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Abstract
Background: Codon usage bias has been widely reported to correlate with GC composition.
However, the quantitative relationship between codon usage bias and GC composition across
species has not been reported.

Results: Based on an informatics method (SCUO) we developed previously using Shannon
informational theory and maximum entropy theory, we investigated the quantitative relationship
between codon usage bias and GC composition. The regression based on 70 bacterial and 16
archaeal genomes showed that in bacteria, SCUO = -2.06 * GC3 + 2.05*(GC3)2 + 0.65, r = 0.91,
and that in archaea, SCUO = -1.79 * GC3 + 1.85*(GC3)2 + 0.56, r = 0.89. We developed an
analytical model to quantify synonymous codon usage bias by GC compositions based on SCUO.
The parameters within this model were inferred by inspecting the relationship between codon
usage bias and GC composition across 70 bacterial and 16 archaeal genomes. We further simplified
this relationship using only GC3. This simple model was supported by computational simulation.

Conclusions: The synonymous codon usage bias could be simply expressed as 1+ (p/2)log2(p/2)
+ ((1-p)/2)log2((l-p)/2), where p = GC3. The software we developed for measuring SCUO
(codonO) is available at http://digbio.missouri.edu/~wanx/cu/codonO.

Background
All amino acids except Met and Trp are encoded by more
than one codon. DNA sequence data from diverse organ-
isms have shown that synonymous codons for any amino
acid are not used with equal frequency, even though
choices among codons should be equivalent in terms of
protein sequences [1-6]. Previous codon usage analyses
showed that codon usage bias is very complicated and is
associated with various biological factors, such as gene
expression level [7-10], gene length [11-13], gene transla-
tion initiation signal [14], protein amino acid composi-

tion [6,15], protein structure [16,17], tRNA abundance
[18-21], mutation frequency and patterns [22,23], and
GC composition [24-27]. In this paper, we further explore
the relationship between codon usage and GC
composition.

GC composition may be described at three levels: 1) Over-
all GC content. The overall genome GC content in living
organisms varies from 25–75% [28]. However, within a
single gene, the overall GC content is 7–95%. 2) Local GC
composition. Local GC composition is defined based on
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the positions on the genetic codons. GC1 is the GC com-
position at the first site of codons, GC2 the GC composi-
tion at the second site of codons, and GC3 the GC
composition at the third site of codons. 3) The ratio of G/
C or A/T within a single strand of DNA. Based on Watson-
Crick base pairing rules, the overall GC content is the
same between the plus strand and minus strand of the
DNA sequence [29]. However, within a single strand, the
ratio of G to C and A to T may not be 1. Bacterial genomes
were found to be relatively enriched in G over C and T
over A, and slightly depleted in G+C, in their weakly evo-
lution-selected positions (intergenic regions and third
codon positions) in the leading strand compared with the
lagging strand [28]. Although the overall GC content for a
genome is reduced by AT-rich intergenic regions of the
genome, the gene GC composition is tightly correlated
with the genome's overall GC composition. The higher
the overall GC content bias, the higher the local GC com-
position (GC1, GC2, and GC3).

It has been generally accepted that genome GC content is
correlated with amino acid usage and codon usage [30]. A
very low or very high GC composition is associated with a
large codon usage bias. Recently, through a simple muta-
tional model, Knight et al. [31] showed that it was the GC
composition that drives codon and amino-acid usage
although both mutation and selection play important
roles. By using the corresponding analysis of codon usage
over 32 bacterial and 8 archaeal genomes, Lynn et al. [32]
further showed that codon usage bias was affected by GC
composition and environment (e.g., temperature).

