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Abstract

Background: The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin
motifs) proteins are a family of metalloproteases with sequence similarity to the ADAM proteases,
that contain the thrombospondin type | sequence repeat motifs (TSRs) common to extracellular
matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role
in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and
the genetic syndromes Weill-Marchesani syndrome (ADAMTS10), thrombotic thrombocytopenic
purpura (ADAMTSI3), and Ehlers-Danlos syndrome type VIIC (ADAMTS2) in humans and belted
white-spotting mutation in mice (ADAMTS20).

Results: Phylogenetic analysis and comparison of the exon/intron organization of vertebrate
(Homo, Mus, Fugu), chordate (Ciona) and invertebrate (Drosophila and Caenorhabditis) ADAMTS
homologs has elucidated the evolutionary relationships of this important gene family, which
comprises |9 members in humans.

Conclusions: The evolutionary history of ADAMTS genes in vertebrate genomes has been marked
by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS
subfamily (ADAMTSI, -4, -5, -8, -15) that may have distinct aggrecanase and angiogenesis functions.

Background

ADAMTS (A Disintegrin-like and Metalloprotease with
Thrombospondin motifs) proteins have homology with
the metalloprotease region of the ADAM proteases, but
also have at least one of the Thrombospondin type 1
Sequence Repeat (TSR) motifs that are common in extra-
cellular matrix proteins. Since the discovery of a gene
encoding ADAMTS1 in 1997 [1], a total of 19 similar
genes have been found in the human genome [2], num-

bered ADAMTS1-20; there is no ADAMTS11 because early
reports of an ADAMTS11 [3] were later found to describe
ADAMTS5. Many of these genes have been implicated in
a variety of diseases, including connective tissue disorders
[4], cancer [5-7], osteoarthritis [3,8], and possibly Alzhe-
imer's disease [6,9]. Recently, an autosomal recessive
form of Weill-Marchesani syndrome (WMS) has been
attributed to null mutations of the ADAMTS10 gene [10].
The symptoms characteristic of this syndrome (short
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stature, brachydactyly, joint stiffness, and anomalies of
the eye lenses), together with its expression patterns, sug-
gest a role for the gene encoded by this protein in normal
growth and in skin, eye, and heart development.

ADAMTS proteins are characterized by a pro-domain, a
metalloprotease domain, the so-called disintegrin-like
and spacer domains, and a tail of TSR repeats. The pro-
domain of ADAMTS1 and -4 is cleaved at the RX(K/R)R
furin cleavage site [11] in the Golgi [12,13], releasing an
active protein [14]. There are clearly conserved furin cleav-
age sites for most human ADAMTS proteins (positions
578-581 of the alignment) [Additional File 2]. While this
site was less well conserved in ADAMTS10 and
ADAMTS12, the pro-domain of ADAMTS12 was also
shown to be removed by a furin-mediated process [7]. On
the basis of this combined evidence, it is commonly
believed that furin cleavage of the pro-domain might
occur for all ADAMTS proteins.

The metalloprotease domain of ADAMTS proteins is
shared with the related ADAM proteins, and the catalytic
Zn2+-binding motif HEXGHXXXXXHD [15] is well con-
served, shown at amino acid positions 761-772 [Addi-
tional File 2]. While the metalloprotease domain of
ADAM proteins is followed by a disintegrin domain
which binds integrins at a conserved X(D/E)ECD site
[16,17], the corresponding amino acids in the disintegrin-
like domain of ADAMTS proteins are not well conserved.
We also note that the so-called spacer domain following
this disintegrin-like domain (amino acids 1060-1400)
[Additional File 2] in fact has many highly conserved res-
idues, despite its comparatively reduced overall conserva-
tion of amino acid sequence.

There are four matrix metalloprotease (MMP) cleavage
sites in the spacer domain of ADAMTS1 [14,18], including
the highly conserved IPAGA site at amino acid positions
1229-1233 [Additional File 2] (L. Iruela-Arispe, personal
communication). Further proteolytic processing within this
domain has been demonstrated for ADAMTS]1, -2, -5, and
-12[3,6,7,19]. For ADAMTS], this second proteolytic step
is mediated by several MMPs, and results in removal of
the C-terminal TSRs that interact with the extracellular
matrix (ECM). This leads to release of the protein from the
endothelial cell membrane, reducing its ability to inhibit
endothelial cell proliferation and probably reducing its
anti-angiogenic potential [14]. Release of ECM-bound
proteins via proteolytic removal of their TSR domains may
be a common theme, as we see similar proteolytic
removal of the C-terminal TSRs of the unrelated neuronal
guidance protein F-spondin by plasmin, releasing it from
ECM binding [20]. While the exact mechanism of the pro-
teolytic processing of ADAMTS proteins remains some-
what controversial, there is an intriguing possibility that
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regulation of the ratio of ECM-bound vs. free ADAMTS
protein could be mediated by MMPs. The region contain-
ing these sites is conserved to varying degrees in the newly
discovered ADAMTS proteins, suggesting variable (per-
haps tissue-specific) MMP processing of these proteins.
ADAMTS4, which lacks a TSR tail, may not have an ECM-
bound form.

