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Abstract
Background: A genome-wide comparative analysis of human and mouse gene expression patterns
was performed in order to evaluate the evolutionary divergence of mammalian gene expression.
Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs
across 28 tissues. Expression profiles were resolved into species-specific coexpression networks,
and the topological properties of the networks were compared between species.

Results: At the global level, the topological properties of the human and mouse gene coexpression
networks are, essentially, identical. For instance, both networks have topologies with small-world
and scale-free properties as well as closely similar average node degrees, clustering coefficients, and
path lengths. However, the human and mouse coexpression networks are highly divergent at the
local level: only a small fraction (<10%) of coexpressed gene pair relationships are conserved
between the two species. A series of controls for experimental and biological variance show that
most of this divergence does not result from experimental noise. We further show that, while the
expression divergence between species is genuinely rapid, expression does not evolve free from
selective (functional) constraint. Indeed, the coexpression networks analyzed here are
demonstrably functionally coherent as indicated by the functional similarity of coexpressed gene
pairs, and this pattern is most pronounced in the conserved human-mouse intersection network.
Numerous dense network clusters show evidence of dedicated functions, such as spermatogenesis
and immune response, that are clearly consistent with the coherence of the expression patterns of
their constituent gene members.

Conclusion: The dissonance between global versus local network divergence suggests that the
interspecies similarity of the global network properties is of limited biological significance, at best,
and that the biologically relevant aspects of the architectures of gene coexpression are specific and
particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the
local network structure which is compatible with the notion that gene coexpression networks are
subject to purifying selection.
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Background
The amplitude, timing, and pattern of gene expression
have important phenotypic consequences, and the poten-
tial evolutionary significance of changes in the regulation
and expression of genes has long been recognized [1-3]. In
the last few years, high-throughput gene expression data
sets from related species have accumulated, to the extent
that it has become possible to study the divergence of
expression in a systematic way at the genome-scale.

Initial efforts at the comparative study of gene expression
divergence have yielded some interesting and unexpected
results. For instance, it has been shown that the level and
pattern of mammalian gene expression can evolve in a
way that is both rapid and apparently unconnected to the
level of functional constraint on gene sequences [4,5].
This led to the counter-intuitive suggestion that gene
expression may evolve completely free of selective con-
straint, in other words, purely neutrally. Subsequent stud-
ies have refined the neutral view on the evolution of gene
expression by demonstrating that, although selection
does, in fact, constrain expression divergence, much of the
observed change in expression between species may nev-
ertheless be effectively neutral [6,7]. The potential adap-
tive significance of some gene expression changes has also
been posited [6]. Several other recent studies have shown
how patterns of gene expression, and entire regulatory
networks, can quickly respond to environmental cues and
substantially reorganize themselves over the course of
evolution. For instance, the architecture of yeast gene reg-
ulatory networks has been shown to change dramatically
in response to environmental stimuli [8], and gene
expression patterns were found to diverge rapidly after
gene duplication in yeast [9] and humans [10]. Prokaryo-
tic genomes, too, show evidence of rapid, whole-sale reor-
ganization of gene regulatory networks [11].

Given the phenotypic relevance of gene expression pat-
terns, the apparent evolutionary lability of expression sug-
gests that it might represent an ideal substrate on which
natural selection could act to drive the functional diver-
gence between evolutionary lineages. Indeed, compara-
tive studies of gene expression have also uncovered
intriguing connections between expression divergence
and gene function. For instance, it has been shown that
physically interacting proteins tend to be encoded by
coexpressed genes [12,13], and that the expression levels
of interacting proteins show coordinated changes across
species [14]. From a broader perspective, it has been dem-
onstrated that functionally related genes are preferentially
linked in coexpression networks, and this was taken to
justify the so-called 'guilt by association' heuristic
whereby expression patterns are used to inform functional
annotation of uncharacterized genes [15]. In a very spe-
cific example of how expression changes can lead to phe-

notypic divergence, the expression changes in yeast that
facilitated the emergence of anaerobic metabolism have
been identified and shown to be due to the evolution of a
specific cis-regulatory sequence motif [16].

