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Abstract

Background: Marine pelagic fishes exhibit rather complex patterns of genetic differentiation,
which are the result of both historical processes and present day gene flow. Comparative multi-
locus analyses based on both nuclear and mitochondrial genetic markers are probably the most
efficient and informative approach to discerning the relative role of historical events and life-history
traits in shaping genetic heterogeneity. The European sardine (Sardina pilchardus) is a small pelagic
fish with a relatively high migratory capability that is expected to show low levels of genetic
differentiation among populations. Previous genetic studies based on meristic and mitochondrial
control region haplotype frequency data supported the existence of two sardine subspecies (S. p.
pilchardus and S. p. sardina).

Results: We investigated genetic structure of sardine among nine locations in the Atlantic Ocean
and Mediterranean Sea using allelic size variation of eight specific microsatellite loci. Bayesian
clustering and assignment tests, maximum likelihood estimates of migration rates, as well as
classical genetic-variance-based methods (hierarchical AMOVA test and R¢; pairwise comparisons)
supported a single evolutionary unit for sardines. These analyses only detected weak but significant
genetic differentiation, which followed an isolation-by-distance pattern according to Mantel test.

Conclusion: We suggest that the discordant genetic structuring patterns inferred based on
mitochondrial and microsatellite data might indicate that the two different classes of molecular
markers may be reflecting different and complementary aspects of the evolutionary history of
sardine. Mitochondrial data might be reflecting past isolation of sardine populations into two
distinct groupings during Pleistocene whereas microsatellite data reveal the existence of present
day gene flow among populations, and a pattern of isolation by distance.

Background

Understanding the rather complex population structure
and dynamics of marine pelagic fishes requires discerning
the relative influence of life-history traits and historical
processes in shaping present-day population patterns (e.g.
[1-7]). Marine pelagic fishes exhibit great dispersal capa-

bility that enhances gene flow, as well as large effective
population sizes that impose limitations to genetic drift
(e.g. [8-11]). The combination of both life-history traits
acts as major homogenizing force, which hampers genetic
differentiation, and ultimately may lead to panmixia (e.g.
[2,12,13]). In contrast, other life-history traits such as
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phylopatric behavior or local larval retention and recruit-
ment act promoting isolation by distance, and local adap-
tations that eventually render low but significant levels of
genetic differentiation in marine pelagic fish populations
(e.g. [2,10,14]). Moreover, population structuring and
dynamics of marine fishes are also heavily influenced by
the physical peculiarities of the marine environment,
where connectivity, and thus dispersal, is greatly depend-
ant on ocean fronts and currents, as well as on bathyme-
try. For instance, the Agulhas current [15] seems to
promote migration of bigeye tuna across the Cape of
Good Hope from the Indian Ocean into the Atlantic
Ocean (e.g. [9,16,17]) whereas the Almeria-Oran front
[18] acts as a major barrier to gene flow between the Med-
iterranean Sea and the Atlantic Ocean for some species
such as e.g. the mackerel [2], the anchovy [3] or the sword-
fish [7]. In addition, historical factors including past
changes in the direction and sense of ocean currents,
vicariant events caused by both climatic and eustatic sea
level changes [7,9,19], as well as climate-associated peri-
odical extinctions and recolonizations [20] have also deci-
sively contributed to shaping present-day population
genetic differentiation and geographic distribution.

Comparative analyses of both nuclear and mitochondrial
genetic markers offer the best and most powerful
approach to characterizing population genetic structure
and diagnosing the evolutionary processes responsible for
genetic differentiation in marine pelagic fishes (e.g.
[6,17,21]). Therefore, genetic studies including both types
of molecular markers are largely wanting.

