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Abstract
Background: Polychaetes assigned as Scoloplos armiger (Orbiniidae) show a cosmopolitan
distribution and have been encountered in all zoogeographic regions. Sibling S. armiger-like species
have been revealed by recent studies using RAPDs and AFLP genetic data. We sequenced a ~12 kb
fragment of the Scoloplos cf. armiger mitochondrial genome and developed primers for variable
regions including the 3' end of the cox3 gene, trnQ, and most of nad6. A phylogenetic analysis of this
528-nucleotide fragment was carried out for S. armiger-like individuals from the Eastern North
Atlantic as well as Pacific regions. The aim of this study is to test the cosmopolitan status, as well
as to clarify the systematics of this species complex in the Eastern North Atlantic, while using a few
specimens from the Pacific Ocean for comparision.

Results: Phylogenetic analysis of the cox3-trnQ-nad6 data set recovered five different clades of
Scoloplos cf. armiger. The fragment of the mitochondrial genome of Scoloplos cf. armiger is 12,042 bp
long and contains 13 protein coding genes, 15 of the 22 expected tRNAs, and the large ribosomal
subunit (rrnl).

Conclusion: The sequenced cox3-trnQ-nad6 fragment proved to be very useful in phylogenetic
analyses of Scoloplos cf. armiger. Due to its larger sampling scale this study goes beyond previous
analyses which used RAPD and AFLP markers. The results of this study clearly supports that
Scoloplos armiger represents a species complex and not a cosmopolitan species. We find at least
two S. armiger-like species within the Pacific region and three different S. armiger-like species in the
North Atlantic. Implications for the taxonomy and the impact on ecological studies are discussed.

Background
Polychaetes assigned as Scoloplos armiger are common as

dominant species in ecological surveys in different marine
habitats. Benthic surveys have shown that S. armiger rep-
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resents one of the dominant macrofauna species in a Nor-
wegian fjord [1], in a Portuguese estuary [2], and in the
Peter the Great Bay in the Sea of Japan [3]. Besides its wide
ranging distribution, S. armiger also plays a more or less
important role in recent ecological studies. It has been
identified as a possible intermediate host for the flatfish
nematode Cucullanus heterochrous [4] and the population
dynamics of S. armiger and its predator Nephtys hombergii
(Nephtyidae) on intertidal flats in the Netherlands' part of
the Wadden Sea are well studied [5].

Scoloplos armiger (Orbiniidae) has been reported to show
a cosmopolitan distribution and has been encountered in
all zoogeographic regions [6,7] where it is present from
the intertidal to the subtidal [8,9]. In the North Sea region
it is one of the most common polychaetes and a direct
development in egg cocoons was observed at many inter-
tidal flats [8]. In additional to these well known and eye-
catching cocoons, free swimming pelagic larvae of these
worms have been reported from the North Sea near the
island of Helgoland, Germany [10].

For many marine invertebrate species a worldwide distri-
bution has been reported. At least four hypotheses can
reasonably explain such a distribution pattern; (a) truly
cosmopolitan species, (b) cosmopolitan morphospecies
which correspond to genetically distinct species [11,12],
(c) poor taxonomic understanding of a taxon, causing
"the cosmopolitan syndrome" [13-15] and (d) cosmopol-
itans where the current range distribution is the result of
human introductions. An example for the latter is the reef-
building serpulid Ficopomatus enigmaticus which can be
found in brackish waters of warm-temperate regions all
over the world, and which is supposed to be distributed
through human shipping [16]. However, most reports of
cosmopolitan distributional ranges of marine invertebrate
species after application of molecular methods turned out
to be the result of an over-conservative taxonomy [17-19].

Among marine invertebrates, polychaete annelids have a
high frequency of cosmopolitan species [20,21]. Polycha-
etes like Owenia fusiformis (Oweniidae), Sternaspis scutata
(Sternaspidae) and Scoloplos armiger (Orbiniidae) are
recorded from all oceans in different depths and nearly all
temperate regions [7,15,22]. However O. fusiformis later
has been found to consist of more than one species [23].