The region between the metalloprotease domain and the
TSR repeat tail was demonstrated to be necessary for gon-
1, a Caenorhabditis ADAMTS homolog, to mediate cell
migration during gonadogenesis [21]. A variant of this
region that lacks the conserved amino acids upstream of
the classic TSR but maintains the highly conserved spacer
residues is found in papilin, where it has been implicated
in influencing cell rearrangements during organogenesis
[22] and in the Manduca sexta lacunin protein which plays
a role in basal lamina remodeling during morphogenesis
[23]. It will be interesting to investigate whether there is to
be a common theme of organogenesis function among
proteins that contain this configuration of domains.

There is evidence that several mammalian ADAMTS pro-
teins are expressed organogenesis. For example, muta-
tions in the mouse ADAMTS20 gene have been found to
cause the belted white-spotting mutation, resulting from
a defect in melanocyte development or migration during
embryogenesis [29], the ADAMTS1 protein is necessary
for mouse gonadogenesis [30], ADAMTS12 is specifically
expressed in fetal lung [7], and several of the newly
described ADAMTS proteins [28] are expressed solely or
primarily in fetal tissue.

ADAMTS proteins contain a single "classic" TSR motif
(WXXWXXW) in the disintegrin-like domain, and a varia-
ble number of variant TSRs within the C-terminal tail of
the protein, which contain 4 amino acids between tryp-
tophan residues (W4XW) rather than two. TSRs can be
divided in several structural groups, based on the presence
and spacing of cysteines [24]. The precise function of each
type of TSR has not yet been determined, although it is
known that the sequence CSVTCG in one of the throm-
bospondin-1 TSR's mediates endothelial cell apoptosis
through binding to CD36 [25,26]. About 70 proteins in
the human genome contain TSRs [27] and many of them
are matrix binding proteins.

ADAMTS1 and -8 inhibit angiogenesis [31], and gene
expression profiling suggests that ADAMTS4 also has a
role in angiogenesis [32]. Several of these proteins
(ADAMTS], -4, and -5) have also been shown to cleave
aggrecan, the proteoglycan that makes cartilage elastic and
compressible [19,33,34], and ADAMTS4 was recently
shown to cleave cartilage oligomeric matrix protein
(TSP5) [35]. The ADAMTS?2, -3, and -14 proteins appear
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functionally related. ADAMTS3 is a procollagen II N-
propeptidase, and ADAMTS14 appears also to be an ami-
noprocollagen peptidase [36]. ADAMTS2 is an aminopro-
collagen peptidase of procollagen I and 11, and deficiency
of this protein causes Ehlers-Danlos syndrome type VIIC
[4]. ADAMTS13 is a von Willebrand factor-cleaving pro-
tease. Mutations in the ADAMTS13 gene result in inappro-
priate platelet activation, leading to the blood disorder
thrombotic thrombocytopenic purpura (TTP) [37-40].

Recently, an intriguing link has been discovered between
ADAMTS metalloproteases. The proinflammatory
cytokines IL17 [41], IL1B [42] and TGFp [43] induce
expression of ADAMTS4. TGFp also induces ADAMTS2
[44] and TNFo was found to up-regulate ADAMTSI,
ADAMTS6, and ADAMTS)Y in ocular cells [45], suggesting
a role for these proteases in inflammatory eye disease.
Similarly, TNFa produced a marked induction of
ADAMTS]1 in endothelial cells [46]. As several ADAMTS
proteins, ADAMTS4 in particular, are implicated in rheu-
matoid arthritis, and TNFa inhibitors have been recently
been used with great success in its treatment [47], we spec-
ulate that part of the effect of the TNFa inhibitors is an
indirect downregulation of the ADAMTS proteins that
break down connective tissues. As TNFa inhibitors are not
without inherent risks [48,49], transcriptional inhibition
of specific ADAMTS genes may ultimately provide similar
benefits with fewer risks.