However, there has been no systematic, quantitative eval-
uation of the relationship between codon usage bias and
GC composition. In addition, the theoretical basis under-
lying the relationship between codon usage bias and GC
composition has not been illustrated. In this paper, we
applied an informatics method [13], which is based on
Shannon informatics theory and the entropy theory, to
explore the relationship between GC composition and
synonymous codon usage bias among 70 bacterial and 16
archaeal genomes. We presented an analytical model to
quantify the non-linear relationship between GC3 and a
measurement of codon usage bias (synonymous codon
usage order, or SCUO), which reveals that GC3 is the key
factor driving synonymous codon usage and that this
mechanism is independent of species. These results were
supported by our simulations. Our results also showed
that the asymmetric distribution of G over C and A over T
at the third codon position may increase codon usage
bias. The underlying mechanisms behind GC composi-
tion and codon usage bias are discussed.

Informatics method
We recently developed an informatics method [13] to pro-
vide an estimate for the orderliness of synonymous codon
usage (SCUO) and the amount of synonymous codon
usage bias. This method was based on the Shannon infor-
matics theory and the entropy theory and allows the com-
parison of codon usage bias within and across genomes.

To calculate SCUO, we created a codon table for the
amino acids that have more than one codon, indexed in
an arbitrary way, so that we could unambiguously refer to
the j-th (degenerate) codon of amino acid i, 1 ≤ i ≤ 18. In
mycoplasmas, Trp was also included into the codon table
since a standard stop codon TGA encodes Trp in this spe-
cific species so that 1 ≤ i ≤ 19. For simplicity, the following
description of the method is only based on the standard
genetic codon table although the actual SCUO computa-
tion considered special cases for different organisms.

Let ni represent the number of degenerate codons for
amino acid i, so 1 ≤ j ≤ ni: for example, 1 ≤ j ≤ 6 for leucine,
1 ≤ j ≤ 2 for tyrosine, etc. For each sequence, let xij repre-
sent the number of times that synonymous codon j of
amino acid i is present, 1 ≤ i ≤ 18, 1 ≤ j ≤ ni. Normalizing
the xij by their sum over j gives the frequency of the j-th
degenerate codon for amino acid i in each sequence.

According to the information theory, we define the
entropy Hij of the i-th amino acid of the j-th codon in each
sequence by

Hij = -pij log pij  2

Summing over the codons representing amino acid i gives
the entropy of the i-th amino acid in the each sequence

If the synonymous codons for the i-th amino acid were
used at random, one would expect a uniform distribution
of them as representatives for the i-th amino acid. Thus,
the maximum entropy for the i-th amino acid in each
sequence is
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If only one of the synonymous codons is used for the i-th
amino acid, i.e., the usage of the synonymous codons is
biased to the extreme, then the i-th amino acid in each
sequence has the minimum entropy:

Unlike Shannon's definition of information, Gatlin [33]
and Layzer [34] define the information as the difference
between the maximum entropy and the actual entropy as
an index of orderliness. The greater the information, the
more ordered the sequence will be [35]. In our case, this
information measures the nonrandomness in synony-
mous codon usage and therefore describes the degree of
orderliness for synonymous codon usage for the i-th
amino acid in each sequence.

Let Oi be the normalized difference between the maxi-
mum entropy and the observed entropy for the i-th amino
acid in each sequence, i.e.,

Obviously, 0 ≤ Oi ≤ 1. When the synonymous codon usage
for the i-th amino acid is random, Oi = 0. When this usage
is biased to the extreme, 0i = 1. Thus, Oi can be thought of
as a measure of the bias in synonymous codon usage for
the i-th amino acid in each sequence. We designate the
statistics Oi as the synonymous codon usage order
(SCUO) for the i-th amino acid in each sequence.

Let Fi be the composition ratio of the i-th amino acid in
each sequence:

Then the average SCUO for each sequence can be repre-
sented as

A software package called codonO was written using the C
programming language to calculate SCUO for each open
reading frame (ORF). This program is available at http://
digbio.missouri.edu/~wanx/cu/codonO/. The 86 unicel-
lular genomes explored in this paper can be found at our

Web site http://digbio.missouri.edu/~wanx/cu/genom
elist.htm.

