BMC Evolutionary Biology st

Research article

Genetic differentiation in the soil-feeding termite Cubitermes sp.
dffinis subarquatus: occurrence of cryptic species revealed by nuclear
and mitochondrial markers

Virginie Roy*!, Christine Demanche! 2, Alexandre Livet! and Myriam Harry!

Address: 'UMR 137 Biosol, UFR de Sciences, Université Paris XII - Val de Marne, av. du Général de Gaulle, 94010 Créteil cedex, France and 2Faculté
de Pharmacie, Laboratoire de Parasitologie, 3 rue du Pr. Laguesse, 59006 Lille, France

Email: Virginie Roy* - roy@univ-paris12.fr; Christine Demanche - christine.demanche@univ-lille2.fr; Alexandre Livet - livet@univ-paris12.fr;
Myriam Harry - harry@univ-paris12.fr
* Corresponding author

Published: 23 November 2006 Received: 05 July 2006
BMC Evolutionary Biology 2006, 6:102  doi:10.1186/1471-2148-6-102 Accepted: 23 November 2006
This article is available from: http://www.biomedcentral.com/1471-2148/6/102

© 2006 Roy et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Soil-feeding termites are particularly interesting models for studying the effects of
fragmentation, a natural or anthropic phenomenon described as promoting genetic differentiation.
However, studying the link between fragmentation and genetics requires a method for identifying
species unambiguously, especially when morphological diagnostic characters are lacking. In
humivorous termites, which contribute to the fertility of tropical soils, molecular taxonomy and
phylogenetic relationships are rarely studied, though mitochondrial and nuclear molecular markers
are widely used in studies of pest termites. Here, we attempt to clarify the taxonomy of soil-feeding
colonies collected throughout the naturally fragmented Lopé Reserve area (Gabon) and
morphologically affiliated to Cubitermes sp. dffinis subarquatus. The mitochondrial gene of
cytochrome oxidase Il (COll), the second nuclear rDNA internal transcribed spacer (ITS2) and five
microsatellites were analyzed in 19 colonies.

Results: Bayesian Inference, Maximum Likelihood and Maximum Parsimony phylogenetic analyses,
which were applied to the COll and ITS2 sequences, and Neighbor-Joining reconstructions, applied
to the microsatellite data, reveal four major lineages in the Cubitermes sp. dffinis subarquatus
colonies. The concordant genealogical pattern of these unlinked markers strongly supports the
existence of four cryptic species. Three are sympatric in the Reserve and are probably able to
disperse within a mosaic of forests of variable ages and savannahs. One is limited to a very
restricted gallery forest patch located in the North, outside the Reserve.

Conclusion: Our survey highlights the value of combined mitochondrial and nuclear markers for
exploring unknown groups such as soil-feeding termites, and their relevance for resolving the
taxonomy of organisms with ambiguous morphological diagnostic characters.

Background reducing and dividing the distribution areas and by limit-
It has been suggested that ecosystem fragmentation has  ing connections between the fragments [1,2]. As a result,
important consequences for animal populations by  this natural or anthropological phenomenon is described
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as a process promoting the genetic differentiation of iso-
lated populations and could be involved in speciation.
Insects are interesting models for studying the effects of
fragmentation owing to their abundance, limited disper-
sal, short generation time and sensitivity to disturbances.
In tropical ecosystems, termites (Isoptera) may represent
up to 95% of soil insect biomass; humivorous termites
contribute to tropical soil fertilization [3-6]. Since soil-
feeders are very sensitive to changes in their environment,
they constitute interesting bio-indicators in landscape
fragmentation studies, when the evolution of their spe-
cific richness is surveyed [7-9].