The European sardine (Sardina pilchardus, Walbaum
1792) is a small pelagic fish that inhabits the coasts of the
eastern North Atlantic Ocean (from the North Sea to Sen-
egal), as well as the Mediterranean Sea, the Sea of Mar-
mara, and the Black Sea [22,23]. Adults usually swim
close to the littoral zone, and display daily vertical move-
ment capacity [23,24]. Spawning occurs in open waters
and larvae remain in plankton for long periods of time
[24]. In spite of the relatively great dispersal capability of
sardines both at the larval and adult stages, tagging and
egg production data suggest that total inter annual dis-
placement may be restricted by changes in the ocean water
temperature and productivity, as well as by hydrogeo-
graphic boundaries [24-26]. Based on these life-history
traits, sardine populations in close geographic proximity
are expected to show modest genetic differentiation. That
is the case in the Aegean Sea [27], the Spanish Mediterra-
nean coast [28], and the Adriatic Sea [29]. At a larger scale,
isolation by distance, and the existence of potential past
or present-day barriers may promote higher levels of
genetic differentiation.
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Morphological studies based on gill raker counts and
head length [22,30] found enough phenotypic variation
to differentiate two subspecies, S. p. pilchardus (Eastern
Atlantic Ocean, from the North Sea to Southern Portugal)
and S. p. sardina (Mediterranean Sea and Northwest Afri-
can coast). Although no private mitochondrial control
region sequence haplotype could be found for each pro-
posed subspecies, they were suggested to be genetically
distinct based on significant pairwise haplotype frequency
differences [31]. Moreover, some subspecies pairwise
comparisons involving locations around the Atlantic
Ocean region off the Gibraltar Strait showed no signifi-
cant haplotype frequency differences, which suggested
that this area could be a contact zone of both subspecies
[31]. According to mitochondrial evidence, the well-
known Almeria-Oran oceanographic front [18] between
the Atlantic Ocean and the Mediterranean Sea is not a
phylogenetic break for sardines.

The sardine is heavily fished all over its distribution with
global catches of 1.600,000 tons per year (Fishery statis-
tics 2003,[32]). In particular, Spain and Morocco are the
countries with the largest captures (representing about the
77% of the total annual catch of sardines), and collapse of
a sardine stock was reported off the Safi coast (Morocco)
during the 1970s [33,34]. Population genetic and histori-
cal demographic analyses of sardines from Safi based on
mitochondrial sequence data showed strong genetic dif-
ferentiation of this population sample, and the signature
of an early genetic bottleneck. The genetic singularity of
the sardines at Safi (also detected with allozyme data
[35]), could have enhanced the effects of the historical
collapse of the sardine stock [31].

In this study, we analyzed allele size variation of eight pol-
ymorphic microsatellite loci in Atlantic and Mediterra-
nean sardines. We used coalescent-based approaches for
the estimation of the actual number of populations, and
employed hierarchical AMOVA and isolation by distance
tests to study population genetic differentiation. Our
main objective was to explore whether microsatellites pro-
vide concordant genetic differentiation patterns with
respect to mitochondrial control region sequence data
[31]. Comparative analysis of mitochondrial and nuclear
multilocus data were used to further understand the his-
torical and contemporary (i.e. life-history) components of
sardine population structure. In addition, we tested
whether the genetic singularity of the Safi population
sample could be confirmed with nuclear data, and
whether any signature of a genetic bottleneck was detected
in this or other population samples.
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Results

Microsatellite diversity among loci

Microsatellite polymorphism levels were high at the eight
genotyped loci with 41 to 94 alleles per locus (mean N,
value + standard deviation was 60 + 18.60), and mean
observed and expected heterozygosities of Hy = 0.738 +
0.13 and Hg = 0.748 + 0.14, respectively (Table 1). The
inbreeding coefficient varied between 0.003 at locus
SAR2F and 0.450 at locus SAR1.12 (mean Fg= 0.202 +
0.18), and only two loci (SAR2.18 and SARA2F) were in
Hardy-Weinberg (HW) equilibrium over all population
samples (Table 1). Tests for linkage disequilibrium
showed a very low (3.6%) number of significant pairwise
comparisons, which suggests independence of all exam-
ined loci.