For the study presented here, we performed a comparative
analysis of human-mouse gene expression patterns to
assess the extent of expression divergence between the two
species and to explore the connections between the evolu-
tion of gene expression and function. We employed the
Novartis mammalian gene expression atlas [17] to com-
pare changes in the relative expression levels between
9,105 orthologous human-mouse gene pairs across a
panel of 28 shared tissues. Gene expression patterns were
resolved into species-specific coexpression networks and
the topological properties of these networks were com-
pared. The interrogation of coexpression networks allows
for the use of a well-developed set of analytical and con-
ceptual tools [18-20] and provides an opportunity for the
simultaneous comparison of evolution at different levels
of systemic organization, i.e., global vs. local network
properties. The results of this comparison indicate that
human and mouse co-expression networks are indistin-
guishable in terms of their global properties but show
drastic divergence at the local level.

Results and Discussion
Mammalian coexpression networks
Tissue-specific expression profiles of human-mouse
orthologous gene pairs were compared in order to evalu-
ate the divergence of mammalian gene expression pat-
terns. A total of 9,105 orthologous gene pairs were
considered with respect to their expression levels across
28 tissues shared between the two species. All-against-all
gene expression profile comparisons for the human and
mouse matrices (9,105 × 28) were used to generate spe-
cies-specific coexpression networks (Figure 1a). For coex-
pression networks, nodes correspond to genes, and edges
link two genes from the same organism if their expression
profiles are considered sufficiently similar (Figure 1b). A
number of different metrics were used to measure the sim-
ilarity (distance) between vectors of tissue-specific expres-
sion levels: Euclidean distance, Manhattan distance,
Jensen-Shannon divergence, dot-product, cosine similar-
ity and Pearson correlation coefficient. Results reported
here are for networks constructed using the Pearson corre-
lation coefficient (PCC). The PCC is widely employed for
comparison of gene expression profiles and reflects simi-
larity between expression patterns in terms of the relative
expression levels across tissues. It should be noted that the
results for the coexpression network analyses are qualita-
tively similar irrespective of the measure of profile similar-
ity employed. Results of analyses based on the other
measures of profile similarity (distance) are presented in
the Supplementary Information section (see Additional
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file 1) along with a discussion of the relationships among
those measures.

The use of the PCC to build coexpression networks is
predicated on the choice of a threshold correlation coeffi-
cient (r) at, or above which, genes are considered to be
coexpressed and are thus connected by an edge in the net-
work. As previously reported [21], a series of increasing r-
values (0.4–0.9) was evaluated for utility in building coex-
pression networks. When r-values << 0.7 are used, coex-
pression networks tend to congeal into graphs that are so
densely connected as to preclude meaningful analysis of
their topological properties. On the other hand, r-value
thresholds ranging from 0.7–0.9 yield analytically tracta-
ble networks and qualitatively similar results. Results for
coexpression networks based on an r-value threshold of
0.7 are reported here since this cutoff gives networks that
are unlikely to contain many spurious edges but are suffi-
ciently large and dense for robust topological analysis. For
the 28-dimensional gene expression profiles evaluated
here, an r-value of 0.7 corresponds to a highly statistically
significant correlation (P = 3.4e-5). Furthermore, gene
expression profiles with r ≥ 0.7 can be visually appreciated
to be highly similar (Figure 1c).

Human and mouse coexpression networks were evaluated
with respect to a number of parameters describing their
global topological properties and found to be highly sim-
ilar (Table 1). The numbers of nodes and edges in each
network are comparable, with the mouse network show-
ing slighter higher values for both. The average degree
(<k>) is the average number of edges per node and gives
rough approximation of how dense the network is. The
mouse network shows a slightly higher <k> which is con-
sistent with the greater numbers of nodes and edges.
However, <k> is again similar for both networks and
rather high. By way of comparison, typical world-wide-
web networks have <k>≈7. The values of <k> might not be
particularly relevant because, as will be shown below, the
degree distributions are highly skewed.

Table 1: Global characteristics of the coexpression networks

Network Nodes1 Edges2 <k>3 <C>4 <l>5

Human 7,208 158,418 43.96 0.3744 4.75
Mouse 7,730 178,166 46.10 0.4003 4.80
Intersection 2,257 13,060 11.57 0.4006 6.89

1Number of genes (nodes) in the network – i.e. nodes with one or 
more edges
2Number of coexpressed gene pairs (edges) in the network
3Average degree (k), number of edges shared with other nodes, per 
node
4Average clustering coefficient (C) per node
5Average shortest path length (l) between any two nodes in the 
network

Gene coexpression networksFigure 1
Gene coexpression networks. a) The expression profile 
of a gene i (Gi) can be represented as a row vector with 
dimensions (n) equal to the number of tissues (28); all pro-
files taken together yield an m × n gene expression matrix 
(X) where m = the number of genes (9,105), n = the number 
of tissues (28) and the expression value of Gi in tissue j is rep-
resented as xij [45]. b) Gene expression vectors can be com-
pared using a number of different similarity (distance) 
measures such as the Pearson correlation coefficient (r). 
Genes (nodes) are connected by an edge if their vectors are 
sufficiently similar (e.g. r ≥ 0.7). A relatively tightly linked clus-
ter (subgraph) of coexpressed genes is shown. c) Visual rep-
resentation of the expression patterns of the genes in this 
cluster underscores their similarity. Color scale based on 
log2 (Gij/median Gi1...Gin).