Studying the link between genetics and fragmentation
requires evaluation of breeding structure, gene flow and
genetic differentiation among populations. This implies
unambiguous identification of species. For a long time,
termite systematics was based on morphological and\or
morphometrical character sets for individuals belonging
to various castes (alates, soldiers or workers). During the
past decade, an increasing number of taxonomic studies
have shown that molecular methods constitute fast and
reliable diagnostic systems, which complement morpho-
logical identification. Indeed, several studies based on
mitochondrial genome sequences such as the cytochrome
oxidase genes, the AT-rich region and the 16S rDNA have
thrown a great deal of light on termite taxonomy and on
phylogenetic and phylogeographic analyses of the Reticu-
litermes [10-15], Nasutitermes [16-18] and Heterotermes
[19] genera. Because mitochondrial gene trees do not nec-
essarily reflect species trees owing to their maternal inher-
itance, the addition of nuclear markers in molecular
studies is useful for confirming the organismal phylogeny
[20]. Among the nuclear sequences, the internal tran-
scribed spacers (ITS) of rDNA are more polymorphic
between than within species. It is generally assumed than
concerted evolution homogenizes individual rDNA
repeats and produces a mostly uniform sequence in all
repeats in a given species. Although there is intra-individ-
ual variation in some taxa, the ITS2 region sequences are
considered phylogenetically informative and able to dis-
tinguish closely-related species [21]. Such an evolutionary
pattern has allowed sibling or cryptic species in the Reticu-
litermes genus to be discriminated [22-24]. Microsatellites
are also very useful nuclear polymorphic markers and
have contributed widely to the resolution of colony and
population genetic structures in Isoptera [25-27]. Many
surveys have concerned the xylophageous genus,Reticuli-
termes, in non-natural fragmented areas such as urban eco-
systems [28,29]. To date, however, microsatellite markers
have not been used to investigate termite phylogeny or
species discrimination, as has been done for other groups
e.g. vertebrates [30], ticks [31], wasps [32] and ants [33].
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In the present survey, we studied the humivorous afro-
tropical Cubitermes genus (Termitidae, Termitinae), which
shows remarkable ecological plasticity, colonizing savan-
nahs or forests according to species. Among the soil-feed-
ing Termitidae, the Cubitermes genus is one of the main
builders; its nest can shelter up to 10 genera of true
inquiline or optional builder termites [34]. In spite of its
undeniable ecological interest, the taxonomy of this genus
is poorly resolved and a complete revision appears neces-
sary [35]. Indeed, at least 64 species of Cubitermes have
been described on the basis of morphometrical characters,
but it is strongly suspected that some of these are syno-
nymic. It is important to note that extensive taxonomic
work is necessary for the West African species since the
sole currently available key concerns the East African spe-
cies [36]. Molecular data are also lacking for the Cubi-
termes genus, as only one sequence from cytochrome
oxidase I [37] and two from 12S mtDNA [GenBank:
AF475037, AF475001] are registered.

The aim of this work is to clarify the taxonomic status of
the Cubitermes colonies from the Lopé Reserve region
(Gabon), in order to obtain a better understanding of
tropical termite diversity in fragmented areas. The Lopé
Reserve is typically characterized by a mosaic of forests
and savannahs and constitutes an ideal setting for studies
of natural fragmentation.

On the basis of morphological comparisons with type
specimens in the collections of the British Museum (Lon-
don) and the Royal Museum for Central Africa (Ter-
vuren), and because they showed no diagnostic
morphometrical variation or molecular divergence in
mitochondrial 12S and 16S rDNA (Harry, unpublished
data), the Cubitermes colonies were affiliated to a single
species, Cubitermes sp. affinis subarquatus (Sjostedt). Here
we attempt to reconstruct a phylogeny based on three
types of polymorphic and independent molecular mark-
ers. We sequenced a portion of the mitochondrial COII
gene and the ITS2 region, and determined the genotypes
at five microsatellite loci isolated from Cubitermes sub-
arquatus [38], for 19 Cubitermes colonies from four differ-
ent sites (Figure 1). Three of these sites were in the same
geographical scale within the Lopé Reserve and corre-
sponded to forest patches of different ages, including
small savannah patches: Okoumé (75 years old), Rocher
(800 years old) and Chameau (800 years old). A fourth
site, Doda, was an isolated gallery-forest outside the
Reserve within a savannah landscape.

Results

Mitochondrial sequence analyses

Mitochondrial sequence dataset consisted in 558 bp
sequenced for one individual from each of the 19 colonies
collected in the four sites, and for the outgroup taxa, Apili-
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Map of the study area. A. Map of the National Parks of Gabon since 2002, modified from [58]: location of the Lopé Reserve.
B. Map of the Lopé Reserve region, modified from [59]: location of the four sites: Doda, Rocher, Chameau and Okoumé and

landscape types.

termes longiceps and Crenetermes albotarsalis (Termitidae,
Termitinae).