To better understand the multiple functions of the
ADAMTS proteins, we carried out the most detailed and
comprehensive analysis to date of the phylogenetic relat-
edness and intron/exon organization of all human
ADAMTS genes, including their comparison with inverte-
brate and chordate ADAMTS homologs. Prior analyses
included fewer species and did not address the sequence
of genomic events that resulted in the current ADAMTS
genomic structure [2,28,50]. Our analysis reveals distinct
sub-families with unique functions and reveals a history
of gene duplications, retrotransposition, and the loss and
gain of introns during animal evolution. For example,
ADAMTS1, -4, -5, -8, and -15 genes all derive from a retro-
transposition event that occurred prior to the divergence
of vertebrates and the urochordate Ciona intestinalis, and
from subsequent gene duplications that occurred prior to
the divergence of mammals and the pufferfish, Fugu
rubripes. This ADAMTS protein subfamily encompasses
proteins that share aggrecanase and angiogenesis-related
activities.

Results & Discussion

Gene discovery

To perform a phylogenetic analysis of the ADAMTS gene
family we first examined several genome databases to
have a comprehensive survey of all ADAMTS genes in
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humans and other species. When we started this analysis
in 2002 only 12 ADAMTS proteins were known. We pre-
dicted coding sequences of the human ADAMTS genes
based on several sequence databases (see Material and
Methods) and found them to be identical to those subse-
quently published by Cal, et al [28] based on cloned
c¢DNAs. This work confirmed that a total of 19 ADAMTS
genes exist in the human genome, with various isoforms.
Since there were several cases in which alternative splicing
or different exon predictions resulted in ADAMTS pro-
teins of varying lengths, the most complete (longest)
translations were considered in our analyses, and their
Genbank accession numbers are indicated [Additional
File 2]. ADAMTS9 has three known splice variants, of
which the long variant that we used for analysis was
NM_182920. ADAMTS20 has two known splice variants,
of which we used NM_025003. ADAMTS18 has two
known variants, of which we used NM_199355, minus
the final exon. ADAMTS13 has four known variants, of
which we used NM_139025.

ADAMTS10 and ADAMTSG6 each have a single known cod-
ing sequence, and we found evidence of others. The vari-
ant of ADAMTSG6 that is published (NM_014273) is a
short form, and contains a non-consensus exon immedi-
ately following the metalloprotease catalytic site, while
the variant of ADAMTS10 that is published (NM_030957)
has a consensus exon at this location, and is in the long
form. We predict a long form of ADAMTSG, as well as a
consensus exon for ADAMTS6 and a non-consensus exon
for ADAMTS10. We used the consensus exons of both
genes in our analyses.

Phylogenetic analyses

We compared the 19 known human ADAMTS protein
sequences with ADAMTS homologs from invertebrates
(Drosophila and Caenorhabditis) from which entire genome
sequences were recently determined, to elucidate their
evolutionary relationships (Figure 1A and 1B) [Additional
File 1]. This revealed a series of gene duplications among
human ADAMTS genes, of uncertain affinity to these
invertebrate relatives. With the goal to further elucidate
this gene duplication history, the human and invertebrate
ADAMTS orthologs were compared with ADAMTS
orthologs from Mus, Fugu and Ciona, which diverged
between humans and invertebrates, and with an addi-
tional invertebrate, the honeybee, Apis mellifera (Figure 2)
[Additional File 2].

To perform this analysis we inferred the coding sequence
of sixteen ADAMTS proteins in the Fugu rubripes genome
[52], and drew from Genbank nine representative mouse
orthologs, three orthologs from the Drosophila genome
and four from Caenorhabditis (see Figures 1A and 2).
Other Mus (and Rattus) ADAMTS orthologs that were
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Figure |

Phylogenetic analysis of human ADAMTS proteins and invertebrate homologs. Unambiguously aligned amino acids
were analyzed by distance (Protdist+N]), maximum parsimony (MP) and maximum likelihood (ML) methods. The trees shown
are the ML distance topologies. Numbers at the nodes represent the percent of bootstrap replicates of distance (NJ) and par-
simony (MP), and the percent of quartet puzzling steps (QP) in support of each group. (A) Phylogenetic tree of human
and distantly related invertebrate ADAMTS homologs inferred from a 359-amino acid alignment, with o = 1.42 and
proportion of invariable sites (pl) = 0.09. (B) Phylogeny of human and invertebrate ADAMTS homologs with long
branches removed, inferred from 543 aligned amino acids, with oo = .48 and proportion of invariable sites (pl) = 0.10. For
reference, Genbank Gl numbers for the sequences are provided [Additional File 2].