Gi = [xi1, xi2 .. xin]

x11, x12 .. x1n
x21, x22 .. x1n
.. ..  ..  ..

xm1, xm2 .. xmn

X =

a

b

c
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A more refined notion of network density is given by the
average clustering coefficient (<C>). The clustering coeffi-
cient C of a node i is defined as the fraction of the pairs of
neighbors of node i that are linked to each other: Ci = 2ni/
ki(ki-1), where ni is the number of observed links connect-
ing the ki neighbors of node i and ki(ki-1)/2 is the total
number of possible links. The average clustering coeffi-
cient (<C>) is the mean of this value for all nodes with at
least two neighbors, and for both the human and mouse
networks <C>≈0.4 (Table 1). For networks of this size,
these <C> values are considered to be quite high. By way
of comparison, for randomly generated networks with the
same number of edges and same degree (k) sequences, the
expected <C> is estimated to be 0.0643 for human and
0.0529 for mouse. The high density of the coexpression
networks is not necessarily surprising because, as one
could reasonably expect, co-expression is, largely (but not
entirely), transitive. In other words, if gene A is coex-
pressed with genes B and C, then genes B and C are likely
to be coexpressed as well. However, the high observed val-
ues of <C> for the human and mouse networks do not
appear to be due to the transitivity of the PCC similarity
measure alone. This is demonstrated by the observation
that networks built using the PCC measures between ran-
domly permuted gene expression profiles, thus preserving
some transitivity, also have values of <C> that are far
lower than the observed values: human = 0.0933, mouse
= 0.1229.

The average path length (<l>) is the average shortest path,
or the smallest number of edges needed to connect two
nodes, between any two reachable nodes in the network.

Clearly, the co-expression networks exhibit "small world
phenomena": on average, any two nodes are separated by
only a few edges (Table 1).

Node degree (k) distributions were also computed for the
human and mouse coexpression networks (Figure 2a and
2b). In both cases, the distribution seems to follow a
power-law, that is, the probability that a randomly chosen
node has degree k, is Pr [K = k] ∝ k-α where the parameter
α, is the exponent of the power law distribution. While
the degree distributions seem to be well approximated by
a straight line in log-log scale (α = 1.13 for the human net-
work and α = 1.11 for the mouse network by the least
squares method), there appears to be an exponential
drop-off in the tail of the distributions. Thus, the distribu-
tions are more appropriately described as a fat-tailed,
power-law-like distributions rather than strict power-
laws. Accordingly, evolutionary models that lead to pure
power-laws, typically, with α >2, such as preferential
attachment, would not apply to the evolution of this net-
work. Additional details on these distributions are pro-
vided in the Supplementary Information (see Additional
file 1). Node degree distributions obtained using different
distance (similarity) measures show similar fat-tailed
properties and appear to be better approximated by
power-laws than those obtained using the PCC (see Addi-
tional file 1; Supplementary Figure 3).

It has been shown that analysis of the plot of the cluster-
ing coefficient C(k) as a function of their degree ki can
yield insight to the structure of the network. In particular,
it has been reported that the C(k) distribution of networks

Node degree (k) distributions for human and mouse gene coexpression networksFigure 2
Node degree (k) distributions for human and mouse gene coexpression networks. All distributions are plotted in 
log10-log10 scale. Frequency distributions showing f(k) × k for human (a) and mouse (b).
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with hierarchical structure follows a power-law, with a
high interconnectivity among nodes of low degree that
decreases as the degree increases [18]. The C(k) distribu-
tion of the human and mouse coexpression networks is
more or less constant (Figures 3a and 3b) implying that
these networks, most likely, do not exhibit a hierarchical
structure. Slightly different trends were observed for the
different distance or similarity measures (see Additional
file 1; Supplementary Figure 4).