In total for the Cubitermes sequences, 42 nucleotidic sites
were variable (7.5%) and the overall proportion of A+T
reached 66.7%. Height haplotypes were scored (Table 1
and Figure 2) differing at 1-30 nucleotide sites (0.18-
5.40% sequence divergence). Maximum Parsimony (MP),
Bayesian Inference (BI) and Maximum Likelihood (ML)
reconstructions clearly showed four distinct COII haplo-
type groups (Figure 3). We named the first clade Cubi-
termes spA, including sequences from the T7, T16, T42 and
T14A colonies. The second clade, named Cubitermes spB,
included T5, T26, T34, T37, T38 and T14B sequences. The
third clade, Cubitermes spC, comprised T17, T24, T31,
T33, T46, T45 and TX sequences and the fourth group,
Cubitermes spD, only the two sequences from the colonies
of the Doda site, TD1 and TD2.

Sequence divergence was quite low within these groups.
Indeed, in the Cubitermes spA group, only one haplotype
was detected and sequence divergence was inferior to 1%
within Cubitermes spB and Cubitermes spC groups
(sequences differed by 0-0.18% and 0-0.36% respec-
tively).

On the opposite, the divergence between the four mito-
chondrial lineages was high. The Cubitermes spA and Cubi-
termes spB sequences differed from each other by 3.94%
(net sequence divergence), Cubitermes spA and Cubitermes
spC by 4.22% and Cubitermes spB and Cubitermes spC by
4.99%. Finally, Cubitermes spD diverged by 1.07% from
Cubitermes spA.

ITS2 sequence analyses
A total of 298 positions sequenced for one individual
from each of the 19 Cubitermes colonies, for Apilitermes
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Table I: Cubitermes samples and summary of sequence and microsatellite data used to distinguish cryptic species.

Putative Colonies Sites COll sequences  ITS2 sequences Microsatellite alleles
species (N=1) (N=1)
AN Hap AN Hap N ARPI4(n) ARPI9(n) ARP32(n) ARP34(n) ARP4I (n)

Cubitermes  OKOT7 Okoumé DQI27300 | DQ246528 a 26 227-253 (10) 408412 (2) 160-174(2) 231-239(4) 149 (1)
spA

ROCTIé6 Rocher DQI127302 | DQ246527 a 24

ROCT42 Rocher DQI127299 | DQ246529 a 30

ROCTI4A Rocher DQ246540 | DQ246530 a 6
Cubitermes  ROCT 4B Rocher DQ246542 4 DQ246524 b 12231233 (2) 392408 (4) 160-176 (3) 231-247 (8) 149-155(3)
spB

OKOT5 Okoumé DOQI27311 4 DQ246519 b 18

OKOT26 Okoumé DQI27312 5 DQ246520 b 24

CHAT34 Chameau DQI27309 4 DQ246523 b 26

CHAT37 Chameau DQI27310 4 DQ246521 b 48

CHAT38 Chameau DQI27308 4 DQ246522 b 33
Cubitermes  ROCTI7 Rocher DQI127304 6 DQ246537 ¢ 23 225-245(8) 404-408 (2) 160-180 (4) 231-245(5) 149 (1)
spC

OKOT24 Okoumé DQI27303 6 DQ246531 ¢ 19

OKOT3I Okoumé DQ246543 6 DQ246533 ¢ 24

CHAT33 Chameau DQI27307 7 DQ246534 ¢ 19

ROCT45 Rocher DQ246544 6 DQ246535 ¢ 20

ROCT46 Rocher DQI127306 8 DQ246536 ¢ 34

CHATX Chameau DQI27305 6 DQ246532 ¢ 18
Cubitermes  DODTDI Doda DQI127301 2 DQ246525 d 24 229-245(4) 412(1) 160-178 (2) 233-239(4) 149 (1)
spD

DODTD2 Doda DQ246541 3 DQ246526 d 19
OQutgroup A longiceps - DQ246545 - DQ246538 - - - - -
s