Only a few genetic studies investigated such "cosmopoli-
tan" polychaetes and most of them did not use discrete
nucleotide data. RAPDs and ITS sequence data confirmed
the amphi-Atlantic distribution pattern of the ctenodrillid
Ctenodrilus serratus [24]. The worldwide distributed Petitia
amphophthalma (Syllidae) has been investigated with
RAPD markers [25,26] which do not support the cosmo-
politan status of this taxon. The phylogeography of the

invasive sabellid Sabella spallanzanii was investigated
using nuclear markers [27] and human introduction to
Australia due to ballast water has been suggested for this
polychaete. The cosmopolitan status of Hesionides areneria
(Hesionidae) was confirmed using RAPD markers [28],
nevertheless it cannot be ruled out that lack of differences
in the band pattern of RAPDs is due to primer choice. In
contrast to this, the cosmopolitan status of another hesio-
nid (Hesionides gohari) was not supported by RAPD data
[29].

Interestingly, none of these studies used mitochondrial
markers which are commonly used for phylogeographic
studies in other animal groups [30]. This might be due to
the lack of suitable primers for the amplification of varia-
ble regions of the mitochondrial genome. Although many
polychaetes are recorded from different zoogeographic
regions, truly cosmopolitan species seem to be rare, and in
many cases taxonomy is unable to distinguish between
morphologically similar taxa [31]. It is supposed that
widely distributed species are frequently being found to
consist of distinguishable subspecies or siblings when
examined in sufficient detail [12].

In a series of papers it has been shown with RAPD data,
AFLPs, cross-breeding experiments and investigation of
the sperm morphology, that different developmental
traits of Scoloplos armiger collected near the island of Sylt
(Germany) belong to two distinct Scoloplos species [32-
34]. This means that two sympatric sibling species of Scol-
oplos cf. armiger occur in the North Sea: one living in the
intertidal with egg cocoons and one living subtidally with
pelagic larvae.

The aim of the present study is to investigate the status of
different Scoloplos cf. armiger populations in the Northern
East Atlantic (see Fig. 1 for collection sites) and the North-
ern East Pacific using mitochondrial markers. For this pur-
pose we sequenced a 12 kb fragment of the mitochondrial
genome of Scoloplos cf. armiger to develop primers for a
variable mitochondrial region. Our present study gives no
support for a cosmopolitan distribution of Scoloplos cf.
armiger and phylogenetic analyses of the investigated pop-
ulations reveal five distinct reciprocal monophyletic
clades of Scoloplos cf. armiger.

Results
Genome organisation, base composition, and codon usage 
of the mitochondrial genome of Scoloplos cf. armiger
The fragment of the mitochondrial genome of Scoloplos cf.
armiger individual SI14 is 12,042 bp long and contains 13
protein coding genes, 16 of the 22 expected tRNAs, and
the large ribosomal subunit (rrnl). As in the case for all
annelids so far studied all genes are transcribed from the
same strand. One difference found in the gene arrange-
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ment of Scoloplos cf. armiger when compared with the
other known orbiniid mitochondrial genome of Orbinia
latreillii [35] is that the gene trnG is missing within the so
far sequenced portion of Scoloplos cf. armiger (Fig. 2). The
mitochondrial genome is AT-rich (63.66%), and the base
frequencies are A = 0.31, C = 0.24, G = 0.12, and T = 0.33.

All 13 protein-coding genes typically found in metazoan
mtDNA [36] are identified for Scoloplos cf. armiger. In 12
of these AUG is used as a start codon. The exception is
cox3, for which sequence alignment comparison with
other annelids reveals the use of GUU as alternative start
codon. An alternative start codon is also found for the

Map of collection sites in EuropeFigure 1
Map of collection sites in Europe. Abbreviations are according to the labeling of individuals as given in Table 1: NT, Trond-
heimsfjord (Norway); NK, Kristiansand (Norway); GB, Low Newton by the Sea, (Great Britain); R, Roscoff (France); SI, Sylt 
intertidal (Germany); SS, Sylt subtidal (Germany); O, Fehrmanns Belt (Germany).
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same gene in Orbinia [35]. Except for nad1 complete stop
codons (eight times UAA and three times UAG) are found
in all other protein coding genes in Scoloplos cf. armiger
(with the exception that the 3' end of nad4 is not com-
pletely sequenced).

Phylogenetic analysis of the cox3 – trnQ – nad6 data set
Within 55 individuals we found 25 unique sequence hap-
lotypes for which we produced an alignment spanning
528 characters. Of these 528 characters, 245 characters are
constant, 105 characters are variable but parsimony unin-
formative, and 178 are parsimony informative. The nucle-
otide composition is AT biased, as is it common for
polychaete mitochondria [35,37] and the empirical base
frequencies are A = 0.318, C = 0.227, G = 0.113, and T =
0.342. The chi-square test of homogeneity of base fre-
quencies across taxa resulted in no significant P-values
(chi-square = 25.28, df = 72, P = 0.999).