Theoretical model between GC3 and codon 
usage
From the standard genetic code for synonymous codons,
each amino acid was encoded by xyU/C and/or xyA/G. The
third site of each codon should be purine (R, either U or
C) or pyrimidine (Y, either A or G). For those amino acids
with double genetic codons, they can only be coded by

xyU/C or xyA/G. We define  = A,  = U, and vice versa.
We assume the probability of G+C at the GC3 is p. Then
the probability of A+T at the GC3 is 1-p. Let α be P(G), i.e.,
the probability of G, and β be P(A), i.e., the probability of
A. Hence, 0 < α ≤ p, 0 < β ≤ 1 - p. If we apply Equation 2,
we will obtain entropy for each amino acid - αlog2α if the
third site is G or -(p - α)log2(p - α) if the third position is
C (we use base 2 through our theoretical model). The
entropy for each amino acid will be - βlog2β if the third
site is A or -(1-p-β)log2(1-p-β) if the third position is T. Let
us use Gln as an example, which is coded by CGA/G. If the
sequence was coded only by this single amino acid, α = p
and β = 1-p. Therefore, by applying Equation 3, we can cal-
culate the overall entropy for synonymous codons, -plog2p
- (1-p)log2(1-p). In this case, the maximum entropy will
be log22 = 1. Thus, the overall codon bias for Gln will be
1 + plog2p + (1-p)log2(1-p). For all of the amino acids with
2 genetic codons, we can use the same equation:

SCUO n2 = 1 + plog2p + (1-p)log2(1-p)  10

We can apply the similar deducing process for amino
acids with 3, 4 or 6 genetic codes. Based on our definition
of SCUO (Equation 9), the overall codon usage bias will
be the sum of each amino acid. Thus, we obtain this first-
order approximation for the overall codon bias:

SCUO = 1 + µ*SCUOn2 + ν*SCUOn3 + ω*SCUOn4 +
γ*SCUOn6  11

where µ, ν, ω, and γ are associated adjusted weights, which
are the amino acid usage frequency of 2, 3, 4 or 6 genetic
codes, respectively. The adjusted weights in archaea and
bacteria are shown in Table 1.

To simplify the analysis process, we simplify the analytical
model as a binary selection model. Among the 18 synon-
ymous codons, only Ile has three genetic codons. All other
synonymous codons are encoded in pairs with xyZ and xy

. Assuming no additional codon bias results from a
biased distribution between A and T or between C and G,
i.e., P(A) = P(T), P(G) = P(C), the synonymous codons
bias will be simplified to be a binary selection model:
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SCUO = 1+ (p/2)log2(p/2) + ((l-p)/2)log2((l-p)/2)  12

In this case, the codon bias is solely determined by GC3,
p. This simplified estimation between codon usage bias
and GC3, which will reflect the lowest boundary of the
codon usage bias for a specific GC3.

Results
GC composition affects SCUO within a single genome
We examined the relationships of SCUO over GC content,
GC1, GC2 and GC3 in E. coli (Fig. 1). We only included
genes with >200 codons, based on a comparison between
gene length and SCUO in E. coli [13] that showed the
SCUOs of genes with <200 codons have large fluctuations
in codon usage bias. These results demonstrated that the
overall content of GC and GC3 in E. coli have the largest
impact on SCUO. This was also shown to be universal
within other genomes (data not shown). The E. coli
genome exhibited three horns (Figs, 1a and 1d). A lower
or higher GC or GC3 over the center GC (50.8%) was
associated with a relatively higher SCUO. GC1 showed
two horns, whereas GC2 did not show this trend.