C. albotarsalis - DQ246546 - DQ246539 - - - - -

GenBank accession numbers (AN) and haplotype names (Hap) for COIl and ITS2 sequences and allele ranges (AR) for the five microsatellite loci. N,
number of individuals tested for each of the 19 Cubitermes colonies of the four geographical sites and for A. longiceps and C. albotarsalis and n, number

of microsatellite alleles found in each locus and putative cryptic species.

longiceps and Crenetermes albotarsalis were aligned for ITS2
sequences. Regarding Cubitermes sequences, we found 262
invariable sites, 25 alignment gaps and 11 polymorphic
sites. MP, BI and ML reconstructions confirmed the four
lineages found with the COII gene (Figure 4). However,
the position of Cubitermes spD was quite different since it
was not found univocally clustered with Cubitermes spA.
In this ITS2 tree, high BI posterior probabilities, ML and
MP bootstrap support values were found for grouping
Cubitermes spA, C. spD and C. spC in the same clade (Fig-
ure 4, 99/68/100) whereas a lower resolution of this
branch appeared in the tree of mtDNA haplotypes (Figure
3, 54/<50/<50).

Sequence data from ITS2 revealed no polymorphism
within the putative four species. Since no heterozygote
was detected, ITS2 sequences were assigned to four unique
haplotypes (a for Cubitermes spA, b for Cubitermes spB, ¢
for Cubitermes spC, and d for Cubitermes spD, Table 1).

Again, divergence between groups was high in compari-
son with within-group divergence. Haplotypes of Cubi-
termes spA differed from the Cubitermes spC haplotypes by
2.18% (net sequence divergence). The Cubitermes spA and
Cubitermes spB haplotypes differed from each other by
7.61% and Cubitermes spB and Cubitermes spC by 8.36%.
Finally, the haplotype of Cubitermes spD differed from the
haplotype of Cubitermes spA by 1.43%.

Microsatellite analyses

A total of 447 individuals for the 19 nests were surveyed
at five microsatellite loci. The genetic differentiation
among colonies within each putative species (Fr= 0.275,
0.258, 0.322 for Cubitermes spA, C. spB and C. spC, respec-
tively) was substantially low. Otherwise, very high genetic
differentiation was detected between colonies of different
Cubitermes putative species. Cubitermes spA and Cubitermes
spD were the less differentiated (Fgp,,=0.12; CI =-0.09-
0.38) followed by Cubitermes spA and Cubitermes spC
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Polymorphic sites

0000000001 21111111222 2223333344 4444445555 55
Putative species |Colonies Haplotypes|0133457890 0577889134 4590344822 3566890011 25
6919875403 8414673643 6276008603 26268951406 55
Cubitermes sphA OROT7 thap 1) |TCTTGTCATC ACTAACCGTT ACAATTTTTA ATATTTTCTC CT
ROCTLE  (RAD 1) |t e oo e e et e e e e e
ROCT42  thap 1) |- oot oo e e e
el i B S o T L I S e S S e o anoa oo oobooooa ooonoo0no:
Cubitermes spB ROCT14B (hap 4) |CT..ACTG.T .TC. AR L. C.C.T &CGC..GT.T .C
OKOTS thap 4) |CT..ACTG.T .TC....&8R., ..... C.C.T GCGC..GT.T .C
OROTZ26 thap 5) |CT..ACTG.T .TCG...AA. ..... C.C.T GCGE..GT.T .C
CHAT34 fhap 4) |CT..ACTG.T .TC....AA. ..... C.C.T GC&C..&T.T .C
CHAT37 thap 4) |CT..ACTG.T .TC....AA. ..... C.C.T GCGC..GT.T .C
CHAT38 (hap 4) |[CT..ACTG.T .TC....AR. ..... C.C.T GCGC..GT.T .C
Cubitermes spC ROCT17 (hap 6) CA...C, GTTAAC | TTGCCCCC. CC..TAT TC
OKOTZ24 thap 6) CA...C. GTTAAC .TTGCCCCC. CC..TAT TC
OROT31 thap 6) CA...C, GTTAAC .TTGCCCCC. CC..TAT TC
CHAT33 fhap 7) CA...C. GTTAAC . TCGCCCCC. cC..TAT TC
ROCT45  (hap 6) CA...C. GTTAAC .TTGCCCCC. CC..TAT TC
ROCT46 thap ) CA...C. GTTAAC .TTGC.CCC. CC..TAT TC
CHATX fhap 6) Ca...C. GTTAAC .TTGCCCCC. CC..TAT TC
Cubitermes spD DODTD1 thap 2) |[C.C..C.... G......... (PR C.C.
DODTDZ thap 3) |C.C..C.... G....... A, oL GC G..C.CG...
Figure 2