Page 4 of 13

(page number not for citation purposes)



BMC Evolutionary Biology 2005, 5:11 http://www.biomedcentral.com/1471-2148/5/11

Homo ADAMTS12
Mus 12
Fugu 12
Homo ADAMTS?
Fugu7
Ciona 7/12
Homo ADAMTS17
Homo ADAMTS19
Drosophila CG4096
Homo ADAMTS10
Mus 10
Fugu 10

0.99

0.7

100/100 Fugu 6
5~ | Ciona 6/10

Mus 16

Fugu 16

Homo ADAMTS18

Fugu 18

N ] Ciona 16/18

100/100 oI Homo ADAMTS2
I 1000\ Juys 2

*
100/98

Fugu 2
0.99| . Homo ADAMTS3 Procollagen
ooiog 1000 Fugu 3 Amino-propeptidases
= Homo ADAMTS14
104/100 Fugu 14
77/90 " — Ciona 2/3114
2 Homo ADAMTS13 vWF protease
100/100t—— Fugu 13

0.83]

L*l62/64 Apis 9

Drosophila CG6107

Homo ADAMTS1 METH-1

Mus 1

Fugu 4

2" Homo ADAMTS4 aggrecanase-1

Mus 4

Homo ADAMTS8 METH-2

-6 ® Mus 8

Fugu 8

Homo ADAMTSS5 aggrecanase-2

Mus 5
Fugu 5 Retrotransposed

Homo ADAMTS15 “angiogenesis/aggrecanase” |
Fugu 15 group ]

Ciona 1/4/5/8/15
Homo ADAMTS20
Mus 20

ugu 9
Ciona 9/20
Caenorhabditis gon-1
0.1 substitutions/site

Figure 2

Phylogenetic analysis of animal ADAMTS homologs. This is the consensus maximum likelihood tree topology deter-
mined from 900 trees with the highest posterior probabilities inferred by Bayesian analysis of protein sequences. 571 aligned
amino-acid sites were analyzed, with mean o = .59 (1.38 < o < 1.83), pl = 0.10 (0.07 < pl < 0.13) and InL = -37875.26. Num-
bers at nodes represent Bayesian posterior probabilities for that relationship, with the best-supported posterior probabilities
(1.00) represented by bullets (¢). The percent of 1000 bootstrap replicates in support of the nodes, as found by distance and
parsimony analyses, are also reported. Accession numbers and scaffold numbers for sequences are provided [Additional File 2].
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unannotated at the time of our initial work have since
been identified by others [51,53], and some are annotated
in the MEROPS database[82]. However, they were not
included for our final analyses presented here since they
are so similar to the human sequences (69-99% identical,
[53]) that they offered no help in elucidating the gene
duplication history. The invertebrate genomes were sur-
veyed extensively for additional ADAMTS genes, and
those most closely related to the vertebrate ADAMTS
orthologs were retained in the analyses presented herein.
The most divergent Drosophila and Caenorhabditis
ADAMTS homologs represented in Figure 1A were
removed from further analyses in attempt to avoid sys-
tematic bias known as "long branch attraction" where
divergent but putatively unrelated sequences group
together because of their divergence rather than due to
shared characters [54]. All ADAMTS proteins introduced
here contain the same basic domain structure as previ-
ously described ADAMTS proteins. A complete alignment
of all human and invertebrate ADAMTS protein
sequences, and representative Ciona, Fugu and Mus
orthologs, annotated with intron positions and phases, is
available [Additional File 2].

Intron position and phase

We compared the positions of introns and their phases
between Homo, Fugu, Ciona, Drosophila and Caenorhabditis
homologs of ADAMTS genes, in attempt to corroborate
and further elucidate their evolutionary relationships, as
shown in Figure 3. The term intron phase refers to the
position of the splice site with respect to the codon, where
phase 0 describes a splice site 5' of the codon, phase 1
describes a splice site between the first and second base of
a codon, and phase 2 describes a splice site between the
second and third base of a codon. Introns at the same
position that have the same phase in homologous genes
are considered to be shared characters that were conserved
during evolution. The lack of an intron at a conserved
position may either suggest that the gene lost an intron at
that position during its evolution, or that it never had that
intron, and the intron conserved in the other homologs
was gained after those homologs diverged from the
intron-lacking homolog. In combination with the phylo-
genetic analysis of the ADAMTS protein sequences, a par-
simonious interpretation of the data summarized in
Figure 3 that invokes the fewest changes should help to
distinguish between older and more recent gene duplica-
tion events in this gene family. Three of our most striking
observations of the intron distribution are that (i) some
intron positions are shared between worm, fly, chordate
and vertebrates, (ii) recently duplicated genes share simi-
lar patterns of introns, and that (iii) the complete absence
of ancient introns and the presence of introns at new posi-
tions in ADAMTS], 4, 5, 8 and 15 of vertebrates and Ciona
reveals that this subgroup of genes evolved by retrotrans-
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position early during chordate evolution, was repopu-
lated by new introns (in some cases, separately in
vertebrates and Ciona), and subsequently underwent gene
duplication during the evolution of vertebrates.