Relationship between GC composition and SCUO across 
archaeal and bacterial genomes
The comparison between GC composition and SCUO
across different genomes showed that the non-linear rela-
tionships between SCUO and GC3 among the unicellular
organisms were independent of species (Figs. 2 and 3).
The dependency of SCUO on GC3 was also strong and
non-linear. Based on the quadratic regression, in bacteria,
SCUO = -2.06 * GC3 + 2.05*(GC3)2 + 0.65, r = 0.91, P <
0.0001. In archaea, SCUO = -1.79 * GC3 + 1.85*(GC3)2

+ 0.56, r = 0.89, P < 0.0001. To investigate the impact of
GC3 on GC, we combined both archaeal and bacterial
data and plotted the relationships between GC3 and GC
(Fig. 4a). GC was linearly correlated (GC3 = 1.78*GC-
0.35, r = 0.87) with GC3 for 86 unicellular genomes. We
also plotted the relationship between GC1 vs. GC3 and
GC2 vs. GC3 (Figs. 4b and 4c). We found that GC3 was
linearly correlated with both GC1 and GC2. Interestingly,
the slope for GC3 vs. GC1 (0.42) was slightly higher than
that for GC3 vs. GC2 (0.27).

We plotted the simplified binary selection model in the
GC3 vs. SCUO of both archaea and bacteria. The binary

selection model closely fit the lowest boundary of the cor-
relation between GC3 and SCUO. The codon usage bias
was generally above the plotted curve because in most
cases, P(A) is not equal P(T) and P(G) is not equal to P(C)
in the natural world. The distribution of Ile may also
increase the codon usage bias.

Simulation of codon usage bias and GC composition
We carried out numerical simulations to further study the
relationship between codon usage bias and GC composi-
tion. The simulation process was implemented to mimic
the unicellular GC composition. For example, the linear
relationship of GC3 vs. GC1 (Fig. 5b) and GC3 vs. GC2
(Fig. 5c) in the pseudo ORFs followed those in archaea
and bacteria (Figs. 5b and 5c). The simulation showed
that the correlation between GC and GC3 (Fig. 5a) was
similar to that in archaea and bacteria (Fig. 4a). Moreover,
the relationships of GC1 vs. SCUO (Fig. 5d), GC2 vs.
SCUO (Fig. 5e), and GC vs. SCUO (Fig. 5g) in the simula-
tion were also similar to those in archaea and bacteria
(Figs. 2 and 3). As with the unicellular data, our simula-
tion results demonstrated that there was good agreement
between the non-linear relationship of codon usage bias
and GC3 (Fig. 5f), and the binary selection model.

Impact of asymmetric distribution of G/C and A/T on 
codon usage bias
We defined P(A) = P(T) and P(G) = P(C) for the third
codon positions at step 4 in the simulation process. The
correlation between codon usage bias and GC3 is shown
in Figure 6. Compared with the random distribution of
P(A) and P(G), both the SCUO range and SCUO values of
the pseduo ORFs are smaller during symmetry distribu-
tion of G over C and A over T at the third codon positions.
Compared with simulation results shown in Figure 5, this
simulation showed that asymmetric distribution of muta-
tional pressure at the third codon positions may increase
codon usage bias.

Discussion
In this paper, we applied the informatics method [13] to
measure SCUO and GC composition within and across
unicellular genomes. We first explored the relationship
between SCUO and GC composition in E. coli. Our results
demonstrated that the relationship between codon usage
bias and GC3 formed a "U" shape, which may reflect a

Table 1: Adjusted factors in archaea and bacteria

µ ν ω γ

Archaea 0.43 0.08 0.33 0.16
Bacteria 0.42 0.06 0.35 0.17
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direct mathematic consequence of GC3 over codon usage
bias. It is interesting that there was a weak horn in the
center of "U" shape (Fig. 1), which is similar to previous
reports [36]. The genes in the central horns were discussed
in Karlin et al. [36]. We can detect some weak horns in
some other genomes, such as Lactococcus lactis. However,
the central horns were not shown within some other
genomes we explored (data not shown). The comparison

between GC composition and SCUO confirmed previous
reports that GC3 was the most important factor in codon
bias among GC, GC1, GC2, and GC3.