Genetic diversity among sardine population samples and
between subspecies

The amount of genetic variability was homogeneous
among sardine population samples as indicated by the
low standard deviations associated to the estimated mean
number of alleles (N, = 29.3 + 1.4), by mean allelic rich-
ness after rarefaction (Ng = 27.3 + 0.95), and by mean
observed (Hy = 0.747 + 0.04) and expected (Hp=0.948 +
0.00) heterozygosities (Table 1). The overall proportion

Table I: Summary statistics for eight microsatellite loci and each
population sample of Sardina pilchardus*

Locus Np Ng He Ho Fis
name

SARI.5 41 22.03 0.944 0.834 0.158
SARI.12 6l 31.13 0.940 0.659 0.450
SAR2.18 4] 24.72 0.949 0.775 0.009
SAR9 48 21.56 0.930 0.847 0.090
SARI9B3 60 28.84 0.956 0.562 0.403
SARI9B5 8l 43.20 0.980 0.747 0.156
SARA2F 54 29.09 0.953 0.897 0.003
SARA3C 94 42.28 0.974 0.581 0.349
Location N Np Ng He Ho Fis
Dakhla 50 31.0 28.65 0.950 0.808 0.151
Tantan 47 30.7 28.58 0.950 0.775 0.187
Safi 50 29.4 26.55 0.948 0.742 0.219
Larache 50 29.4 27.20 0.951 0.682 0.285
Quarteira 47 27.4 25.99 0.944 0.728 0.232
Pasajes 49 30.0 28.15 0.953 0.726 0.240
Nador 47 29.2 27.08 0.946 0.726 0.234
Barcelona 45 27.5 26.45 0.944 0.692 0.269
Kavala 48 29.1 27.19 0.948 0.758 0.203

* N = population size; N = total number of alleles per locus and mean
number of alleles per population, respectively; Ng = mean allelic
richness standardized to the smallest sample size (42) using the
rarefaction method of FSTAT 2.9.3 [66] per locus and population;
mean expected (Hg) and observed (Hp) heterozygosities as well as
mean F,g = Wright's statistics per locus and population. Bold Fs values
are significant probability estimates after Bonferroni correction [69]

http://www.biomedcentral.com/1471-2148/7/197

of private alleles for the analyzed population samples was
considerably high (32.1%). The inbreeding coefficient Fig
within population samples across all loci was on average
0.224 + 0.04. Sardine population samples at four loca-
tions (Larache, Quarteira, Pasajes, and Nador) showed
significant mean Fg values, indicating significant depar-
tures from HW equilibrium due to homozygote excess
(Table 1). A non-significant bimodal test indicated no evi-
dence of unspecific locus amplification or genotyping
errors, which could have resulted in null alleles. In addi-
tion, a null allele test based on expected homozygote and
heterozygote allele size difference frequencies [36]
detected that 55% of the pairwise comparisons presented
HW disequilibrium mainly involving loci SAR193B,
SAR19B5 and SARA3C (Additional file 1). We found that
correcting for null allele frequencies [37] did not qualita-
tively affect the results (49% of the pairwise comparisons
were still significant, data not shown). This suggests that
putative null alleles had a very low effect on the average
genetic diversity of our data, and hence the complete data
set was included in further analyses.

The differences between S. p. pilchardus and S. p. sardina
(as represented by Pasajes and the remaining population
samples, respectively) genetic diversity measures were
non-significant. The ANOVA test showed no differences
for the mean number of alleles (N,) (F, ;=0.33, P=0.58),
the mean allelic richness after rarefaction (Nj) (F, ,=0.85,
P =0.39), mean observed (H) (F,,=0.08, P=0.78) and
expected (Hy) (F, ;= 3.14, P = 0.12) heterozygosities, and
the mean inbreeding coefficient (F) (F,, = 0.14, P =
0.71) between subspecies (Table 1).

Estimation of the number of possible populations and
assignment of individuals

Bayesian clustering analyses [38] detected the highest like-
lihood for the model with K = 5. However, the modal
value of AK was shown at K = 4 (Fig. 1). A Bayesian infer-
ence under a Dirichlet process prior [39,40] estimated that
the number of populations with the highest posterior
probability was K = 3 (P = 1.0).