The application of the different phylogenetic methods
yielded different tree topologies (Fig. 3), but the same
major clades are recovered by all. The MP approach
yielded 40 equally parsimonious trees (each with 593
steps) which are presented as a strict consensus tree (Fig.
3b). Five different reciprocal monophyletic clades of Scol-
oplos cf. armiger are recovered: a clade containing the indi-
viduals from Malibu ('Malibu clade'), one containing the
individuals from San Diego ('San Diego clade'), one con-
taining the intertidal specimens from Roscoff, Low New-
ton by the Sea, and Sylt ('intertidal clade'), one containing
individuals from Sylt and Fehrmanns Belt which were col-
lected from the subtidal ('subtidal clade'), and one also
containing individuals from the latter two locations, as
well as individuals from Trondheim and Kristiansand.
The sample site in Kristiansand is located near the type
locality and so this clade is named the 'type locality clade'.
The 'Malibu clade' is represented by two identical
sequences and the monophyly of the other clades is well

supported through bootstrap values and Bayesian poste-
rior probabilities (BPP) (Fig. 3). The relationship between
these clades remains unclear, but no analysis recovered a
monophyletic Scoloplos cf. armiger clade. ML and Bayesian
inference indicates that the 'Malibu clade' is closely
related to Leitoscoloplos pugettensis, but this relationship is
only poorly supported through BPP (0.87), as well as that
there is a sistergroup relationship between the 'San Diego
clade' and Scoloplos sp. The relationships between the
three clades from European waters are also not clear.
Whereas MP recovers a sister group relationship between
the 'type locality clade' and the 'intertidal clade' (Fig. 3b),
a sister group relationship between the 'subtidal clade'
and the 'type locality clade' is suggested by the most likely
tree (Fig. 3c, 3d). The majority rule tree of the Bayesian
inference does not resolve this issue (Fig. 3a).

As expected from this phylogenetic analyses, comparison
of average nucleotide diversity between different Scoloplos
cf. armiger clades shows that variation between clades
(Table 2) are much higher than within clades (Table 3).

There are several amino acid changes within the nad6
gene (Fig. 4). Within the Scoloplos cf. armiger group
unique amino acid substitutions are present for the 'Mal-
ibu clade', the 'San Diego clade', the 'subtidal clade', and
the 'type locality clade'.

trnQ secondary structures
Proposed trnQ secondary structures for all clades/taxa are
given in Figure 5 and all possess the common cloverleaf
structure with an acceptor stem, TΨC stem and loop, anti-
codon stem and loop, and DHU stem and loop (clockwise
in Fig. 5). Secondary structures are identical within each
clade/taxon and therefore only structures of one individ-
ual are shown. The secondary structure predicted for the
'San Diego clade' differs from the other Scoloplos cf.
armiger taxa in possessing 5 bp instead of 4 bp in the TΨC

Mt genomic featuresFigure 2
Mt genomic features. Gene arrangements of the mitochondrial genomes of Scoloplos cf. armiger (above) and Orbinia latreillii 
(below). Primer sites for the cox3-trnQ-nad6 fragment marked by arrows.

rrnL nad1 nad3 nad2S2 I K S1 Gcox1 cox2 atp8 cox3 nad6 cob atp6 nad5 nad4L nad4 nc rrnSN D Y Q W R A H F E P T C L2 VL1M

Orbinia latreillii

rrnL nad1 nad3 nad2S2 I K S1cox1 cox2 atp8 cox3 nad6 cob atp6 nad5 nad4L nad4N D Y Q W R A H F E P T

Scoloplos cf. armiger (SI14)NAD6F
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Phylogenetic relationships of ScoloplosFigure 3
Phylogenetic relationships of Scoloplos. (A-C) Topologies generated by different phylogenetic analyses: (A) Majority-rule 
consensus of the Bayesian analysis (GTR+I+Γ) with posterior probabilities at the nodes; (B) Strict consensus of the 40 equally 
parsimonious trees generated by maximum parsimony (MP) analyses with bootstrap values at the nodes; (C) Maximum Likeli-
hood topology (GTR+I+Γ) with bootstrap values at the node; (D) Maximum Likelihood tree with branch lengths.
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loop, 4 paired bases instead of 5 paired bases in the anti-
codon stem, and 9 bp instead of 7 bp in the anticodon
loop.

