 24.94 (18.31, 31.63) 23.56 (12.17, 35.75)

.03) 18.74 (13.30, 24.86) 17.41 (9.49, 26.50)

.64) 13.09 (9.22, 13.73) | 32.7 (28.4, 37.4) 12.74 (7.54, 18.43)

.88) 11.04 (7.69, 14.78) | 27.0 (23.8, 30.8) 10.87 (6.70, 14.98)

.90) 21.35 (15.20, 27.93) 20.19 (10.38, 30.97)

.33) 19.10 (13.38, 25.44) 18.11 (9.05, 27.98)

.86) 13.15 (6.95, 19.24) 12.30 (4.90, 20.65)

.94) 13.60 (8.89, 18.66) 12.93 (6.18, 20.36)

.43) 9.11 (5.50, 13.06) 8.45 (3.79, 13.45)

.06) 5.35 (3.22, 8.12) 5.18 (2.15, 8.53)

0) 3.12 (1.47, 4.91) 3.00 (1.01, 5.28)

2) 1.98 (0.90, 3.20) 1.86 (0.63, 3.27)

1) 1.04 (0.39, 1.82) 1.01 (0.31, 1.92)

5) 0.99 (0.36, 1.78) 0.93 (0.27, 1.80)

.54) 4.40 (2.32, 6.70) 4.32 (1.72, 7.17)

9) 1.27 (0.33, 2.68) 1.22 (0.25, 2.68)

8) 0.40 (0.09, 0.83) 0.37 (0.07, 0.83)

4) 0.41 (0.04, 1.00) 0.38 (0.02, 0.95)

8) 3.18 (1.54, 5.07) 3.03 (1.19, 5.33)

3) 1.92 (0.73, 3.42) 1.82 (0.48, 3.45)

6) 0.73 (0.23, 1.34) 0.70 (0.18, 1.37)

2) 1.67 (0.61, 3.02) 1.61 (0.48, 3.07)

n) 1.00 (ucld.mean) 1.14 (ucld.mean)

/−10.0 My; [B]: 27.3 +/−3.5 My; [C]: relaxed clock = 1%/My – node 8 and 9
ages inferred by [24] (second column); [D]: 12.0 +/−2.0 My. See Methods and
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6.1 My) represents the MRCA of a clade (from now on we
refer to MRCAs of particular clades when discussing
nodes) is composed of the lake-dwelling Telmatherina cel-
ebensis from Lakes Mahalona and Towuti, and several
populations of stream-dwelling Telmatherina bonti. Node
22 (0.4-1.2 My) comprises sharpfin specimens from Lake
Matano, together with stream-dwellers; node 16 contains
the remaining Telmatherina from Lake Matano, namely
sharpfins (node 19), roundfins (node 18), and two stream
Telmatherina from River Nuha (north of Matano) and
River Tominanga (draining Lake Mahalona to Towuti).
Taken together, these results are consistent with those re-
ported by [17]. In the light of nuclear and morphological
data (cf. [17]), the mitochondrial signatures provide evi-
dence for substantial hybridization between lake- and
stream-dwelling Telmatherina. This results in two haplo-
type clades, the “original” Matano haplotypes (node 19)
being sister to the endemic roundfins (node 18), and the
introduced haplotypes of (node 22) within Lake Matano’s
sharpfins.
The comparison of diversification and mitochondrial