The probability of assignment of individuals to the four or
five possible populations as inferred using Bayesian clus-
tering analyses [38] was generally low (P < 0.8). The Baye-
sian assignment test correctly assigned 20.1% of the
individuals to their own source location (22.4 % being the
proportion of individuals that could not be assigned to
any of the reference populations).

Measures of genetic differentiation

The null hypothesis of no contribution of the Stepwise
Mutation model (SMM; [41]) to genetic differentiation
(pRgr = Fgr) was rejected (P < 0.000) based on the multi-
locus data set (Table 2), suggesting that R¢rshould be pre-
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AK

o

Number of sardine populations with the highest posterior probability expressed as the AK, for each of the nine assumed sar-
dine populations (K). AK is calculated as the mean of the absolute values of the second derivative of L(K), (L" (K)) average over

five runs divided by the standard deviation of L(K) [71].

ferred over Fg for the calculation of genetic differentiation
between sardine population samples [42]. Three out of
eight loci showed significant differences in the allele per-
mutation test (Table 2). The significant global Rg; test
(0.024, P < 0.000, 95% C.I. 0.026 - 0.047) over all loci
suggested population structuring in sardines. Of 36 pair-
wise comparisons, only nine comparisons involving
Nador, Barcelona and Kavala locations revealed signifi-
cant values after correction for multiple tests (Table 3).
Interestingly, all pairwise comparisons between Pasajes
(representing S. s. pilchardus) and the rest of the sampling
sites (representing S. s. sardina) were non-significant.

Table 2: Summary statistics of the allele size permutation test
[42] for each locus and the 95% confidence for the simulated Rgy
values*

Locus name Fsr PRs7 (95% C.1.) Rst

SARIL.5 0.0013 -0.0031 (-0.008 — 0.016) -0.0013
SARI.12 0.0022 0.0260 (0.208 — 0.385) 0.0332
SAR2.18 0.0079 0.0459 (0.089 — 0.281) 0.0507
SAR9 0.001 1 -0.0033 (-0.008 — 0.014) -0.0070
SARI9B3 0.0049 0.0013 (0.312 — 0.499) 0.0083
SARI9B5 0.0003 0.0054 (0.146 — 0.327) 0.0042
SARA2F 0.0048 0.0767 (-0.039 — 0.154) 0.0785
SARA3C 0.0031 0.0145 (0.310 — 0.496) 0.0204
Multilocus 0.0032 0.0182 (0.003 — 0.010) 0.0242

* Bold Ry values indicate a significant test (Rt > pRgy) after
Bonferroni correction [69]

The hierarchical AMOVA revealed overall significant
genetic structuring of the analyzed samples (P < 0.00)
(Table 4). A two gene pool structure separating the sub-
species S. p. pilchardus (Pasajes sampling site) versus S. p.
sardina samples was not significant (P = 0.44). A possible
a priori hypothesis of geographic structuring (organized as
Atlantic Ocean versus Mediterranean Sea samples) was
also not supported by the AMOVA (P = 0.07) (Table 4).
The Atlantic Ocean versus Mediterranean Sea comparison
was repeated excluding the Pasajes population sample,
which could mask small genetic differentiation. Potential
geographic structuring between the two areas remained
not significant (Table 4). According to the Mantel test, cor-
relation between genetic distance determined as Rg; and
geographical distance (log Km) was significant (correla-
tion coefficient r = 0.51, R2=0.26, P < 0.009) (Fig. 2). The
Mantel test correlating Fg; and geographic distances was
not significant (not shown). Similarly, we found no sig-
nificant correlation when using the Bayesian assignment
D, p distances (correlation coefficient r = 0.09, R2=0.01, P
= 0.59) (Fig. 2).