Discussion
Relationships of different Scoloplos cf. armiger 
populations
The results of the phylogenetic analyses of the cox3-trnQ-
nad6 data set clearly supports that Scoloplos armiger repre-
sents a species complex and not a cosmopolitan species.
We find at least two S. armiger-like genetic clades within
the Pacific region and these are more closely related to
other Pacific species (Leitoscoloplos pugettensis, Scoloplos sp.
from Morro Bay, CA) than to the European Scoloplos cf.
armiger clades. Under the phylogenetic species concept
sensu Mishler and Theriot [38] it is parsimonious to
assume that these clades represent distinct evolutionary
lineages which should be considered as species distantly
related to S. armiger. We identified three well supported
reciprocal monophyletic clades within European Scoloplos
cf. armiger. Applying the phylogenetic species concept
sensu Mishler and Theriot [38] to our data, we hypothe-
size the presence of at least three different species (subti-
dal clade, type locality clade, intertidal clade) formerly
referred to as S. armiger in the North Atlantic.

The inference of a monophyletic clade containing all
intertidally collected interviduals from European waters
confirms the results that individuals that are producing
egg-cocoons and live on intertidal flats represent a distinct
evolutionary lineage rather than part of a S. armiger spe-
cies with different developmental modes [32]. Surpris-
ingly the results show that in subtidal areas of the North
Sea and Baltic Sea there are two clearly separated genetic
clades of Scoloplos cf.armiger, which are also distinct in
amino acid data: the 'subtidal clade' and the 'type locality
clade'. Whereas we found both genetic types in the North
Sea and Baltic Sea samples in sympatry, only one of these
clades seems to be present in the Norwegian samples,
which include the type locality. As pointed out before, we
consider it likely that these two genetic clades represent
two different species. However, at this point the possibil-
ity must be considered that processes unrelated to specia-
tion have generated reciprocal monophyletic mtDNA
haplotype lineages [39], especially for the separation of
the 'subtidal clade' and the 'type locality clade'. This
hypothesis should be tested with additional data, e.g. by
application of independent nuclear markers.

Differences in sperm morphology and in the length of
anal cirri of benthic juveniles between intertidal and

Table 3: Average Kimura Two-Parameter distances calculated 
from Transition and Transversion changes within different 
Scoloplos cf. armiger clades

Malibu not calculated

San Diego 0.009
type locality 0.008
Sylt intertidal 0.013
Sylt subtidal 0.002

Table 1: Sampling sites, sequenced individuals, and GenBank accession numbers of analysed taxa.

Taxon Location Individuals Accession-Nr.

Orbinia latreillii Roscoff, France AY961084
Leitoscoloplos fragilis Little Buttermilk Bay, MA, USA DQ408432
Leitoscoloplos pugettensis Friday Harbor, WA, USA DQ408433
Leitoscoloplos pugettensis Santa Monica, CA, USA DQ408434
Scoloplos sp. Morro Bay, CA, USA DQ408435
Scoloplos cf. armiger Malibu Beach (CA, USA), intertidal M1, M2 DQ408436–DQ408437
Scoloplos cf. armiger San Diego (CA, USA), subtidal SASD1, SASD2, SASD4 DQ408438–DQ408440
Scoloplos cf. armiger Buholmsanden, Kristiansand (Norway) NK1, NK3, NK4, NK5, NK6 DQ408441–DQ408445
Scoloplos cf. armiger Sletvik, Agdenes, Trondheimsfjord, (Norway) NT1, NT2, NT3, NT4, NT5, NT6 DQ408446–DQ408451
Scoloplos cf. armiger Fehrmanns Belt, Baltic Sea (Germany), subtidal O1, O2, O4, O6, O7, O8, O10 DQ408477–DQ408484
Scoloplos cf. armiger Sylt (Germany), intertidal SI2, SI3, SI9, SI12 DQ408452–DQ408455
Scoloplos cf. armiger Sylt (Germany), subtidal SS14, SS16, SS17, SS20, SS22, SS23, SS24, 

SS25, SS26 SS60, SS61, SS62, S64, SS65, 
SS97, SS98

DQ408456–DQ408470

Scoloplos cf. armiger Roscoff (France), intertidal R2, R3, R4, R6 DQ408473–DQ408476
Scoloplos cf. armiger Low Newton by the Sea (Great Britain), intertidal GB27, GB28 DQ408471–DQ408472

Table 2: Average Kimura Two-Parameter distances calculated 
from Transition and Transversion changes between different 
Scoloplos cf. armiger clades

Malibu San Diego type locality Sylt intertidal

San Diego 0.238
type locality 0.209 0.132
Sylt intertidal 0.237 0.136 0.053
Sylt subtidal 0.231 0.149 0.088 0.095
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Amino acid alignment of the nad6 geneFigure 4
Amino acid alignment of the nad6 gene. Differences within the Scoloplos cf. armiger group marked in bold.