introgression events within the Lake Matano radiation
suggests that the ancient clade of haplotypes, endemic
to the lake (node 17), is approximately 1.9-6.4 My old.
It comprises the clades of the lake’s two sub-radiations,
namely the pelagic to benthopelagic roundfins (node
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18: 1.0-3.7 My), and the “native” sharpfin haplotypes of the
lake (node 19: 0.9-3.1 My). In contrast, the age of the intro-
gressed haplotypes present in parts of the sharpfin individ-
uals (node 22) is apparently more recent (0.4-1.2 My). A
comparatively recent origin of mitochondrial introgression is
also supported for the second case of massive hybridization
of stream- and lake-haplotypes: node 26, representing the
Telmatherina celebensis clade from Lakes Mahalona and
Towuti, is estimated to only 0.7-2.4 My (see Figure 3 and
Table 2 for details).
Discussion
The endemic sailfin silversides radiation of the Malili
Lakes serves as a model system in evolutionary ecology re-
search (see [10,19,41] for reviews). The detailed and tem-
poral reconstruction of the phylogenetic history of the
Telmatherinidae is crucial for exploring the likely condi-
tions underlying speciation processes, including the spatial
origin and morphological traits of ancestral and intro-
gressed populations. It remained, however, unclear if it is
justified to consider Marosatherina from SW Sulawesi as
the sister species to the lakes radiation, and if the age of
the lakes radiation in fact falls into preliminary lake age esti-
mations proposed by geologists and limnologists, which are
however not yet fully reliable [41]. These preliminary seis-
mic data suggest an age of at least 600,000-700,000 years for
Lake Towuti [41], while the geological fault formation, in
which Lake Matano is embedded, might be comparatively
older possibly starting around 4 Mya [42]. An onset of the
Malili Lakes system formation in the early Pleistocene c. 1–
2 Mya is plausible (Robert Hall, pers. comm.).
node 17   "ancient Lake 
node 18   roundfins Lake
node 19   introgressed s
node 22   introgressed s
node 26   introgressed T

[A]

[B]

[C]

[D]

10 7.5

Figure 3 Relaxed-clock divergence times distribution among analyses
credibility intervals, dots represent mean ages for MRCAs of the respective
The closest relative to the sailfin silversides radiation
The phylogenetic reconstructions presented here are based
on mitochondrial markers only, and hence do not allow in-
ferences about cyto-nuclear discordances within the sailfin
silversides species flock (cf. [17]). However, this mtDNA
dataset allows inferring a first hypothesis for reconstructing
phylogenetic relationships among disjunctly distributed tel-
matherinid species, whose mtDNA haplotypes most likely
have preserved the vicariant phylogenetic signal.
Our analyses clearly suggest that mtDNA haplotypes of

the Malili Lakes radiation are more closely related to
Kalyptatherina helodes, the only telmatherinid species oc-
curring on islands east of Sulawesi (Misool and Batanta),
rather than to Marosatherina ladigesi from SW Sulawesi, a
species previously considered the sister taxon to the Malili
flock. Its inclusion into the Telmatherinidae is highly plaus-
ible in the light of morphological data [43], but its place-
ment as the sister taxon to the lacustrine flocks appears
surprising. However, reconstructions of the complex geo-
logical history of Sulawesi and adjacent islands may provide
explanations for these findings (see section below).
The phylogenetic relationships of the families within

Atheriniformes, and the composition of these families, re-
main partially controversial, most likely due to substantial
differences in taxon sampling and the methods applied
(Figure 2). Two important taxa could not be included in
the present dataset, namely Cairnsichthys rhombosomoides
(Queensland, Australia), and the rather widespread brackish
water family Phallostethidae (priapumfishes; recorded from
Sundaland, Luzon, Palawan and Southwest Sulawesi;
[44,45]. Cairnsichthys is suggested to be basal to Pseudomu-
gil and Telmatherina according to the molecular phylogeny
Matano haplotype/mtDNA"
 Matano