Polymorphic sites for COIl haplotypes. Haplotypes for each colony (OKO: Okoumé, ROC: Rocher, CHA: Chameau,
DOD: Doda) and position of the polymorphic sites in the COIl Cubitermes sequences.

groups (Fgpuc=0.25, CI = 0.11-0.39). Cubitermes spA and
Cubitermes spB (Fgpap = 0.49, CI = 0.27-0.67) and Cubi-
termes spB and Cubitermes spC (Fgppeo = 0.48, CI = 0.25-
0.68) showed similar high patterns of differentiation.

The NJ trees based on the DAS distance, the minimum
genetic distance of Nei and the chord distance (D)
showed a genetic structure with four main clusters (Figure
5).

Discussion

In tropical soil-feeding termites, it is impractical to apply
a Biological Species Concept [39] because of the difficul-
ties in realizing experimental crosses and observing natu-
ral hybridizations. Thus, our purpose here was to apply a
Phylogenetic Species Recognition (PSR) based on the
Genealogical Concordance Concept [40] to diagnose the
Cubitermes species or to detect cryptic species. Such a con-
cept has often been applied in bacteria, fungi and animals.
In termites, research involving DNA-based taxonomy of
structural and agricultural pest species is important [10].

Comparison of multiple molecular markers has allowed
the taxonomic status of new species in Reticulitermes to be
assessed [60,61] and has provided evidence for species
synonymy in this genus [12,14,23]. Many DNA-based
species recognitions are corroborated by evidence of mor-
phological/chemical differences or geographically defined
groups. However, PSR can be a powerful tool for diagnos-
ing otherwise undistinguishable species, because genetic
changes occurring in recently-isolated species may be
observed before morphological or behavioral changes
arise [41]. As found recently in other social insects, genetic
isolation is not always accompanied by evident morpho-
logical differentiation. In fire ants belonging to the
Solenopsis genus, genetic analyses based on allozyme and
mitochondrial markers demonstrated the occurrence of
sympatric and indistinguishable cryptic species [42-44].

The genetic results obtained in our study from the com-
bined mitochondrial, nuclear and microsatellite markers
unequivocally show deep separation among four groups
of genotypes in the Cubitermes sp. affinis subarquatus colo-
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Crenetermes albotarsalis

100/86/98

Apilitermes longiceps

- CHA T38 (hap 4)

L OKO T26 (hap 5)

ROC T14B (hap 4)

Cubitermes spB

1ows0me CHA T34 (hap 4)

CHA T37 (hap 4)

T

OKO T5 (hap 4)
- OKO T31 (hap 6)
L CHA T33 (hap 7)
L CHA TX (hap 6)

ROC T46 (hap 8) Cubitermes spC

100/97/100
ROC T45 (hap 6)

OKO T24 (hap 6)

|| L ROC T17 (hap 6)

54/<50/<50

DOD TD1 (hap 2)

89/<50/78 | Cubitermes spD
DOD TD2 (hap 3)

- ROC T16 (hap 1
97/<50/87 (hap 1)

- ROC T42 (hap 1)

| Cubitermes spA
56/65/86 . ROC T14A (hap 1)

L OKO T7 (hap 1)

0.1 substitution/site

Figure 3

Bayesian phylogenetic tree of mtDNA haplotypes. Bayesian tree showing relationships of COIl sequences from Cubi-
termes sp. dffinis subarquatus colonies. Apilitermes and Crenetermes sequences are used to root the tree. Bl posterior probabili-
ties followed by ML and MP bootstrap support values are indicated in bold at nodes. Putative species are indicated in bold on
the right.
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100/82/100

— DO

— DO

D TD1 (hap d)
D TD2 (hap o)
— ROC T16 (hap a)

| OKO T7 (hap a)

99/86/

64
— ROC T42 (hap a)