O. latreillii MTILALSSLITALISSLLFASSPVTLGVWIILIAIAGSLTIAACTSAWLAMFTFLIYVGG

L. fragilis .ITVS.T...ILIILII.S.NT.LS..CG.LS..LL...I..SSS.S..........I..

L. pugettensis ...MTII.FTIL.SLIIIS.HT.LS..CG.L.LS.L.T....SLK.S.....I..V.I..

L. pugettensis ...MTII.FTIL.SLIIIS.HT.LS..CG.L.LS.L.T....TLK.S.....I..V.I..

S. sp.  ...MTII.FTIL.SFII.S.HT.LS..CG.L.LSLI.T....TLK.S.....I..V.I..

M2   ...MTII.FTFL.SLII.S.HT.LS..CG.LSLS.L.T....TVK.S.....I..V.I..

San Diego 1 ...MTIIPFTIL.SFII.S.HT.LS..CG.LFLSLL.T....TLK.S.....I..V.I..

San Diego 2 ...MTIIPFTIL.SFII.S.HT.LS..CG.LFLSLL.T....TLK.S.....I..V.I..

San Diego 4 ...MTIIPFTIL.SFII.S.HT.LS..CG.LFLSLL.T....TLK.S.....I..V.I..

NK1   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

NK4   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

NK5   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

NT3   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

NT4   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

NT5   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

NK3   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

SS97   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

O1   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

O6   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

O7   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

SS23   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

SS14   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.TF...TLK.S.....I..V.I..

GB27   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.T....TLK.S.....I..V.I..

SI2   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.T....TLK.S.....I..V.I..

SI9   ...MTII.FTIL.SLII.S.HT.LS..CG.L.LS.L.T....TLK.S.....I..V.I..

O. latreillii LLVIFAYFTATAPNQIHNFYPIIKFSLIIFTLISLTFWSPSLLTPPQNE

L. fragilis ...L.M.....I...RMQQKIWW.L...SIFIPISIT.L.I.NS.SF.K

L. pugettensis ..IL.M.....I...RMQYQSWW.LTS.AL..PICVM.T.IIQSSYT.T

L. pugettensis ..IL.M.....I...RMQYQSWW.LTS.TL..PICAM.T.VIQSSHA.T

S. sp.  ..IL.M.....I...SMQYQTWW.LTS.IL..PICIM.T..IQSSFS.S

M2   ..IL.M.....I...RMQYQSWW.LTS.ALI.PVCIM.N.IIQSSFS.S

San Diego 1 ..IL.M.....I...RMQYQTWW.STS.IL..PICIM.T.LIQPSFP.S

San Diego 2 ..IL.M.....I...RMQYQTWW.STS.IL..PICIM.T.LIQPSFP.S

San Diego 4 ..IL.M.....I...RMQYQTWW.STS.IS..PICIM.T.LIQPSFP.T

NK1   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

NK4   ..IL.M.....I...KMQYQTWW.LTS.IL..PICNM.T.LIQSSYT.T

NK5   ..IL.M.....I...RMQYQTWW.LTS.IL..PICNM.T.LIQSSYT.T

NT3   ..IL.M.....I...RMQYQTWW.LTS.TL..PICIM.T.LIQSSYT.T

NT4   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

NT5   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

NK3   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

SS97   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

O1   ..IL.M.....I...RMQYQTWW.LTS.IL..PICNM.T.LIQSSYT.T

O6   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

O7   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

SS23   ..IL.M.....I...RMQYQTWW.LTS.II..PFCAM.T.LIQSSYT.T

SS14   ..IL.M.....I...RMQYQTWW.LTS.II..PFCAM.T.LIQSSYT.T

GB27   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

SI2   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T

SI9   ..IL.M.....I...RMQYQTWW.LTS.IL..PICIM.T.LIQSSYT.T
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Proposed secondary structure of the trnQ gene of different Scoloplos cf. armiger cladesFigure 5
Proposed secondary structure of the trnQ gene of different Scoloplos cf. armiger clades. There are no different sec-
ondary structures within the clades and as such only secondary structure of trnQ one representative of each clade is shown. 
Discussed feature are marked with an arrow.
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subtidal populations have been reported by Kruse & Reise
[33], but they did not find any such differences or varia-
tion within the 'subtidal clade'. The same holds true for
chaetal characters. Furcate chaetae are present in abdomi-
nal segments of individuals of the subtidal populations,
but these are lacking in intertidal individuals [40]. These
characters were also compared with individuals from the
type locality (Kristiansand, Norway), but no differences to
the subtidal individuals from the Sylt population are
found. However, our results explain why significantly
higher genetic diversity has been found in a RAPD study
within the subtidal populations [32]. It is very likely that
this has been caused by mixing of two cryptic species
which together contribute to an ostensible high variabil-
ity.