harpfins Lake Matano A
harpfins Lake Matano B
. celebensis Lake Mahalona/Towuti

Mya2.55

for the Lake Matano telmatherinid radiation. Bars denote 95%
clades. See Methods and Table 2 for details.
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by [24], while the phallostethids are placed as the sister
to Pseudomugil according to [40]. Morphological stud-
ies by [39] suggested Melanotaeniidae as sister to
Madagascar’s Bedotiidae, which are in turn most closely
related to a clade composed of Telmatherinidae, Pseu-
domugilidae (blue eyes), and three other atheriniform
families. The combined analysis of molecular and mor-
phological data by [22] supported the sister group rela-
tionship of monophyletic Melanotaeniidae and Bedotiidae;
a clade composed of Marosatherina (Telmatherinidae)
and two Pseudomugil species (Pseudomugilidae) represent
the sister clade to Melanotaeniidae and Bedotiidae in that
study. A comprehensive study by [32] reported contrasting
results, based on the combined analysis of one mitochon-
drial and nuclear marker. The single representatives of
Pseudomugil and Telmatherina analyzed by [32] were also
supported as most closely related, but nested within a
clade composed of Melanotaeniidae and Phallostethidae.
Most recently, [40] confirmed the inclusion of Phallos-
tethidae within the atherinomorphs as distant sister to a
monophyletic group of Pseudomugil species, based on 10
nuclear markers. Unmack et al. [24] found in a compre-
hensive multilocus molecular study (seven mtDNA
markers and one nuclear marker) that Melanotaeniidae
are the monophyletic sister group to Madagascar’s Rheo-
cles and Bedotia; Melanotaeniidae were again supported
as sister to a clade composed of Marosatherina and Pseu-
domugil. The results of the present study clearly support
the close relationship between Telmatherinidae and Pseu-
domugilidae reported by previous workers. However, the
Pseudomugilidae are also clearly paraphyletic, with P. sig-
nifer being basal to all remaining Pseudomugilidae and
Telmatherinidae (Figure 1). This finding is consistent with
the results of [22] (see also Figure 2), and highlights the
need for a detailed study addressing the systematic pos-
ition of several Pseudomugil species, especially that of
P. signifer.

Biogeographic implications
Divergence time estimates of the split of Kalyptatherina
and the central Sulawesi Malili flock of 8.5-28.9 Mya ren-
ders a scenario of terrane-rafting the most plausible ex-
planation for the present-day distribution pattern, given
the region’s geological history. In contrast, and considering
its present local distribution and estimated node ages, the
ancestor of Marosatherina most likely colonized western
Sulawesi by dispersal from the Sahul Shelf, the current dis-
tribution of Pseudomugil and Melanotaeniidae.
West Sulawesi (i.e., the West Sulawesi Plutono-Volcano

Arc), was separated from the Asian margin when the
Makassar Strait opened in the Eocene c. 45 Mya [46-48].
Extension and westward movements of the Sula Spur
(a large promontory of the Australian margin) resulted in
a collision with the North Sulawesi volcanic arc c. 20–23
Mya, and a final amalgamation of the Sula Spur (compris-
ing East Sulawesi, Central Sulawesi and Banggai-Sula) with
West Sulawesi in the Miocene c. 10–20 Mya (Figure 4; see
[49,50] for more details on general terrane movements and
distribution of land and sea in the Indo-Australian Archi-
pelago, and particularly in Sulawesi). Geological separation
and fusion represent constraints on vicariant processes in-
volving the colonization of the island’s terrestrial and
freshwater biota.
A scenario of ‘terrane-rafting’ provides a plausible explan-