99/68/100

| ROC T14A (hap a)
— OKO T24 (hap b)
L CHA TX (hap b)

L OKO T31 (hap b)

100/82/100

CHA T33 (hap b)
|__ROC T45 (hap b)

|_ROC T46 (hap b)

|_ROC T17 (hap b)
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Figure 4
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Crenetermes albotarsalis
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Cubitermes sSpA

Cubitermes spC

Cubitermes spB

Bayesian phylogenetic tree of ITS2 sequences. Bayesian tree showing relationships of ITS2 sequences from Cubitermes
sp. dffinis subarquatus colonies. Apilitermes and Crenetermes sequences are used to root the tree. Bl posterior probabilities fol-
lowed by ML and MP bootstrap support values are indicated in bold at nodes. Putative species are indicated in bold on the

right.

Page 7 of 12

(page number not for citation purposes)



BMC Evolutionary Biology 2006, 6:102 http://www.biomedcentral.com/1471-2148/6/102

ROC T45

ROC T46

Cubitermes spD

DOD TD1

CHA T33

DOD TD2

ROC T14A

CHA TX

64

OKO T24
ROC Ta2
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Figure 5
Neighbor-Joining tree calculated from the microsatellite data. Distances between Cubitermes sp. dffinis subarquatus
colonies are calculated based on the chord distance of Cavalli-Sforza from five microsatellite loci. The tree is unrooted. Values

at nodes represent bootstrap support values (only values >50% are shown). Putative species are indicated in bold.
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nies from the Lopé Reserve region. The congruence of
these three types of unlinked molecular markers strongly
supports the existence of differentiated genetic pools in
this limited area. The mitochondrial and nuclear
sequences show very little variation within the four
groups but there is considerable variation among them.
Although the allele ranges overlap for all the loci, possibly
because of size homoplasy, the microsatellite data con-
firm the occurrence of four differentiated groups. These
unexpected levels of subdivision are unlikely to have
arisen under gene flow, so these four newly-detected
groups can be seen as good evidence for the existence of
cryptic species previously unrecognized by morphological
techniques.

The lack of detectable morphological differences among
Cubitermes species is not surprising in view of the data in
the taxonomic literature, which imply that the genus is
highly complex (great number of species, synonymy,
missing data, etc.) [35]. Furthermore, the boundaries
between nominal Cubitermes species are often concealed
by intra-specific morphometrical variability. In his revi-
sion of the East African Cubitermes species, Williams [36]
mentioned that most of the specific characters vary greatly
in size and can also vary markedly in shape and propor-
tion within a particular species.

In addition, our genetic data inform the current debate
about the use of comparative phylogenetic methods for
studying present-day species distributions. These distribu-
tions do not necessarily reflect the geographical range of
the ancestral species at the time of speciation, because
geographical distributions are often labile owing to cli-
mate fluctuations, territory expansion or extinction of
competitors. In particular, we have certainly not sampled
the entire species range and enabled definite conclusions
to be drawn about biogeographic differentiation and spe-
ciation. However, the repartition of the cryptic Cubitermes
species is quite interesting in relation to the species distri-
butions of poorly dispersive insects.

In our study, we can consider two landscape units: (1) the
Lopé Reserve south of the Ogooué River, where Cubitermes
spA, C. spB and C. spC live sympatrically in the closely
apposed sites of Okoumé, Chameau and Rocher, the only
exception being that Cubitermes spA is absent from the
Chameau site; (2) the Doda zone to the north, where
Cubitermes spD is restricted to the distant and isolated gal-
lery-forest of Doda and represents the only Cubitermes spe-
cies in the Doda zone across 10 km. The ecological
differentiation of the two zones results from paleogeo-
graphic events. Indeed, since the last glaciations, the
North Ogooué has progressively run dry, resulting in the
regression of all forest types except riparian. In the South
Ogooué, a wet environment has been maintained by the

http://www.biomedcentral.com/1471-2148/6/102

well-developed hydro-geographical network and this has
allowed the forest to be preserved.