The question emerges if there are ecological differences
between the two cryptic subtidal species. Study of the eco-
logical background of the two Scoloplos cf. armiger species
in the Wadden Sea (North Sea, Germany) has revealed
that there is a higher tolerance against sulphide and
hypoxia for intertidal individuals, which can be inter-
preted as an adaptation to intertidal habitats being cut off
from supply with oxygenated sea water during low tide.
However, no unusual high variation of the physiological
tolerance of subtidal Scoloplos cf. armiger individuals is
revealed by these physiological studies [34].

Interestingly, it can be observed that intertidal and subti-
dal populations both spawn their egg cocoons and pelagic
larvae respectively in spring and additionally pelagic lar-
vae from subtidal populations were present in autumn.
Spawning asynchrony is typical for marine sibling species
living in sympatry [12,41] and in the future it needs to be
tested if this is realized in the two clades with subtidal
Scoloplos cf. armiger: one spawning in autumn and one in
spring.

Implications for Scoloplos taxonomy
It is obvious from this analysis, as well as from molecular
study of phylogenetic relationships of Orbiniidae [42],
that the genus Scoloplos is not monophyletic. Characters
currently used for genus diagnoses in orbiniids are highly
variable within this group and are not suitable for cladistic
analysis [42]. The status of the worldwide distributed Scol-
oplos armiger was doubted by some authors before [43]. S.
armiger is a species with variable morphological charac-
ters. Descriptions of this species differ so widely that more
than one species may have been confused [44].

From the present analysis it becomes clear that at least
three additional Scoloplos species should be erected within
the species complex currently referred to as Scoloplos
armiger: the Malibu clade, San Diego clade, and the inter-
tidal clade. Additional to this, according to our data the

existence of sibling species within the subtidal popula-
tions of the Eastern North Atlantic is highly likely (type
locality clade, subtidal clade).

Whereas the descriptions for the Malibu clade and the
intertidal clade are in preparation, the two other clades
need further investigation before formal description. In
future, the name Scoloplos armiger should be restricted to
the type locality clade.

With the present molecular analysis at hand it is very
likely that different species have been mixed in previous
ecological studies. Whereas it seems reasonable that Euro-
pean Scoloplos armiger-like individuals from tidal flats can
be assigned to the intertidal clade, the status of subtidal
populations remains more ambiguous. In the future
reports of S. armiger from non-European waters should be
treated with caution. The analysis of the few included
pacific individuals clearly indicates that these represent
different species, which appear to be distantly related to
European Scoloplos species. It would be interesting to
include Mediterranean as well as subtidal species from the
Sea of Japan, White Sea, and British waters in future stud-
ies to clarify the species status of different S. armiger-like
populations and to understand their distribution.

Scoloplos mitochondrial genome data
This is the first attempt to use mitochondrial data to dis-
tinguish between Scoloplos species which has proven to be
very powerful. We present the first nearly complete mito-
chondrial genome (ca. 12 kb) for this genus including all
protein coding genes. Long-PCR's ranging from nad4 to
16S were not successful. Problems with amplifying the
part of the mitochondrial genome including the putative
control region have also been reported by others [37].
Compared with the mitochondrial genome of the orbi-
niid Orbinia latreillii [35] two translocations of tRNA
genes must be assumed. This shows that gene rearrange-
ments might be more frequent in annelids than previ-
ously assumed [35,37].