ation for the sister group relationship between Kalypt-
atherina, endemic to the small islands off the Vogelkop
Peninsula of New Guinea, and the Malili Lakes sailfin silver-
sides. Geological elements formerly belonging to the Sula
Spur were in proximity to the Australian margin – includ-
ing old offshore islands like Batanta and Misool – before
this promontory was extended, moved westwards, and fi-
nally collided with West Sulawesi (e.g., [37,47]). It appears
most plausible that the population ancestral to the Malili
sailfin silversides originates from the Sahul Shelf area, and
was dispersed on such a ‘terrane raft’ when the Sula Spur
was extended and moved westwards until this fragment
(‘raft’) collided with West Sulawesi. However, given the tem-
poral uncertainties in both the separation of the Sula Spur
from the Sahul Shelf (c. 15 Mya; see also [50]) and di-
vergence time estimates among the four analyses, it re-
mains difficult to test this hypothesis. Mean ages and
credibility intervals suggest that this scenario might be
plausible for analyses [A] and [B] (15.0-43.5 My and
9.6-30.4 My; see Table 2), while the credibility intervals
obtained from analyses [C] and [D] (5.5-13.1 and 3.8-
13.5) would slightly post-date the estimated age of the
Sula Spur separation. However, the lack of fossil re-
mains requires denser sampling and the incorporation
of multiple markers to explain the relationships of
present-day geographically distant groups, which prob-
ably have been in vicinity in the past.
A marine dispersal explanation for the sister group rela-

tionship between Marosatherina, a monotypic genus en-
demic to the Maros karst in SW Sulawesi, and all the
remaining sailfin silversides, appears most likely based on
its current distribution and the divergence time estimates
inferred (node 13: 12.9-42.9 My). West Sulawesi and the
remaining geological parts of the island are of different ori-
gin (Sunda Shelf and Sahul Shelf), and amalgamated not
until in the Miocene due to tectonic movements. It appears
plausible to assume that the population ancestral to Maro-
satherina might have originated in the Sahul Shelf area
and colonized present-day West Sulawesi by marine dis-
persal; this requires, however, the assumption that the dis-
persing proto-Marosatherina had a tolerance for marine
conditions. Such a salt tolerance might indeed be a plesio-
morphic character of sailfin silversides. The occurrence of
Kalyptatherina, Neostethus (Phallostethidae, present with



Figure 4 Palaeogeographic maps of SE Asia, with particular focus on West Sulawesi and the Sula Spur. Modified from [51], with
permission (see text for details).
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one species on Sulawesi, Neostethus djajaorum; [45]), and
also some Pseudomugil species in brackish habitats, pro-
vides support for this assumption. Likewise, Marosatherina
as well as Telmatherina bonti tolerate brackish waters
under aquarium conditions (F.H., pers. obs.). However,
none of the Sulawesi sailfin silversides has ever been re-
ported from such habitats in nature, and it remains thus
unclear, if the assumption that ancestral sailfin silversides
were able to cross marine barriers, is in fact realistic. The
endemism of all recent species of the family provides a
substantial argument against profound abilities for marine
dispersal. As an alternative, partly complementary scenario,
the ancestral population of Marosatherina might have
been widespread across both Sunda and Sahul Shelf areas,
followed by extinction across large extents during periods
of sea-level fluctuations. In that case, Marosatherina would
represent a relict species as several areas of West Sulawesi
remained above sea level or at least were covered only by
shallow water during the island’s history according to
palaeogeographic reconstructions [47,52]. However, this
again assumes that the ancestral population might have
been, at least to some degree, saltwater-tolerant.
In line with earlier workers [24], the present results sup-

port the monophyly of the rainbow fishes (Melanotaeniidae).
As expected, its genera Chilatherina and Glossolepis are
nested within Melanotaenia, and the three major geo-
graphic clades recovered correspond to the expected
freshwater ecoregions of “southern”, “northern” and
“western” New Guinea [24,53]. The island’s Central
Highlands are the major barrier putatively separating
the “northern” and “southern” clades, and provide an
opportunity to estimate divergence rates also within the
Telmatherinidae (see below).