Human-mouse intersection network
As described above, the human and mouse gene coexpres-
sion networks are closely similar in terms of their global
topological characteristics; they share similar node degree
(k) distributions and C(k) distributions as well as similar
average node degrees (<k>), clustering coefficients (<C>)
and path lengths (<l>). We further sought to evaluate the
similarity between the species-specific coexpression net-
works at a local level. There is as yet no general method for
assessing local network similarity (or graph isomor-
phism). However, in the case of the human and mouse
coexpression networks generated here, the use of ortholo-
gous gene pairs results in a one-to-one mapping between
the nodes of the two networks. In this sense, the networks
can be considered to be defined over the same set of nodes
N, and thus can be directly compared by generating an
intersection network. The human-mouse intersection net-
work is defined as the network over the set of nodes N
where there is a link between two nodes i and j if i and j
denote two pairs of orthologous genes which are con-
nected in both the human and the mouse networks (Fig-
ure 4a). Thus, the intersection network captures the

coexpressed gene pairs conserved between human and
mouse.

The global characteristics of the intersection network are
shown in Figures 4b and 4c. The intersection network
node degree and C(k) distributions are clearly similar to
those of the species-specific networks as are the average
clustering coefficient (<C> = 0.4006) and average path
length (<l> = 6.89). The exponent that best approximates
the power law of the node degree distribution is α = 1.34
when a line is fitted to the logarithmically binned distri-
bution (see Additional file 1; Supplementary Figure 5)
and α = 1.01 using the maximum likelihood method.
Taken together, these findings indicate that the global
structure of the species-specific coexpression networks is
preserved in the intersection network. However, the most
striking feature of the intersection network is the small
fraction of genes (~29–31%) and edges (~7–8%) that are
conserved between the human and mouse networks
(Table 2). Accordingly, the average node degree is far
lower (<k> = 11.57) in the intersection network than it is
in each of the species-specific networks.

Several other factors also point to the local level diver-
gence of the human and mouse coexpression networks.
When the degrees (k) of nodes present in both the human
and mouse networks were arranged into species-specific
degree sequence vectors, only relatively low, albeit statis-
tically significant (given the large number of observa-
tions), correlation (r = 0.27, P = 9e-149) was seen between
species. In other words, a highly connected node (hub) in
the human coexpression network is not especially likely to

Clustering coefficient against node degree C(k) distributions for human (a) and mouse (b) gene coexpression networksFigure 3
Clustering coefficient against node degree C(k) distributions for human (a) and mouse (b) gene coexpression 
networks. The degree (k) is shown on the x-axis and the average clustering coefficient <C> for all nodes with degree k is 
shown on the y-axis.
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be a hub in the mouse coexpression network and vice
versa. In addition, the human and mouse coexpression

r-values for shared edges are not correlated at all (r =
0.03). Finally, there is no correlation between the princi-
pal eigenvector values of the human and mouse networks
(r = -0.03), indicating that the dense areas of the networks
do not overlap. Thus, whereas the global topological
properties of the species-specific networks are highly con-
served, the local architectures that underlie these topolo-
gies, in terms of the identities of the coexpressed genes
pairs, are highly divergent.

The low level of conservation seen for the local network
structures was unexpected, particularly, in light of the
close similarity of the global topological properties, and
suggested substantial divergence of gene expression pat-
terns between human and mouse orthologs. A series of
controls were implemented to assess the meaning and
robustness of these findings (see Additional file 1). These
controls included comparison of networks constructed
separately from experimental and biological replicate data
sets, and analysis of network conservation for subsets of
the data with different experimental variances. The results
of these controls indicate that the majority of the local
divergence between human and mouse coexpression net-
works does not result from experimental noise. In addi-
tion, lowering the PCC threshold used to define edges in
the coexpression networks does not result in a substantial
increase in the fraction of edges conserved between spe-
cies (see Additional file 1; Supplementary Figure 9a).

The high divergence of coexpressed gene pairs between
human and mouse detected here is consistent with previ-
ous studies that have shown substantial divergence of the
expression profiles for human and mouse orthologs
[5,6,21,22]. Indeed, when the expression profiles were
directly compared for the 9,105 human-mouse ortholo-
gous gene pairs studied here, the average PCC, while pos-
itive, was fairly low and not statistically significant
(average PCC = 0.22, Student's t = 1.15, df = 26, P = 0.26).