The Wilcoxon test detected recent bottlenecks in two pop-
ulation samples from the Mediterranean Sea correspond-
ing to Nador and Kavala sampling sites (P two tails value
of 0.031 for both tests), under the SMM model. No trace
of genetic bottleneck was detected in Safi. Additionally,
the test was performed using the Two Phase model (TPM;
[43]) and the Infinite Allele model (IAM; [44]). In the first
case, the test rendered non-significant results in all popu-
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Table 3: Multilocus estimates for Fg (below diagonal) and Rg; (above diagonal) between sample pairs from eight microsatellite loci in

common sardine

Dakhla Tantan Safi Larache Quarteira Pasajes Nador Barcelona Kavala
Dakhla -- 0.008 0.0l6 0.006 0.012 0.022 0.040 0.045 0.083
Tantan 0.001 - 0.013 0.006 0.014 0.019 0.037 0.045 0.073
Safi 0.001 0.003 - 0.007 0.010 0.001 0.008 0.012 0.043
Larache 0.004 0.005 0.007 - 0.002 0.005 0.020 0.027 0.048
Quarteira 0.002 0.004 0.002 0.006 - 0.006 0.017 0.014 0.035
Pasajes 0.003 0.004 0.005 0.005 0.006 - 0.011 0.004 0.020
Nador 0.003 0.002 0.005 0.006 0.006 0.004 - 0.009 0.022
Barcelona 0.008 0.008 0.007 0.010 0.005 0.008 0.007 -- 0.026
Kavala 0.008 0.008 0.008 0.007 0.008 0.006 0.007 0.008 -

Bold P values are significant after Bonferroni correction for 36 multiple tests (P < 0.0014) [69]

lation samples. However Safi, Larache, Pasajes, Nador,
and Kavala rendered significant results under the IAM.

Levels and patterns of gene flow among populations

The estimates of the population size parameter (®) ranged
from 0.38 to 0.81 (0.51 + 0.13) (Table 5) and were trans-
lated to an average effective population size (N,) of
12,818 + 325 sardine individuals (assuming a microsatel-
lite mutation rate of 10-* per locus per generation [45]).
Migration rates between population samples were all of
the same order, and no preferential directionality of the
migrants was observed. The mixed model-nested ANOVA
test showed no significant variation of the number of emi-
grants and immigrants between the Atlantic Ocean and
the Mediterranean Sea (F, = 0.44, P = 0.53; F; 3= 0.12, P
= 0.74). Also the test rendered no significant variation of
the number of emigrants among population samples (F; g
= 0.00, P = 1.0). However a significant variation of immi-
grants among population samples (F, g = 3.14, P = 0.01)
was detected. A one-way ANOVA was applied to test the
null hypothesis of equal rate of immigrants between pop-
ulation samples. The analyses rendered a significant dif-

ference in the immigration rates among population
samples (F, 3 = 3.67, P = 0.001), being Barcelona-Quar-
teira the only pairwise comparison that was significantly
different (t > 1.998).

Discussion

The study of population genetic variation of marine
pelagic fish species has proven to be particularly challeng-
ing because of the biological peculiarities of these fishes
including large effective population sizes and high disper-
sal capacities, as well as because of the apparent lack of
physical barriers to gene flow in the marine realm [6,46-
48]. Mitochondrial DNA is maternally inherited, lacks
recombination, and shows relatively fast evolutionary
rates, which make this molecular marker particularly suit-
able for inferring phylogeographic patterns [49]. This
molecular marker is particularly appropriate for detecting
historical vicariant or genetic bottleneck events, and has
been very useful in describing present day phylogeogra-
phy of taxa with relatively low dispersal capacity [49].
However, mitochondrial genetic variation is less helpful
when tackling questions on present-day genetic structur-

Table 4: Analysis of molecular variance (AMOVA) of spatial genetic variation in common sardine for eight microsatellite loci *

Structure tested Source of variation F Statistics ~ Variance  Percentage of variation P
(Dakhla, Tantan, Safi, Larache, Quarteira, Pasajes, Nador, Fsr=0.005 0.00
Barcelona, Kavala)
(Dakhla, Tantan, Safi, Larache, Quarteira, Nador, Barcelona, =~ Among groups Fer=10.00 0.002 0.05 0.44
Kavala) vs. (Pasajes)

Within groups Fsc=0.005 0.020 0.54 0.00

Within populations Fsr=0.005 3.660 99.51 0.00
(Dakhla, Tantan, Safi, Larache, Quarteira, Pasajes) vs. (Nador, ~Among groups Fer=0.006 0.005 0.13 0.07
Barcelona, Kavala)