Divergence time estimation: The Malili Lakes radiation
Depending on the method applied, molecular clock ap-
proaches estimate the onset of the Malili Lakes radiation to
5.2-17.4 My, but the youngest estimate appears by far the
most plausible, given the estimated timeframe for Sulawesi’s
final amalgamation (see above). This implies ages of about
1.9 My for the initial split of the benthic sharpfins and the
predominantly pelagic to benthopelagic roundfins, esti-
mates of c. 1.0 My for divergence within these two lineages
inside Lake Matano, and substantially less (0.4 My) for the
lineage of haplotypes introgressed by stream populations
into Matano’s sharpfins.
[21] provided a first age estimation for the divergence

among the three mitochondrial haplotype clades present
in Lake Matano’s Telmatherina radiation. This approach
was based on a constant rate of evolution, and applied a
genetic distance-age ratio of 1-2%/My. For the sailfin sil-
versides endemic to Lake Matano, the deepest and accord-
ing to geological data (see [42] and Robert Hall, pers.
comm.) oldest lake of the system, these analyses suggested
an age of 0.95-1.9 My separating roundfins (“Clade I” in
[21]; see [19] for the identity of these clades) and sharpfins
(“Clade II”). Haplotypes originating from streams and
rivers, present in Lake Matano’s sharpfins due to intro-
gressive hybridization [17], diverged from the lacustrine
haplotypes (sharpfins + roundfins) in Roy et al.’s [21] ana-
lyses 1.85-3.7 My ago. Their ingroup dataset did however
not include the other sailfin silversides species occurring
outside of Lake Matano, from the remaining lakes, rivers,
and streams of the Malili Lakes; it appears accordingly un-
clear if this framework is suited for providing reliable esti-
mates for the relevant splits. In the present study, we
combine geological and indirect calibration points, as well
as recently suggested substitution rates, to estimate and
carefully discuss the timing of the most relevant splits
within the sailfin silversides radiation in a relaxed molecu-
lar clock framework.

Analysis [A] – indirect calibration for the Iso–Melanotaenia split
We first used the split between Iso hawaiiensis and Mela-
notaenia lacustris as an indirect calibration point, obtained
from a study of ricefishes (Adrianichthyidae) by [36], in
analysis [A]. This approach provides an age of 17.4 My for
the Malili Lakes radiation (node 15); Lake Matano’s round-
fins are estimated to an age of 3.7 Mya (node 18) in that
analysis (Table 2). Under analysis [A], the age of the
Malili Lakes radiation (node 15) significantly predates
the proposed age for the formation of present-day
Sulawesi, namely the final amalgamation of the North
and West arms of Sulawesi with the Sula Spur (c. 10–20
Mya; [47,50], as well as the geological evidence for the
age of the Lake Matano.
Some technical issues might account for the observed in-

consistencies between the proposed ages of these nodes,
and the geological reconstruction of Sulawesi’s history and
its ancient lakes. Dating based on indirect calibration points
presupposes that adequate calibration points were used in
the source analysis. The 21 fossil and six biogeographic cali-
bration points used by [36] are remarkable, but all fall out-
side the atherinomorphs. These priors, plus possible
saturation effects, may have led to the bias of an overesti-
mation of splits within the atherinomorphs. A recently pub-
lished, and more comprehensive dated phylogeny by [40],
might justify this inference. There, the atherinomorphs are
estimated to have originated c. 80 Mya, while the genera
Iso and Melanotaenia are more recent compared to the
split in Setiamarga et al.’s study ([36]: 93–113 My vs.
[40]: c. 50 My); however, some basal nodes remain unre-
solved in [40], and thus both genera do not form a sister
group, as in [36]. Thus, we conclude that the inferred
node ages from analysis [A] very likely substantially
overestimate the age of the Malili Lakes radiation, as
well as that of the intralacustrine speciation and
hybridization processes.
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Analysis [B] and [C] – indirect calibration for Melanotaenia
clades and rate of 1%/My
Estimated divergence times for the New Guinean north-
ern and southern Melanotaenia clades obtained from
Unmack et al.’s [24] study have been used as indirect
calibration points in analysis [B]. In addition, we used
the substitution rate of 1%/My suggested by [24] in their
rainbowfish dataset (analysis [C]). Interestingly, analysis
[B] shows comparable ages for node 8 and node 9 com-
pared to [24], however, the resulting ucld.mean (uncor-
related lognormal relaxed clock mean) is 0.47%/My for
this analysis. Accordingly, age estimates inferred from
analysis [B] clearly predate the hypothesized starting point
of the New Guinean Highlands uplift (node 9: 25.9 My).
However, the MRCA of the Melanotaenia clade is 39.5
My, and is therefore quite similar to the divergence time
estimates of the single Melanotaenia lineage in [40].
Likewise, divergence times differ remarkably between