The contemporary sympatric distributions of three of the
Cubitermes species (Cubitermes spA, C. spB and C. spC) in
the Reserve zone could reflect their ability to disperse
within a mosaic of forests of variable ages (e.g. differing in
biotic and edaphic parameters) and savannah "buffer-
zones". Indeed, their dispersion seems not to be affected
by fragmentation on this small scale. Little is known
about the dispersion modalities and the reproductive
strategies of the Cubitermes species. It is very likely that
swarming (i.e. alate dispersal flight) is the main mode of
dispersal in this genus, since budding (i.e. local secondary
reproduction initiated by the differentiation of neotenic
reproductives, derived from the nymphs or workers of the
colony) is not as common in Termitidae as in lower ter-
mites [45]. It has been suggested that although the active
flight of winged termites is very limited (a few hundreds
of meters), the meteorological conditions accompanying
dispersal flights could strongly influence the distance cov-
ered by these sexual alates. Actually, a recent genetic study
of Macrotermes michaelseni (Termitidae) suggested that
some winged termites can travel considerable distances
(50 km), most likely by passive drift [46]. Furthermore,
the effectiveness of dispersal obviously depends upon the
number of alates and the rate of predation [47].

Finally, the particular distribution pattern of Cubitermes
spD raises the question of the link between the history of
the forest fragmentation and the modalities of speciation.
One can indeed wonder whether the history of successive
modifications of habitats in this geographical zone has
not contributed to the isolation of the termite species
populating it. Areas such as isolated gallery forests, like
Doda, may constitute refuges for fauna, where some spe-
cies are led to disappear while others begin to differentiate
under the influence of genetic drift.

Conclusion

The combination of mitochondrial and nuclear markers
provides a reliable diagnostic method for separating Cubi-
termes species and offers a complement to the morpho-
metrical diagnostic. Furthermore, these molecular
markers could reveal useful information about their phy-
logenetical relationships. Similarly, such methods could
be extended to termites for which species taxonomy is
ambiguous.

Methods

Study site and species

The field collections were carried out in the Lopé Reserve
region (Middle Ogooué, Gabon). The Lopé Reserve is con-
stituted by a mosaic of forest and savannah, primarily
formed during the last glaciations (-18000, -12000) and
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then maintained by human savannah burnings, resulting
in a fragmented landscape. The sample area was com-
posed of three forest sites in the Reserve, characterized by
vegetation age and 2-5 km apart (Okoumé, Chameau and
Rocher). The Okoumé site consisted of 75 years-old Mille-
tia, Aucoumea and Marantacea stands. The Rocher and
Chameau sites were older (800 years-old) and consisted
in mature forest scattered by rock outcrops and classical
pluvial forest stands, respectively. Finally, a fourth sam-
pled site, Doda, was an isolated gallery-forest in a savan-
nah landscape, dating up to 2500 years and situated
outside the Reserve. In total, 19 colonies of Cubitermes sp.
affinis subarquatus and two colonies of Apilitermes longiceps
and Crenetermes albotarsalis were sampled (Table 1).
Immediately following collection, individuals were
placed in absolute ethanol and stored at 4°C in the labo-
ratory until DNA extraction.

DNA extraction

Total genomic DNA from Cubitermes, Apilitermes and
Crenetermes individuals was isolated using an extraction
method with Wilson buffer (Tris hydrogen chloride 1 M,
ethylenediaminetetraacetic acid 0.5 M, sodium chloride
4.5 M, sodium dodecylsulfate 20%, dithiothreitol, protei-
nase K) followed by a salting-out procedure.

Mitochondrial and ITS2 sequence analyses

DNA analyses were based on sequences from partial mito-
chondrial cytochrome oxidase subunit II gene (COII) and
nuclear internal transcribed spacer 2 (ITS2). PCR was per-
formed for one individual per colony (N = 19 Cubitermes
+ 1 Apilitermes + 1 Crenetermes) in a total volume of 40 pL
(50 pL for ITS2), composed of 20 uL (25 pL) of Tag PCR
Master Mix (Qiagen), 1.6 uL (4 pL) of each primer (10
pM), 15.2 pL (18.5 pL) of distilled water and 1.6 pL (2.5
pL) of template DNA. Primers for COIl amplification
were forward modified A-tLeu 5'-CAGATAAGTGCATT-
GGATTT-3' and reverse B-tLys 5'-GTTTAAGAGACCAG-
TACTTG-3' [48,49], modified by Miura et al. [16]. ITS2
sequences were amplified using forward ITS2F 5'-TGT-
GAACTGCAGGACACAT-3' and reverse ITS2Rcub 5'-
ATTCGGCGGGTAGTCTCG-3' primers modified in this
study from Jenkins et al. [23]. The amplification condi-
tions were adapted from Miura et al. [16]. The amplifica-
tion products were purified using a DNA and Gel band
Purification kit (GFX TM PCR kit, Amersham Biosciences
USA). Sequence reactions were performed using BigDye
Terminator Cycle Sequencing kit version 1.1 (Applied
Biosystems), then purified with an ethanol-Na acetate
method. Sequence data were obtained using an automatic
DNA sequencer (Applied Biosystems, ABI PRISM 310)
and analysed with Sequencing Data software (Applied
Biosystems). All sequences were registered in GenBank
database with accession numbers listed in Table 1.