The phylogenetic analysis of animal ADAMTS homologs
reveals that proteins that are known to have similar bio-
logical activities are closely related, and that they have
evolved by a series of gene duplication events (Figure 2).
Since the functions of only some ADAMTS proteins have
been empirically tested, estimates of evolutionary related-
ness amongst the entire family may imply closer func-
tional relatedness, and thus guide the future design of
more specific empirical tests of protein functions. An
interesting property of the vertebrate ADAMTS proteins
are the extensive sequence similarity between many pairs
of sequences, as indicated in Figures 1, 2, 3, 4 [and Addi-
tional file 2]. Although in many cases little is known
about the functions of these proteins, we can speculate
that the two proteins in each pair may share similar bio-
logical activities due to their shared primary sequence. It
is also possible that these ADAMTS proteins act as het-
erodimers, in a manner similar to the ADAM proteins fer-
tilin o and B [55].

As shown in Figures 1 and 2 and summarized in Figure 4,
animal ADAMTS homologs have undergone several gene
duplications. Assuming that the Ecdysozoa hypothesis is
true and arthropods and nematodes are united as a group
[56-62], our results indicate that a single ADAMTS gene
duplication preceded the divergences of Ecdysozoa and
chordates. At least 3-4 ADAMTS gene duplications
occurred in chordates prior to the divergence of Ciona and
vertebrates, followed by additional gene duplications in
vertebrates prior to the divergence of Fugu and mammals
(Figures 2 and 4).

Ciona intestinalis, the urochordate sea squirt, was found to
have at least six ADAMTS genes (Figure 2), which
correspond to six of the seven major groups of vertebrate
ADAMTS homologs. Ciona ADAMTSG is the sister of the
group comprised of vertebrate ADAMTS6 and -10, indicat-
ing that ADAMTS6 and -10 evolved by gene duplication
early during vertebrate evolution, preceding the diver-
gence of pufferfish and mammals, but after their diver-
gence from urochordates. Similarly, Ciona ADAMTS16 is a
sister to the group comprised of vertebrate ADAMTS16
and -18, Ciona ADAMTS?7 is a sister to the group com-
prised of vertebrate ADAMTS7 and -12, Ciona ADAMTS3
is a sister to the group comprised of vertebrate ADAMTS2,
-3 and -14, Ciona ADAMTS9 is a sister to the group com-
prised of vertebrate ADAMTS9 and -20 and Ciona
ADAMTS15 is the sister to the group comprised of verte-
brate ADAMTS], -4, -5, -8 and -15. This reveals that both
gene duplications early in chordate evolution as well as
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Figure 3

The phase and position of introns in ADAMTS genes support the phylogeny of ADAMTS proteins. Intron posi-
tions 16 — 87, found in the conserved region of the multiple alignment, are numbered consecutively from the 5>3' locations in
the ADAMTS-coding regions of genes. The presence of an intron is indicated according to its phase (0, I, 2), absence of an

intron indicated by "-

and missing data is blank. Unambiguously aligned intron positions are highlighted in bold, and conserved

intron positions shared between chordates and Drosophila CG4096 or CG6107 or chordates and Caenorhabditis are indicated
by $, # or * symbols respectively. The phases and positions of introns summarized here are also individually highlighted in the

multiple sequence alignment [Additional File 2].

subsequent gene duplications early during vertebrate evo-
lution have contributed to the proliferation of ADAMTS
genes studied in growing depth in mammalian model
systems.