the few comparable nodes of analysis [C] and Unmack
et al.’s [24] study (see Table 2). The considerable mis-
match between analysis [C] and the study by [24] might
be related to the different prior conditions in the re-
spective analyses. With respect to the target question,
the taxon sampling available is more complete in the
present study. Differences in the resulting estimates
may also be due to the genetic markers applied: substi-
tution rates vary across genetic markers and among
taxa, and might therefore cause deviating node ages
though using the same prior substitution rate.
Analysis [D] – geological calibration using the Central
Highlands formation
In a final analysis, we used age estimations for the Central
Highlands in New Guinea, and the clades of rainbow fish
separated by this major barrier, for estimating the age of
the relevant nodes in the sailfin silversides phylogeny (ana-
lysis [D]). The Central Highlands in New Guinea are a
massive mountain range, spanning almost the entire island
with a maximum altitude of c. 5,000 m above sea level.
The continuous formation of the Central Highlands since
the late Miocene (c. 10–14 Mya; [37]) clearly resulted in
the interruption of former watersheds, and led to the
present-day regions of freshwater biodiversity. This ex-
plains the presence of two well-resolved clades of rainbow
fishes north and south of this mountain range ([24,54], this
study); the ancestral populations became most likely con-
tinuously separated. However, given the nature of geo-
logical events, which should in most cases be considered
rather as continuous processes than as distinct, precise
events, it appears problematic to reconstruct the exact
timeframe in which the proposed ancestral melanotaeniid
population in New Guinea was initially separated, giving
raise to the two distinct clades observed to date.
Compared to the indirect calibration approach, the prior
age of node 9 is substantially younger in analysis [D]
(mean age: 10.9 My) than the posterior age inferred from
analysis [A] (mean age: 34.5 My). This results in a likewise
substantially more recent age of both, the onset of the
Malili Lakes radiation, and that of its radiating clades (see
Table 2 and Figure 3). Accordingly, node ages derived
from analysis [D] appear more plausible than those from
analyses [A] and [B]. However, the root height represent-
ing the age of Iso considerably underestimates the diver-
gence time inferred from [36] by about 70 My, while in
contrast, Iso is estimated to be c. 15 My younger in ana-
lysis [D] compared to the study by [40]. This underestima-
tion may not only be due to conflicting topologies, the
position of Iso within the atherinomorphs (see Discussion
above), and the comparatively recent calibration point
used (node 9), but might be also correlated with saturation
effects in basal nodes by solely using mitochondrial
markers.
Telmatherina of Lake Matano’s endemic sharpfin radi-

ation carry either mitochondrial haplotypes closely related
to those of the lakes’ roundfins, or those introgressed by
riverine populations [17-19]. The age of the haplotypes
introgressed into the Matano flock (mainly node 22) is
comparatively young, estimated in analysis [D] to less than
400,000 years. In contrast, age estimates for the “native”
Matano sharpfin haplotypes (node 19: 0.9 My), its sister –
the roundfins (node 18: 1.0 My) –, and the clade of T. cele-
bensis from the lower lakes of the system (node 26: 0.7
My) are comparatively older, and appear largely congruent
to the general age estimates for the Malili Lakes (see
above). It appears therefore very likely that the mitochon-
drial introgression observed has occurred rather recently,
in comparison to the age of the lakes’ native haplotypes
(see Figure 3). Shared haplotypes in highly distinct lake-
and stream-dwelling Telmatherina are also observed in
Lakes Towuti’s and Mahalona’s T. celebensis, and several
populations of T. bonti (see also Figure 1 and supplemen-
tary figure one in [17], incorporating more stream popula-
tions). Node 26, comprising these lacustrine and riverine
populations, is estimated to c. 700,000 years ago in ana-
lysis [D], a time that coincides with the proposed age for
Lake Towuti [41].
Similarly to the Lake Matano Telmatherina radiation,