We analysed a fragment of the mitochondrial genome
starting from the 3'-end of cox3, continuing over the com-
plete trnQ, and finishing after a large part of nad6. Analysis
of the secondary structure of the trnQ genes in our data set
show the typical functional cloverleaf structure, which
indicates that we most likely did not encounter mitochon-
drial pseudogenes, so called numts [45]. The sequenced
fragment in this study proved to be very useful in phylo-
genetic analyses for the distinction of different clades. Due
to its larger sampling scale this study goes beyond previ-
ous analyses which used RAPD and AFLP markers [32].
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Conclusion
The phylogenetic analysis of mitochondrial sequence data
(cox3-trnQ-nad6 fragment) reported here revealed that
Scoloplos armiger represents a species complex and not a
cosmopolitan species. We find at least two S. armiger-like
species within the Pacific region and two or three different
S. armiger-like species in the North Atlantic. One of these
species is represented by the intertidal clade, for which
previous studies clearly had supported species status. Fur-
ther morphological as well as genetical investigations of S.
armiger-like individuals from the subtidal and the type
locality clade will shed additional light on a cryptic speci-
ation within Scoloplos. It appears likely that inclusion of
more Scoloplos cf. armiger specimens from different parts
of the world would add more species to this complex.

Methods
Samples, identification, and DNA extraction
Individuals of Scoloplos cf. armiger and other orbiniids
were collected at different sample locations (Table 1, see
Fig. 1 for collection sites of the European Scoloplos sam-
ples) and preserved in 99% ethanol. Pacific Scoloplos spe-
cies of the Malibu clade have been collected in the
intertidal area of Malibu Beach (Los Angeles, USA) and
were determined using taxonomic keys for the Californian
Fauna [46,47] and afterwards this identification was
checked by Leslie H. Harris (LACM Los Angeles). Speci-
mens from San Diego were provided by Rick Rowe (San
Diego) and have been collected in 25 m depth. European
Scoloplos species have been all identified using the key
from Hartmann-Schröder [6]. Voucher specimens for the
Malibu clade, San Diego clade, type locality clade, and
intertidal clade have been deposited in the collection
"Vermes" of the Museum für Naturkunde der Humboldt-
Universität zu Berlin (Germany) under the numbers
11213–11216. See Table 1 for sampling locations of Euro-
pean Scoloplos. DNA extraction was performed using the
Qiagen DNeasy™ Tissue Kit (Qiagen, Germany) according
to the manufacturer's instructions.

mtDNA sequencing of Scoloplos cf. armiger individual 
SS14
To develop new genetic markers a 12 kb fragment includ-
ing all coding genes was amplified from an individual of
Scoloplos cf. armiger. The individual was collected subti-
dally near Sylt (Germany). In the first step small fractions
of the rrnL, cox1, cob, and nad4 genes were amplified using
conserved primers as described in Bleidorn et al. [35]. All
products were purified with the Qiaquick PCR Purifica-
tion Kit (Qiagen). Sequencing reactions were performed
using the PCR primers with a dye terminator procedure
and loaded on capillary automatic sequencer CEQ™ 8000
(Beckman Coulter, Fullerton CA, USA) according to the
recommendations of the manufacturer.

In a second step the determined sequences were used to
design three additional PCR primer pairs (Table 2) bridg-
ing the gaps between rrnL-cox1, cox1-cob, and cob-nad4. A
long PCR approach using these primer pairs was per-
formed using the Takara LA-Taq (MoBiTech). The 50 µl
reaction volumes were set up as follows: 26.25 µl steri-
lized destilled water, 7 µl 10× reaction buffer, 7 µl MgCl-
solution, 3.5 µl dNTP mix, 2 µl primer mix (10 µM each),
2 µl DNA template, 0.25 µl (1 u) Takara LA-Taq polymer-
ase. A touchdown PCR approach was used for these frag-
ments: 94°C for 3 min; 7 cycles with 94°C for 1 min,
63°C for 1 min (-0.5°C in every step), and 70°C for 8
min; 35 cycles with 94°C for 1 min, 60°C for 1 min 30
seconds, and 70°C for 8 min; final extension at 70°C for
10 min. PCR products were inspected under UV transillu-
mination and a PCR purification of these four approxi-
mately 4 kb fragments was done using the PCR Gel
extraction kit (Qiagen). Sequences were determined using
direct sequencing from the ends of these fragments, then
internally by primer walking.

cox3-trnQ-nad6 amplification and sequencing
Using the mitochondrial genome data a primer pair span-
ning a ca. 600 bp region corresponding to the 3' end of
cox3, trnQ, and most of the nad6 was designed (see Fig. 1
for priming sites on the genome, NAD6F: GGC TCW ACW
TTC TTC GTA GCA CY, NAD6R: TTT TAC TGA RGC GAT
TAR TGT TAG). All amplifications were carried out on an
Mastercycler and Mastercycler gradient (Eppendorf). The
PCR temperature reaction for this fragment was 94°C for
2 min; 34 cycles with 94°C for 30 seconds, 50°C for 45
seconds, and 70°C for 1 min; final extension at 70°C for
7 min.