Functional coherence of gene coexpression networks
The coexpression networks described here are analytical
constructs that are intended to capture the complexity of
the relationships among thousands of gene expression
patterns. Given the significant rapidly evolving (and per-
haps neutral) component in the evolution of these net-
works, it is not a trivial question whether or not (and to
what extent) coexpressed gene pairs represent coregulated
and/or functionally interacting genes. To assess the bio-
logical relevance of these networks, Gene Ontology (GO)
functional annotations were mapped onto the network
nodes and the functional affinities of linked genes were
explored. The first question addressed was whether, and
to what extent, coexpressed genes are functionally related.
The structure of the GO graph can be exploited to derive
measures of functional similarity between pairs of genes

Human-mouse conserved intersection networkFigure 4
Human-mouse conserved intersection network. a) 
Procedure for computing the intersection network whereby 
conserved edges that link the corresponding orthologous 
genes in both species are preserved. b) Node degree (k) and 
c) clustering coefficient against node degree C(k) distributions 
for the intersection network.
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[23]. Pairwise similarities between biological process
terms were computed for all pairs of network genes asso-
ciated with GO annotations, and these functional similar-
ity data were then used to cluster genes by the UPGMA
method. The resulting lists of genes, ordered by function,
were plotted on both axes of a matrix containing all pair-
wise gene expression profile correlations. When these cor-
relations (r-values) are color coded, it allows for a visual
inspection of the functional relationships, or lack thereof,
among coexpressed genes (Figure 5). The functional
coherence of the human-specific, mouse-specific, and
intersection networks is clearly revealed by the off-diago-
nal block color-structure of plots (Figure 5a, 5b, and 5c,
respectively). In each of these networks, there are numer-
ous clusters of functionally related genes that are demon-
strably enriched for coexpressed pairs. For comparison,
the inset of each plot shows a negative control with genes
ordered randomly along the matrix axes, and accordingly,
no apparent block color-structure for the correlation
values.

In addition to this visual evidence for the functional affin-
ity of coexpressed gene pairs, genes linked in the coexpres-
sion networks were found to have significantly higher GO
similarities, on average, than seen for all pairs of genes
(Table 3). In addition, statistically significant positive cor-
relations were detected between the pairwise coexpression
r-values and GO similarity values for all three coexpres-
sion networks, indicating that more tightly coexpressed
gene pairs tend to be more functionally related (Table 4).
The correlation was significantly greater for the intersec-
tion network than for each of the species-specific net-
works.

Based on visual comparison of the off-diagonal color
structure of the plots shown in Figure 5a,b versus Figure
5c, there appears to be a stronger relationship between
function and coexpression for the genes that are found in
the conserved human-mouse intersection network than
for the human or mouse networks. This suggests that the
expression patterns of gene pairs that are tightly function-
ally coupled are more prominently constrained by purify-
ing selection than those of more loosely functionally
associated genes. Statistical comparison of the species-
specific versus intersection network supports this interpre-

tation. Pairs of coexpressed genes in the intersection net-
work are significantly more functionally similar, on
average, than pairs of coexpressed genes in the species-
specific networks (Table 5). A cumulative frequency distri-
bution of GO similarities between pairs of mammalian
genes clearly shows that genes linked in the intersection
network are more functionally similar than genes linked
in the species-specific portions of the network, which are
in turn more similar than all pairs of genes irrespective of
their expression patterns (Figure 6). Finally, there was a
significantly stronger dependence between coexpression
and function for gene pairs in the intersection network
compared to the species-specific pairs as indicated by a
comparison between expression profile correlations and
GO functional similarity (Table 6).

Network clusters and biological function
The mammalian coexpression networks analyzed here are
tightly clustered, as indicated by the high average cluster-
ing coefficients (Table 1), and display modular, albeit not
necessarily hierarchical, structure (see Additional file 1;
Supplementary Figure 6), (Figure 3 and Figure 4c). In light
of the presence of compact network substructures, further
functional interrogation was performed by decomposing
the networks into tightly linked clusters of genes. The
genes in these clusters were then evaluated for the pres-
ence of statistically overrepresented GO terms, which
would indicate functional coherence for the respective
group of genes. In a number of cases, there are striking
relationships between network substructure, gene func-
tion and coexpression. A detailed table showing resolved
network clusters, overrepresented GO terms and gene ids
along with their expression patterns is presented online
[24]. Two of the most prevalent functional classes that
show clear function-expression coherence are genes
involved in sexual reproduction and host immune
response. Examples of two such clusters are shown in Fig-
ure 7. This observation is notable because genes of these
two functional classes are also prone to evolve under the
influence of positive, diversifying selection [25,26]. This is
thought to be due to sexual selection, in the case of repro-
duction related genes [27], and to evolutionary arms race
between hosts and their pathogens for immune response
genes [28]. It might prove to be the case that changes in