Paratherina represents a small, monophyletic radiation,
occurring in off- and inshore waters of Lakes Mahalona
and Towuti. Analysis [D] suggests that the first diversifica-
tion event within Paratherina (node 27) has occurred c.
1.6 Mya. It appears reasonable to assume that the onset of
diversification may have taken place in the older Lake
Mahalona, from where the putatively younger Lake Towuti
has been colonized. The Paratherina populations of both
lakes are likely still connected via Tominanga River, as sug-
gested by the recent microsatellite study of [55]. Further



Stelbrink et al. BMC Evolutionary Biology 2014, 14:94 Page 12 of 14
http://www.biomedcentral.com/1471-2148/14/94
support for possible riverine dispersal of Paratherina
comes from the historical presence of species shared with
Lake Towuti in the small hill-lake Lontoa (or Wawontoa;
see [56]), connected to the large lake by rivers. This lake
has however undergone substantial degradation, and the
presence of Paratherina could not be confirmed during re-
cent surveys (F.H., pers. obs.).

Conclusions
Divergence times inferred for the Malili Lakes radiation
clearly predate both the final formation of Sulawesi and
any suggested age estimates for the Malili Lakes for the
majority of analyses performed. Hence, node ages de-
rived from analysis [D], based on geological calibration
by the New Guinean highland barrier, seem most plaus-
ible to us. This means that divergence times obtained
from other sources, i.e., [24,36], possibly overestimate
telmatherinid and melanotaeniid clade ages, again
highlighting the issues related with molecular clock ana-
lyses (see Discussion above).
Some concluding remarks can be made on speciation

and hybridization processes in the sailfin silversides ra-
diation, based on the – in our view – most plausible
analysis [D]. Based on the present topology, riverine
Telmatherina bonti populations not only cluster within
the lacustrine clades, indicating hybridization events;
some of these riverine lineages also appear basal to
some lacustrine populations. In line with similar results
from an earlier phylogenetic study [17], this clearly indi-
cates that the Malili Lakes were colonized by riverine popu-
lations, which appears highly plausible, and meets patterns
observed also in invertebrate radiations, like e.g., the pachy-
chilid snails [57].
The present study indicates that the Sulawesi telmather-

inids might have originated c. 3–5 Mya, a period when
present-day Sulawesi was being formed through a series of
tectonic events such as e.g., mountain uplifts in West
Sulawesi and the Matano fault formation [42,52]. The
Matano fault gave rise to the rift lake Matano, and probably
also initiated the formation of the remaining lakes of the
Malili Lakes system. Preliminary geological reconstructions
suggest that the Malili Lakes are generally 1–2 My old,
while preliminary seismic data support with 600,000-
700,000 years a younger age for Lake Towuti. This geo-
logical and seismic evidence is in line with the present
phylogenetic reconstruction, which shows comparatively
recent diversification and hybridization events within Tel-
matherina celebensis and their riverine relatives, compared
to diversification and introgression in Lake Matano (node
26; see Figures 1 and 3). Age estimates suggest diversifica-
tion along a benthic-pelagic axis, into sharpfins and round-
fins, c. 1.9 Mya after Lake Matano was colonized by
stream populations, followed by a rapid radiation in both
of these clades in the last 1 My. Secondary hybridization
did probably not affect initial divergence within Lake
Matano’s sharpfin radiation, as the age of the introgressed
haplotypes clearly postdates the initial diversification by
about 600,000 years.
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