Within groups Fsc=0.005 0.017 0.47 0.00

Within populations Fsr=10.001 3.657 99.41 0.00
(Dakhla, Tantan, Safi, Larache, Quarteira) vs. (Nador, Among groups Fer=0.001 0.006 0.16 0.05
Barcelona, Kavala)

Within groups Fsc=0.005 0.017 0.46 0.00

Within populations Fsr=0.006 3.653 99.38 0.00
* Bold P numbers are significant values.
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Figure 2

Genetic isolation by distance of all S. pilchardus population samples inferred from multilocus estimates of Rs (solid circles) and
D, (solid squares) genetic distances versus geographical distance (Mantel test). Correlation coefficients: for Rgrr = 0.51, R2=
0.26, P < 0.009; for D g r = 0.09, R2Z= 0.01, P = 0.59.

ing of taxa with large population sizes and high levels of  drial data should provide insights not achieved by each
gene flow within their distribution such as marine pelagic  type of data separately, and should help in disentangling
fishes (e.g. [6,21]). Microsatellites are nuclear markers  historical versus ecological factors involved in shaping
with higher mutation rates [50] that have proved to be  contemporary population genetic structure of marine
more efficient and informative for detecting fine-scale  pelagic fishes [21].

population structure in marine pelagic fishes [17,21,51].

Overall, comparative analyses of nuclear and mitochon-

Table 5: Maximum likelihood estimates of the population size, © (O = 4 x effective population size, N, X mutation rate, 1 per
generation and site) and the scaled migration rate, M (M = immigration rate per generation m/p) for all population samples of Sardina
pilchardus. © values are displayed on the diagonal. All values are within the bounds of 95% interval of confidence

Migration rate (M)?

Location Dakhla Tantan Safi Larache Quarteira Pasajes Nador Barcelona Kavala Nb

Dakhla 0.62 8.02 9.60 7.76 6.51 11.88 13.92 9.88 7.62 15500
Tantan 8.77 0.81 13.74 9.46 8.54 10.79 11.38 5.85 8.85 20346
Safi 11.40 11.23 0.48 13.85 14.67 13.22 10.52 5.76 9.10 12012
Larache 8.70 10.46 15.60 0.50 13.33 10.75 10.87 6.03 7.73 12550
Quarteira 4.35 7.81 9.81 8.04 0.42 18.24 17.72 14.35 13.84 10568
Pasajes 11.88 12.51 12.58 9.35 16.52 0.42 14.92 8.60 11.66 10472
Nador 11.60 8.54 9.60 8.16 16.22 16.78 0.49 741 12.22 12280
Barcelona 10.34 3.90 9.00 10.70 20.47 10.58 10.61 0.38 8.60 9428
Kavala 9.52 6.57 7.79 5.21 11.86 10.60 12.88 6.35 0.49 12208

aRows and columns are donor and recipient populations, respectively. b N, was calculated assuming p = 10-# per locus and per generation
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Population genetic structure in sardines

The eight species-specific microsatellite loci used in this
study showed high levels of polymorphism [52] and no
significant linkage disequilibrium. All but two of the ana-
lyzed loci showed departures from HW equilibrium
expectations due to homozygote excess. The null allele
test [36] indicated that these departures could be due to
the presence of null alleles, which seem to be rather com-
mon in large marine fish populations [53]. Nevertheless,
since adjusting frequencies to take into account null alle-
les did not affect inbreeding coefficient estimates, all loci
were used in the analyses.

Overall R¢ detected weak but significant genetic structur-
ing among sardine population samples. Pairwise esti-
mates of Rg;varied between 0.001 and 0.083, and were of
the same level of magnitude to those reported for other
marine fishes [53-56]. These relatively low R, values
could be attributed to high levels of size homoplasy, as
expected when using polymorphic microsatellites with
high mutation rates in species with large effective popula-
tion sizes [53,57,58]. However, the observed relatively
high number (32.1%) of private alleles, and their even
distribution among population samples indicate that
allele sharing between sardines at the different locations is
rather limited and thus, that the effects of size homoplasy
are minimal. Alternatively, it is more likely that the high
levels of locus polymorphism are the ones responsible of
only detecting weak genetic structuring [53,58].