ADAMTS?2, -3, and -14 have been recognized as evolution-
arily closely related genes, encoding proteins with a com-
mon functionality as procollagen aminopeptidases. They
are as a group most closely related to a single gene in
Ciona, and appear to have evolved by gene duplications
that occurred prior to the divergence of pufferfish and
mammals but after the divergence of urochordates and
vertebrates. They are most closely related to ADAMTS13,
suggesting a gene duplication from a common ancestor
(Figures 1 and 2). ADAMTS13 appears to have originated
early in vertebrate evolution as it has a closely related
homolog in the pufferfish Fugu rubripes but is apparently
absent in Ciona, fly and worm genomes. The pufferfish
ADAMTS13 homolog is not only closely related at the
amino acid sequence level, but also has the same
ADAMTS13-specific intron/exon structure in its tail,
which is unique among the ADAMTS gene family. This is
in agreement with a unique function for ADAMTS13 as a

protease cleaving von Willebrand factor, leading to abnor-
mal blood clotting. Although the mouse ADAMTS13 gene
was not included in this analysis, it has been identified
(Genbank accession number NM_001001322).

A second evolutionarily related group is comprised of
ADAMTS1, -4, -5, -8 and -15 and their single sister in
Ciona. Vertebrate members of this group share unique
intron positions and lack all of the intron positions held
by other ADAMTS genes and their invertebrate homologs
(Figure 3). Three members of this group (ADAMTS1, -4,
and -8) encode proteins with aggrecanase and angiogen-
esis-related functions, which suggests the examination of
ADAMTS5 and -15 for similar biological activities. This
putative "angiogenesis/aggrecanase group" appears most
closely related to ADAMTS20 and -9. Further, the unique
intron positions shared by ADAMTS1, -4, -5, -8, and -15,
and lack of invertebrate orthologs in this putative "angio-
genesis/aggrecanase group” suggest that this group's pro-
genitor arose within chordates via a retrotransposition
event from the common ancestor of the group comprised
by ADAMTS20 and -9 (Figures 2 and 4). The intron/exon
structures of ADAMTS1, -4, -5, -8, and -15 are similar to
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Figure 4
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Proposed scenario for the evolutionary history of ADAMTS proteins. During chordate evolution a series of gene
duplications resulted in six ADAMTS proteins present in the Ciona genome, while an early retrotransposition event gave rise to
the "angiogenesis clade” of ADAMTS proteins. This proliferation of ADAMTS proteins did not occur in invertebrates, and
there is evidence of the loss of one ADAMTS ortholog from Caenorhabditis. More recent duplications that occurred early dur-
ing vertebrate evolution resulted in the paired sets of ADAMTS proteins present in the human genome. The chromosomal
locations of the human ADAMTS genes are indicated in parentheses and the exon structure of each human gene is diagrammed
to the right of its position in the schematic phylogenetic tree, and shown in more detail in the Additional Files.
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that of the mouse ADAMTS1 gene [63], and our analysis
shows four ADAMTS genes with this characteristic gene
structure in the genome of F. rubripes. Therefore, retro-
transposition of an ancestor of the angiogenesis/aggreca-
nase subfamily of genes, its acquisition of new introns,
and subsequent gene duplications that produced five
related genes occurred prior to the divergence of human,
mouse and pufferfish lineages. In at least one case (intron
17 in ADAMTS8) we see evidence of acquisition of a new
intron following the process of duplication, but prior to
the divergence of mammals and pufferfish.

ADAMTS20 and -9 are most closely related and, along
with the members of the angiogenesis/aggrecanase clade,
are most closely related to invertebrate gon-1 (Caenorhab-
ditis) and CG6107 (Drosophila). The finding that
ADAMTS9 and -20 together as a group have a single sister
gene in Ciona indicates that they evolved by gene duplica-
tion in the vertebrate lineage, after their divergence from
urochordates. However, the results of our phylogenetic
analyses demonstrate that neither ADAMTS9 nor
ADAMTS20 can alone be rightfully dubbed as being
orthologous to gon-1, as has been recently proposed
[64,65]. In fact, our analyses suggest that while gon-1 and
CG6107 are likely orthologs, the chordate ortholog of
these genes was the common ancestor of Ciona ADAMTS9
and -15, i.e. also the common ancestor of the later-dupli-
cated vertebrate ADAMTS genes ADAMTS?9, -20, -15, -5, -
8, -4, and -1 (Figures 1 and 2).