Table 2: Local conservation of the human-mouse intersection network

Intersection1 % Human2 % Human N3 % Mouse2 % Mouse N3

Nodes 2,257 31.31 63.20 29.20 41.51
Edges 13,060 8.24 11.71 7.33 4.93

1Number of nodes and edges in the human-mouse intersection network
2Percentage of the nodes and edges conserved in the intersection network relative to the human and mouse networks
3Normalized percentage of the nodes and edges (see Additional file 1) conserved in the intersection network
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gene expression patterns for such genes also have pro-
nounced evolutionary significance.

Consistent with the apparent increased functional coher-
ence of the intersection network, the correspondence
between network clusters, GO term overrepresentation
and expression patterns is significantly more pronounced
for the conserved intersection network than for the
human and mouse species-specific networks. Thus, 38%
of clustered genes from the intersection network mapped
to overrepresented GO terms compared to 13% of
human-specific (χ2 = 85.1, P = 2.8e-20) and 18% of
mouse-specific network genes (χ2 = 43.0, P = 5.5e-11).

Conclusion
General significance of coexpression network structure
The global topological properties of the human and
mouse gene coexpression networks studied here are very
similar but the specific architectures that underlie these
properties are drastically different. In other words, the
actual pairs of orthologous genes that are found to be
coexpressed in the different species are highly divergent,
although we did detect a substantial conserved compo-
nent of the co-expression network. The discordance
between evolutionary conservation at distinct levels of
network organization has implications for understanding
the general significance of the topological properties of
networks that represent various complex systems.

The last few years have seen an explosion of studies on
various kinds of biological and non-biological networks
[29,30]. A central theme for much of this work has been
the striking unity of the topological properties of net-
works representing very different complex systems, from
biological (e.g., metabolic and protein interaction) net-
works to non-biological ones, such as social interaction
networks and the world-wide-web. Almost all these com-
plex networks show evidence of both scale-free [31] and
small world [32] properties. In other words, the network
node-degree distributions fit power laws and the diameter
of the networks, in terms of the average number of links
between two nodes in the network, stays small despite
increases in network size. These observations have led to
the hope that the network perspective might 'revolution-
ize our view of biology' [18]. This hope is based on the
idea that similar network properties are a result of univer-
sal laws that govern evolution and architecture of complex
systems. As such, the comprehension of these basic laws,
or simple principles, has the potential to yield unprece-
dented insight into biological organization and evolu-
tion. Implicit in this stance is the emphasis on a systems-
level view of biology, which considers ensembles of inter-
acting parts (genes, proteins etc.) as opposed to individual
actors alone.

GO similarity versus gene profile correlation matrixFigure 5
GO similarity versus gene profile correlation matrix. 
Genes are plotted along both axes of the matrices. Genes 
were clustered according to the pairwise similarity between 
their GO biological process annotation terms for the a) 
human-specific coexpression network, b) mouse-specific 
coexpression network and c) the human-mouse conserved 
intersection network. Pearson correlations (r) for all pairs of 
tissue-specific gene expression profiles are plotted according 
to the color bar. The inset of each plot shows a negative con-
trol where genes are randomly plotted, i.e. without regard to 
functional similarity, along the axes of the matrix.
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While this optimistic perspective on the biological signif-
icance of network topologies generated considerable
excitement in some quarters, it has not gone unchal-
lenged. A more guarded view of these findings holds that
the conserved global topological properties of biological
networks might actually reveal little or nothing about the
evolutionary mechanisms that gave rise to them or the
particular nature of their organization [33-36]. Instead,
the relevant architectural features of the individual net-
works could be quite specific and determined by the func-
tional constraints on the particular system. This world-
view stresses the anecdotal nature of biological sciences,
placing the focus back on the nature of the individual
genes, proteins and/or systems under consideration, and
eschews the search for universal laws. Based on the results
obtained here, it would seem that mammalian gene
expression evolves more in accordance with the latter,
more cautious view on the significance, or lack thereof, of
conserved network properties. In the case of gene expres-

sion, the highly conserved global network properties belie
highly divergent local structures that result from the rapid
evolution of gene expression patterns. Thus, the architec-
ture of the coexpression networks is highly species-spe-
cific and the conservation of the global network properties
occurs despite, not because of, extensive evolutionary
changes in gene expression.