The comparison of codon usage and GC composition
across 16 archaeal and 70 bacterial genomes showed that
a similar, non-linear relationship existed between GC3

Relationship between SCUO and GC composition in E. coli K12Figure 1
Relationship between SCUO and GC composition in E. coli K12. (a) Relationship between SCUO and the overall GC 
composition. (b) Relationship between SCUO and GC1. (c) Relationship between SCUO and GC2. (d) Relationship between 
SCUO and GC3.

Figure 1
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and SCUO across the unicellular cells. This also
confirmed that GC3 is the main driving force for the
codon usage bias. These results were simulated using
pseudo ORFs.

To understand the theoretical basis for the relationship
between GC composition and codon usage bias, we

derived a binary selection model of GC3 based on the
Shannon informatics theory and the entropy concept. The
non-linear relationship agreed very well with the theoret-
ical equations (Figs. 3 and 4).

Similar to our results with unicellular organisms, the non-
linear relationship between GC3 and codon usage bias

Correlation between SCUO and GC composition in 16 archaeal genomesFigure 2
Correlation between SCUO and GC composition in 16 archaeal genomes. (a) Relationship between SCUO and 
GC1. (b) Relationship between SCUO and GC2. (c) Relationship between SCUO and GC3, where the red line denotes the 
binary selection model (Equation 12), the blue line denotes the codon bias resulting from a single amino acid with binary 
codons (Equation 10) and the green line denotes the mathematical model for 2, 3, 4 and 6 codons (Equation 11), and the 
maroon line reflects the quadratic regression line SCUO = -1.79 * GC3 + 1.85*(GC3)2 + 0.56, r = 0.89, P < 0.0001. (d) Rela-
tionship between SCUO and overall GC.

Figure 2 
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has been reported in human and mouse [37]. This
indicates that the relationship is independent of species.
However, compared to genes in the same species, it is not
known whether the features associated with codon usage
bias, such as gene expression level, protein structure, etc.,
are associated with codon usage bias across species. It may

be interesting to investigate the relationships between
those reported gene features [7-27] and codon usage bias
of those horizontally transferred genes in their new
adapted hosts. The methodology described here provides
a simple way (SCUO) to compare the codon usage bias
across species.

Correlation between SCUO and GC composition in 70 bacterial genomesFigure 3
Correlation between SCUO and GC composition in 70 bacterial genomes. (a) Relationship between SCUO and 
GC1. (b) Relationship between SCUO and GC2. (c) Relationship between SCUO and GC3, where the red line denotes the 
binary selection model (Equation 12), the blue line denotes the codon bias resulting from a single amino acid with binary 
codons (Equation 10) and the green line denotes the mathematical model for 2, 3, 4 and 6 codons (Equation 11), and the 
maroon line reflects the quadratic regression line SCUO = -2.06 * GC3 + 2.05*(GC3)2 + 0.65, r = 0.91. (d) Relationship 
between SCUO and overall GC.
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GC3 were demonstrated to be tightly associated with cell
functional significance [38,39]. Sequence analysis of
human receptor tyrosine kinase genes demonstrated that
functionally important transmembrane hydrophobic
amino acids are specified by codons containing a higher
GC frequency at the third bases than are transmembrane
neutral amino acids.

We have demonstrated that the asymmetric distribution
of G over C and T over A at the third codon positions
increased both the codon usage bias values and ranges.
The asymmetric distribution of mutational pressure at the
third codon positions provides more flexible selection
ability during the environmental adaptation process. The
asymmetric distribution has been observed in many bac-
terial genomes, which were found to be relatively
enriched in G over C and T over A at GC3 in the leading
strand compared with the lagging strand [28]. The effect
of asymmetric mutation pressure on the amino-acid com-
position of proteins has been reported elsewhere [40-42].
Thus, the asymmetric distribution of mutational pressure
contributes to the codon usage bias besides the GC3,
although we did not include such an effect in our simpli-
fied binary selection model.