Only one invertebrate sequence (Drosophila CG4096) was
found that grouped with the remainder of the human
ADAMTS homologs. The placement of this gene with or
within a group of these remaining ADAMTS genes would
suggest the number of gene duplication events in this gene
family that occurred prior to the divergence of vertebrates
and invertebrates from a common ancestor. The Kishino-
Hasegawa test revealed that the likelihood of Drosophila
CG4096 being most closely related to an ancestor of the
group of all remaining mammalian ADAMTS proteins, or
of the various groups nested within it, was not signifi-
cantly different from the likelihood that Drosophila
CG4096 is most closely related to ADAMTS 7 and -12
(data not shown). The most parsimonious explanation of
this result is that a single gene duplication of an ancient
ADAMTS homolog occurred early during the evolution of
animals, prior to the divergence of chordates from inver-
tebrates, followed by lineage-specific gene loss and gene
duplications (Figure 4). If this scenario is correct, the
Caenorhabditis ortholog of Drosophila CG4096 has been
subsequently lost, but the vertebrate ortholog has been
retained and underwent several gene duplications within
and among chromosomes in the vertebrate lineage
(ADAMTS2, -3, -6, -7, -10, 12-14, 16-19).

http://www.biomedcentral.com/1471-2148/5/11

The exons comprising the TSR tail each contain a single
variant TSR, with the C(S/T)XCG motif 5' and the W4XW
motif at the 3' end. This exon structure may facilitate the
formation of alternately spliced isoforms, such as we
describe here, but it would also lend itself to duplication
or loss of individual repeats. However, the number of var-
iant TSRs in the tails of these proteins has been conserved
for the gene pairs ADAMTS17 and -19, ADAMTS6 and -10,
and ADAMTS18 and -16 (Figure 4). While this may sug-
gest a series of relatively recent gene duplications, a more
likely explanation is that each TSR has an important and
non-redundant role, or that the presence of a specific
number of TSRs is critical for each protein's function.

The apparent absence of any ortholog of ADAMTS17 or -
19 in the pufferfish genome (Figure 2), but their presence
in Mus and Rattus [51] suggests that this gene duplication
either occurred in mammals after they diverged from fish,
or that ADAMTS17 or -19 evolved earlier than the mam-
mal/fish divergence but were lost in Fugu.

Gene duplication is a common way by which new genes
with similar functions may evolve. In fact, duplication of
large segments of chromosomes has been a common
occurrence during animal evolution [66,67]. Both the
phylogenetic trees and the intron/exon structures of
ADAMTS genes show a history of such duplications. In
addition to the similarity in intron positions of ADAMTS-
1,-4,-5,-8, and -15 in both mouse and pufferfish, human
ADAMTS]I and -5 are located in tandem on chromosome
21, and human ADAMTS8 and -15, on chromosome 11
(Figure 3). The remaining genes have additional introns at
conserved locations, and both proteins in each set of pairs
have the same intron/exon structure.

Thus, by combining the phylogenetic analysis and intron/
exon structure determinations, we are able to propose the
following series of events leading to the ADAMTS protein
family (Figure 4): (i) The ancestral ADAMTS gene dupli-
cated prior to the divergence of the ecdysozoan and chor-
date lineages, approximately 673 million years ago [68].
(ii) In the following approximately 250 million years
prior to divergence of fish and mammals [69], multiple
gene duplications occurred. (iii) A retrotransposition of
the common ancestor of the ADAMTS9 and -20 gene pair
resulted in an intronless gene that proceeded to gain mul-
tiple introns, giving rise to the angiogenesis/aggrecanase
clade. (iv) This gene was involved in a duplicative
chromosomal inversion, and later a duplication of the
chromosomal segment containing both ADAMTS genes.
(v) Another intron was gained, in ADAMTSS, prior to the
divergence of the pufferfish and mammalian lineages. In
the other branch of the ADAMTS family, we see a remark-
able frequency of genes located on chromosome 5, sug-
gesting it as the location of the ancestor of these genes. We
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can speculate that a similar scenario of within-chromo-
some duplication followed by duplication of chromo-
somal segments took place, although none are in as close
physical proximity as the ADAMTS1-subfamily genes.

Conclusions

This comprehensive bioinformatic survey of the human
genome affirms the widely held belief, derived from
experimental work, that the nineteen known human
ADAMTS proteins constitute the complete gene family. By
examining both the amino acid sequences using rigorous
phylogenetic methods and comparing the exon structure
of these proteins, we were able to draw conclusions about
the evolutionary history of this family of proteins which,
in turn, provides a framework for further analysis of the
functions of these clinically-relevant genes.