Accordingly, at least in the case of gene expression diver-
gence, the biological relevance of the global network top-
ological properties appears questionable. Of course, this
does not prevent network analysis from being a powerful
approach, possibly, the most appropriate one for the
quantitative study of complex systems made up of numer-
ous interacting parts. It is also worth noting that coexpres-
sion networks built from randomly permuted expression
vectors differ from the observed networks in not contain-
ing high-degree nodes (hubs) and thus cannot be claimed
to possess scale-free properties with respect to their node

Table 3: Average GO similarity for mammalian gene coexpression networks versus average GO similarity for all gene pairs

Species netGOavg1 allGOavg2 t3 P4

Human 0.2637 ± 9.1e-4 0.1989 ± 4.9e-5 80.78 0
Mouse 0.2736 ± 8.9e-4 0.2150 ± 8.2e-5 75.23 0

1Average GO similarities for all pairs of genes connected by an edge in the coexpression network
2Average GO similarities all possible pairs among the 9,105 human-mouse orthologs
3Value of test statistic, t = (μ1-μ2)/(σd*sqrt(1/n1+1/n2)) where μ are the respective means and σd is the standard deviation of the difference
4Level of significance based on Students t-distribution with degrees of freedom = n1+n2-2

Table 4: Correlation (r) between pairwise GO similarity and pairwise gene expression profile r-values

Network r1 n2 t3 P4

Human 0.1012 49303 22.59 2.2e-112
Mouse 0.0974 57685 23.50 1.4e-121
Intersection 0.1927 5370 14.39 4.4e-46

1Pearson correlation coefficient
2Number of gene pairs compared
3Value of test statistic, t = r*sqrt((n-2)/(1-r2))
4Level of significance based on Students t-distribution with degrees of freedom = n-2

Table 5: Average GO similarity for species-specific mammalian gene coexpression networks versus average GO similarity for the 
conserved human-mouse intersection network

Network GOavg1 t2 P3

Human-specific 0.2556 ± 9.3e-4 25.65 3.3e-144
Mouse-specific 0.2678 ± 9.2e-4 20.31 2.2e-91
Intersection 0.3299 ± 3.4e-3

1Average GO similarities for all pairs of genes connected by an edge in the coexpression network
2Value of the test statistic for the comparison between the species-specific network and the intersection network, t = (μ1-μ2)/(σd*sqrt(1/n1+1/n2)) 
where μ are the respective means and σd is the standard deviation of the difference
3Level of significance, i.e., probability that the distributions of GO similarity values for the intersection and species-specific networks are identical, 
based on Students t-distribution with degrees of freedom = n1+n2-2
Page 9 of 13
(page number not for citation purposes)



BMC Evolutionary Biology 2006, 6:70 http://www.biomedcentral.com/1471-2148/6/70
degree distributions (data not shown). Thus, some bio-
logical features of expression patterns that yield the
observed node-degree distributions in coexpression net-
works might exist; identifying such features could be
important for understanding evolution of gene expres-
sion.

With regard to the more specific aspects of this work, the
conservation of a small but substantial component of the
coexpression network indicates that, the rapid evolution
notwithstanding, the network evolves under the con-
straints of purifying selection. The biological significance
of the rapid interspecies divergence of coexpression net-
works remains an open problem [4-6,21,37,38]. It is yet
unclear how much of this divergence is neutral, biologi-
cally irrelevant noise and how much is functional diver-
gence driven by positive selection and defining, in part,
salient differences in the biology of the respective organ-

isms. Addressing these questions is an important goal for
future network studies.

Methods
Orthologous gene expression
Gene expression data, based on Affymetrix microarray
experiments, for human, and mouse are obtained from
the mammalian gene expression atlas [17]. These expres-
sion data were retrieved from the UCSC Genome Browser
[39]. Affymetrix probe identifiers (ids) were mapped to
human and mouse genomic loci using UCSC Genome
Browser and NCBI annotations as shown below:

Affymetrix probe id → GenBank accession → RefSeq
accession → NCBI Locus id

Only affymetrix probes that map to unique genomic loci
were considered for further analysis. When loci were
found to be covered by multiple probes, the probe yield-
ing the highest overall expression level was used in subse-
quent analyses.