All products were purified with the Qiaquick PCR Purifi-
cation Kit (Qiagen). Sequencing reactions were performed
with a dye terminator procedure and loaded on capillary
automatic sequencer CEQ™ 8000 (Beckman Coulter, Full-
erton CA, USA) according to the recommendations of the
manufacturer. The trailing ends were trimmed, so that all
sequences that were submitted to GenBank (for accession
numbers see Table 1) are 528 bp in length.

Gene annotation
Protein-coding genes and ribosomal RNA genes were
identified by blasting on NCBI entrez databases and by
comparing with other annelid mitochondrial genomes
using DOGMA [48]. Boundaries of nc (the largest non-
coding region) and the ribosomal genes could not be
identified by sequence homology alone and were inferred
from the boundaries of flanking genes. Transfer RNA
genes were identified by their potential secondary struc-
tures using the tRNAscan-SE Search Server [49]. Transfer-
RNA identity was specified by its anticodon sequence.
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The sequence of the mitochondrial genome of Scoloplos cf.
armiger individual SS14 has been submitted to GenBank
(DQ517436).

Phylogenetic analysis
Individuals possessing identical sequences were com-
bined into a single operational taxonomic unit (OTU).
Sequences were aligned with CLUSTAL W [50] using the
default parameters for gap opening and gap penalty.
Alignment of the protein coding regions was unambigu-
ous, a few gap positions are only found within a non-cod-
ing region between cox3 and trnQ and within the transfer
RNA. The alignment is available in treebase [51].

Phylogenetic analyses were carried out using PAUP*, ver-
sion 4.0b10 [52] and MrBayes 3.0B4 [53]. According to
the hypothesis of orbiniid phylogeny by Bleidorn [42] we
used Orbinia latreillii as outgroup and this taxon served to
root all trees. A chi-square test of homogeneity of base fre-
quencies across taxa was used to estimate the frequency
distribution of observed number of substitutional
changes per character for each gene.

It is suggested that the Akaike Information Criterrion
(AIC) is superior to the hierachical likelihood ratio test
[54] and so we used this criterion for model selection as
implemented in the program Modeltest 3.7 [55,56]. Aver-
age sequence distances were calculated using MEGA 2.1
[57].

Maximum likelihood analysis was performed under the
likelihood settings suggested for the given dataset by the
result of the modeltest using the heuristic search option
with Tree Bisection Reconnection (TBR) branch swapping
and 100 random sequence addition replicates. AIC indi-
cates that GTR+I+Γ represents the optimal model in
respect to the dataset (GTR = general time reversible, I =
invariable sites, Γ = among-site rate variation modeled to
fit a discrete gamma distribution).

Bootstrap values were determined from 1,000 replicates
subject to full heuristic searches with simple addition
sequence and NNI branch swapping to provide measures
of relative clade support.

Bayesian analyses were conducted using MrBayes 3.0B4
[53]. All priors were set according to the chosen model
(lset nst = 6 rates = invgamma; prset RevMatPr = dirich-
let(1.0,1.0,1.0,1.0,1.0,1.0) StateFreqPr = dirich-
let(1,1,1,1) ShapePr = uniform(0.05,50.0) PinVarPr =
uniform(0.0,1.0)). Two times four Markov chains in par-
allel, three heated and one cold, were started from a ran-
dom tree and all eight chains ran simultaneously for
1,000,000 generations, with trees being sampled every
500 generations for a total of 2,001 trees. After the likeli-

hood of the trees of each chain converged, the first 101
trees were discarded as burn in. The majority-rule consen-
sus tree containing the posterior probabilities of the phy-
logeny was determined from 1,900 trees.

An equally weighted maximum parsimony search was run
with 1,000 random addition replicates, heuristic search
option with TBR branch swapping, holding one tree per
step, and keeping all most-parsimonious trees. Clade sup-
port was assessed with nonparametric bootstrap as imple-
mented in PAUP* (heuristic search, 1,000 replicates, TBR
branch swapping, and simple addition sequence).
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zyme; nad1-6 and 4L, NADH dehydrogenase subunits 1–
6 and 4L; nc, noncoding region; L1 and L2, trnL(CUN) and
trnL(UUR); RAPD, random amplified polymorphic DNA;
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and S2, trnS(AGN) and trnS(UCN); tRNA and trn, transfer
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