Methods

Gene discovery

Sequences of ADAMTS homolog sequences presented
here were identified from 2001 to 2004 using genomic
sequences cataloged in the NCBI, JGI (Fugu and Ciona
[52,70]) and Celera genome databases using BLASTp,
BLASTn, BLAST, tBLASTn and tBLASTx searches [71]. We
searched databases of Expressed Sequence Tags (ESTs) for
all human genes and, with the exception of ADAMTS15,
found ESTs that corresponded to those genes, confirming
their transcription. Splice site predictions were made by
neural network via the Berkeley Drosophila Genome
Project and also by eye using Sequencher 4.2 (Gene-
codes), with reference to protein multiple sequence align-
ments. We used the same method to identify
Caenorhabditis elegans, Drosophila melanogaster, and Fugu
rubripes homologs of ADAMTS genes, and their genomic
structure. Multiple sequence alignments of the inferred
amino acid sequences were prepared using Multalin [72]
and ClustalX1.81 [73] and manually refined and anno-
tated within BioEdit [74] and MacClade4.06 [75].

Phylogenetic analysis

Initial phylogenetic analyses were conducted including all
of the human ADAMTS proteins along with seven inverte-
brate homologs, three from Drosophila melanogaster and
four from Caenorhabditis elegans (Figure 1A), and then
these analyses were repeated with the most divergent
invertebrate sequences removed (Figure 1B). The datasets
for these analyses were comprised of 359 and 543 unam-
biguously aligned amino acid sites, respectively. The
alignments were analyzed using parsimony and distance
methods. Parsimony analyses used a heuristic search with
random stepwise addition of data and tree-bisection-
reconnection in PAUP*4.0b10 for 1000 bootstrap repli-
cates [76]. Distance matrices were inferred using the
Jones, Taylor, Thornton (JTT) substitution model with
PROTDIST in PHYLIP 3.6a3 [77,78]. Neighbor-joining

http://www.biomedcentral.com/1471-2148/5/11

trees were constructed with the input order jumbled for
1000 bootstrap replicates using NEIGHBOR, SEQBOOT
and CONSENSE in PHYLIP. Using Tree-Puzzle 5.0 [79]
we generated maximume-likelihood distance matrices in
which among-site substitution rate heterogeneity was cor-
rected using an invariable and eight gamma-distributed
substitution rate categories and the JTT model. 10,000
quartet-puzzling steps were also used (Tree-Puzzle) to
assess branch support.

To better resolve the evolutionary relationships of the ver-
tebrate ADAMTS subfamily members and to provide
information on their presence in other chordate lineages,
sequences from Mus, Fugu and Ciona were identified and
added to the alignment and phylogenetic analysis. An
annotated ADAMTS homolog from the honeybee Apis
mellifera was also included in the analysis as another rep-
resentative invertebrate. 571 unambiguously aligned
amino acid sites of ADAMTS-homologous sequences
encoded by Homo, Mus, Fugu, Ciona, Apis, Drosophila and
Caenorhabditis were analyzed (Figure 2). MrBayes3.0 [80]
was used to construct a maximum likelihood (ML) phylo-
genetic tree from this protein alignment. MrBayes was run
for 1000000 generations, with four incrementally heated
Markov chains, and a sampling frequency of 1000 gener-
ations. The temperature setting was increased to 0.5.
Among-site substitution rate heterogeneity was corrected
using an invariable and eight gamma-distributed substitu-
tion rate categories and the WAG model for amino acid
substitutions [81], abbreviated herein as WAG+I+8I". The
consensus ML tree topology, the arithmetic mean log-like-
lihood (InL) for this topology, and branch support were
estimated from the set of sampled trees with the best pos-
terior probabilities. Means and 95% confidence intervals
for the gamma distribution shape parameter o and the
proportion of invariable sites (pI) were also estimated.

List of abbreviations

ADAMTS (A Disintegrin-like and Metalloprotease with
Thrombospondin motifs)

ADAM (A Disintegrin-like and Metalloprotease)

TSR (Thrombospondin type 1 Sequence Repeat)

MMP (matrix metalloprotease)

ECM (extracellular matrix)

SAGE (serial analysis of gene expression)

TTP (thrombotic thrombocytopenic purpura)

IL (interleukin)
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TGF (transforming growth factor)

TNF (tumor necrosis factor)

BLAST (Basic local alignment search tool)

Authors' contributions
ACN and EGVM initiated the project and all authors were
involved in the design phases. ACN, SBM and JML
inferred sequences of previously un-annotated ADAMTS
genes from Genbank, Celera, and JGI, and determined
intron positions. SBM performed the phylogenetic analy-
ses. ACN and SBM drafted the manuscript and JML and
EGVM contributed to writing the paper and advised
throughout.

Additional material
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Alignment used for phylogenetic analyses of animal ADAMTS
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for intron phases (Figure 3).
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