It is interesting that the GC3 is not asymmetrically distrib-
uted (Fig. 2,3). One possible reason might be that the GC
content of protein coding region is overall higher than the
non-coding region. The other possible reason might be
the length of the distribution. Within a single genome, we

found that the shorter sequences have a wider distribution
of GC3s (data not shown). Within our simulation, we
assumed the even distribution of the gene length between
200 and 1000. This might result in the symmetric distri-
bution GC3 in the simulation.

Conclusions
In summary, we developed a simple binary selection
model that mimicked the quantitative relationship
between the codon usage bias and GC composition in the
unicellular organisms, which was supported by systemat-
ically characterizing the relationship between codon
usage bias and GC composition among 86 unicellular
organisms. Our simulation results support this finding by
demonstrating that the asymmetric distribution of muta-
tional pressure at the third codon positions has an impact
on codon usage bias.

Methods
Genome database
The bacteria and archaea genomic sequences and annota-
tions were downloaded from ftp://ftp.ncbi.nlm.nih.gov/
genomes/Bacteria/ in August, 2002.

Computational simulation
To simulate the relationship between codon usage bias
and GC composition, we generated 15,514 pseudo ORFs
with a random size of 200–1000 codons. For each ORF,
the nucleotides (A,T,G, or C) for three positions (1s, 2s,
and 3s) were generated separately using the following

The relationship between GC vs. GC3, GC3 vs. GC1, and GC3 vs. GC2Figure 4
The relationship between GC vs. GC3, GC3 vs. GC1, and GC3 vs. GC2. (a) The relationship between GC and GC3 
(GC3 = 1.78*GC-0.35, r = 0.87). (b) The relationship between GC3 and GC1 (GC1 = 0.42*GC3 + 0.32, r = 0.82). (c) The rela-
tionship between GC3 and GC2 (GC2 = 0.27*GC3 + 0.25, r = 0.73) in unicellular genomes.

Figure 4 

              (a)           (b)            (c) 
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procedure: 1) generate nucleotides for the third codon
position randomly with a GC content between 0 and 1; 2)
generate nucleotides for the first codon position with a
GC content between 0.42*GC3 + 0.18 and 0.42*GC3 +
0.46, which represents a similar linear relationship
between GC3 and GC1 in actual genomes, as shown in

the Results section; 3) generate nucleotides for the second
codon position with a GC content between 0.27*GC3 +
0.11 and 0.27*GC3 + 0.39, which represents a similar
linear relationship between GC3 and GC2 in actual
genomes; 4) randomly generate A/T and G/C with equal
or random probability between A and T, as well as

Simulation results in the pseudo open reading frames (ORFs)Figure 5
Simulation results in the pseudo open reading frames (ORFs). (a) Relationship between the overall GC and GC3. (b) 
Relationship between GC1 and GC3. (c) Relationship between GC2 and GC3. (d) Relationship between GC and SCUO. (e) 
Relationship between GC1 and SCUO. (f) Relationship between GC3 and SCUO, where the red line denotes the binary selec-
tion model (Equation 12), the blue line denotes the codon bias resulting from a single amino acid with binary codons (Equation 
10) and the green line denotes the mathematical model for 2, 3, 4 and 6 codons (Equation 11). (g) Relationship between GC2 
and SCUO.

Figure 5 
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                       (d)          (e)                                   (f) 

                       (g) 
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between G and C, for each position based on the associ-
ated GC composition; and 5) combine the generated
nucleotides as an ORF, and discard any pseudo ORF con-
taining a stop codon. We calculated SCUO for each
pseudo ORF using codonO.

Lists of abbreviations used
SCUO: Synonymous Codon Usage Order

GC1: The GC composition for the first site of each codon

GC2: The GC composition for the second site of each
codon

GC3: The GC composition for the third site of each codon
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