In order to directly compare gene coexpression networks
of different species, a set of orthologous genes expressed
over a set of common tissue samples was analyzed. 9,105
orthologous human-mouse genes pairs were identified,
using reciprocal best BLASTP hits [40], along with 28
common tissues with expression data for both human and
mouse. For each gene, for each tissue, there were two rep-
licate measurements. The average of these two values was
taken to produce a 9105 × 28 matrix of real values. This
matrix was further normalized as follows. For each gene,
the median of the expression values of the gene across all
tissues was computed and the entries of the correspond-
ing matrix row were normalized with this value. These val-
ues were then log2 normalized resulting in a set of values
with median zero.

Vectors of normalized tissue-specific expression levels
were compared using a number of different measures:
Euclidean distance, Manhattan distance, Jensen-Shannon
entropy, dot-product, cosine similarity and Pearson corre-

Table 6: Correlation (r) between pairwise GO similarity and pairwise gene expression profile r-values

Network r1 n2 z3 P4

Human-specific 0.0581 43933 9.47 0
Mouse-specific 0.0730 52315 8.51 0
Intersection 0.1927 5370

1Pearson correlation coefficient
2Number of gene pairs compared
3Value of the test statistic for the comparison between the species-specific network and the intersection network, z = (zf1-zf2)/sqrt(1/(n1–3)+1/
(n2–3)) where zf is the Fisher transform, zf = 1/2*ln((1+r)/(1-r))
4Level of significance, i.e., probability that the correlations in the intersection and species-specific networks are indistinguishable, based on normal 
distribution with infinite degrees of freedom

GO biological process semantic similarity cumulative fre-quency distributionsFigure 6
GO biological process semantic similarity cumulative 
frequency distributions. Distributions [Pr(X≤x)] of GO 
term similarities are shown for all human and mouse gene 
pairs, for pairs of genes linked in the species-specific coex-
pression networks and for pairs of genes linked in the con-
served human-mouse intersection network.
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Clusters of tightly coexpressed and functionally coherent genesFigure 7
Clusters of tightly coexpressed and functionally coherent genes. Examples of clusters involved in spermatogenesis (a) 
and host immune response (b) are shown along with their tissue-specific expression patterns.
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lation coefficient. Results reported in the body of the man-
uscript are for networks constructed using the Pearson
correlation coefficient (PCC), and a discussion of results
based on other measures is included in the Supplemen-
tary Information section (see Additional file 1).

Network analysis
All-against-all gene expression profile comparisons for the
human and mouse matrices (9,105 × 28) were used to
generate species-specific coexpression networks. Network
nodes correspond to genes and gene pairs with PCC r≥0.7
were linked by and edge. Networks' topological properties
were analyzed using MATLAB®. For each network the
number of nodes and number of edges was simply
counted. The average degree <k> was calculated as the
average number of connections per node. The average
clustering coefficient <C> was calculated as the average
clustering coefficient of all nodes with at least two neigh-
bors using the formula: Ci = 2ni/ki(ki-1), where ni is the
number of observed links connecting the ki neighbors of
node i and ki(ki-1)/2 is the total number of possible links.
The average path length (<l>) was calculated as the aver-
age shortest path, or the smallest number of edges needed
to connect two nodes, between any two reachable nodes
in the network. Node degree distributions were plotted
with the degree (k) on the x-axis and the number of nodes
with this degree f(k) on the y-axis. Clustering coefficient
against node degree C(k) distributions were plotted with
the degree (k) on the x-axis and the average clustering
coefficient <C> for all nodes with degree k on the y-axis.
Species-specific networks were compared to derive a con-
served intersection network containing only edges that
connect the same orthologous genes (Figure 4a), and the
network properties of the intersection network were calcu-
lated. Controls for experimental variance were performed
by constructing two replicate-specific networks for human
and mouse respectively and then computing the species-
specific replicate intersection networks. A normalized
intersection network was calculated by comparing the two
species-specific replicate intersection networks. A control
for experimental and biological variance was conducted
by comparing mouse expression data from Novartis [17]
with and independently obtained mouse expression data
set [41].

Functional analysis
Network visualization and functional analysis was done
using Cytoscape [42]. Networks were partitioned into
tightly linked clusters of genes using MCODE [43]. Genes
in the networks were functionally categorized using their
Gene Ontology (GO) biological process annotation terms
[44]. Overrepresented GO terms were identified with
BINGO [45] by comparing the relative frequencies of GO
terms in specific clusters with the frequencies of randomly
selected GO-terms. The Hypergeometric test was used to

do this with the Benjamini and Hochberg false discovery
rate correction for multiple tests and a P-value threshold
of 0.001. Pairwise similarities between gene GO terms
were measured using the semantic similarity method,
which computes the relative distance between any two
terms along the GO-graph [23].
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