http://www.biomedcentral.com/1471-2148/6/102

COII and ITS2 sequences were aligned using CLUSTALW
with the default settings [50] and sequences from Apili-
termes longiceps and Crenetermes albotarsalis (Termitidae,
Termitinae) were added to both datasets in order to root
the trees. Phylogenetic analyses were performed using
Maximum Parsimony (MP), Bayesian Inference (BI) and
Maximum Likelihood (ML) methods.

MP trees were constructed using Phylip (Phylogeny Infer-
ence Package) Version 3.572 [51] with the SEQBOOT,
DNAPARS and CONSENSE programs with 1000 repeti-
tions of bootstrap.

For probabilistic methods, a nucleotide substitution
model was selected for each sequence dataset using the
Akaike Information Criterion (AIC) implemented in
Modeltest v3.7 [52]. The best-fit substitution model
selected was TrN+G (Nst = 6, Rates = gamma, Pinvar = 0)
for COII sequences and TVM (Nt = 6, Rates = equal, Pin-
var = 0) for ITS2 sequences. BI trees were constructed
using MrBayes 3.1 [53]. We ran four Markov chains (one
cold, three heated) for 1,000,000 generations, sampled
every 100 generations (burnin = 2500, according to the
convergence diagnostic). Consensus trees were generated
including posterior probability of clades and branch
lengths. ML trees were constructed using thePAUP 4.0b10
program [54] and the reliability of the inferred trees was
tested by 100 bootstrap resamplings for COII and 40 for
ITS2. Tree topologies were congruent across all methods
and therefore, only BI trees are reported with posterior
probabilities and bootstrap support values for ML and
MP.

Microsatellite analyses

The genotypes for 18 to 48 sterile individuals from each
colony except two (T14A, n = 6 and T14B, n = 12) i.e. a
total of 447 individuals genotyped, were assayed at five
microsatellite loci (P14, P19, P32, P34 and P41) by means
of Polymerase Chain Reaction (PCR) amplification.
Primer sequences and amplification conditions are given
in Harry et al. [38]. PCR products were electrophoresed on
an ABI Prism 310 DNA sequencer (Applied Biosystems)
and microsatellite allele sizes were scored using the GEN-
SCAN and GENOTYPER programs (Applied Biosystems).

We investigated whether genetic differentiation occurs
among groups detected in the phylogenetic analyses. In
order to do this, we estimated Fg; coefficients with indi-
viduals nested in colonies and colonies nested in major
lineages using a three-level hierarchy in the GDA program
[55], for each pair of putative cryptic species. 95% ClIs
were constructed by bootstrapping over loci with 1000
replications. Values for which 95% ClIs did not overlap
zero were considered as significantly different at the 0.05
level. We compared the allele differentiation among colo-
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nies of the same genetic group and among colonies of the
same geographical site using the F coefficient [56] calcu-
lated with a two-level hierarchy in the GDA program.

Phylogenetic distances between colonies were estimated
with the Populations 1.2.00 program [57] by using the
genetic distance of shared alleles, the minimum genetic
distance of Nei and the chord distance of Cavalli-Sforza.
The resulting genetic distances and bootstrapping proce-
dures (1000 replicates) were used to construct an
unrooted consensus tree. Tree topologies were congruent
across the three methods and therefore, only one recon-
struction is presented here (reconstruction based on the
chord distance of Cavalli-Sforza).
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