The difficulty in detecting genetic structuring is further
evidenced by Bayesian clustering and assignment tests, as
well as by hierarchical AMOVA and migration rate analy-
ses. Although the different assayed Bayesian clustering
analyses agree in rejecting the null hypothesis of pan-
mixia, they failed to predict the exact number of inferred
populations, which ranges from 3 to 5. Furthermore,
assignment of individuals to the inferred populations was
poor regardless of the method used. In addition, none of
the tested a priori hypotheses of genetic structuring ren-
dered significant results in the AMOVA. Maximum likeli-
hood estimates of migration rates showed that gene flow
among population samples is high and even. All these
results together support that sardine population samples
are acting as a single significant evolutionary unit. The
Mantel test detected positive and significant correlation
between genetic differentiation (only when using R¢;) and
geographical distance suggesting that a model of isolation
by distance could explain the subtle genetic structuring of
sardines within the evolutionary unit. Isolation by dis-
tance seems to be a rather common pattern in small-
medium pelagic marine fishes (e.g. [2,19,51]). It is impor-
tant to note here that temporal replicates at the studied
locations are needed to test whether the observed popula-
tion genetic patterns are stable over time.

http://www.biomedcentral.com/1471-2148/7/197

Relative effects of life-history traits and historical factors
on genetic differentiation in sardines

All significant Ry, pairwise comparisons involved Mediter-
ranean Sea versus Central Atlantic Ocean population sam-
ples. Theses results could reflect the existence of a
phylogeographic discontinuity between the Atlantic
Ocean and Mediterranean Sea, around the Gibraltar Strait
and the Almeria-Oran front, as it has been postulated pre-
viously for different marine pelagic fish species (e.g.
[2,3,7]). However, this hypothesis was rejected for sar-
dines at the nuclear level because the hierarchical AMOVA
failed to detect significant geographical structuring
between the Atlantic and the Mediterranean sardine pop-
ulation samples, and high and even migration rates were
observed between both basins. These results are congru-
ent with those derived from population genetic analyses
based on mitochondrial control region sequence data that
also failed to find a barrier to gene flow for sardines at the
Atlantic Ocean and the Mediterranean Sea [31]. The
inferred genetic pattern for sardine is in agreement with
the present-day gene flow exhibited by other marine
pelagic fish species such as e.g. Scomber japonicus [2] or
Thunnus thynnus [7] through the Atlantic-Mediterranean
transition. The fact that the Gibraltar Strait and the Alme-
ria-Oran front may or not act as barrier to gene flow for
different marine pelagic species has been attributed to dif-
ferences in life-history traits (e.g. dispersal capacity [2])
and for other marine fish species due to the existence of
distinct past demographical events (e.g. bottlenecks [7]).
More comparative studies on the biology and population
dynamics of marine pelagic fishes distributed at both
sides of the Gibraltar Strait, as well as additional popula-
tion genetic analyses including temporal series are needed
to further understand the factors that promote or prevent
gene flow of these species across the Atlantic-Mediterra-
nean transition.

The existence of two different subspecies (S. p. pilchardus
and S. p. sardina) as previously reported based on meristic
studies [22,30], and mitochondrial control region
sequence haplotypes frequency differences [31] was not
supported by population genetic analyses (Rg pairwise
comparisons, AMOVA test, and estimations of migration
rates) based on microsatellite data. However, these results
need to be taken with caution since one of the subspecies
(S. p. pilchardus) was only represented by a single location
(Pasajes). A more thorough sampling of sardine at North
Atlantic locations would be mandatory to further test the
validity of the two subspecies using microsatellite allele
frequency data.

The discordant genetic structuring patterns inferred based
on mitochondrial and microsatellite data could indicate
that the two different classes of molecular markers may be
reflecting different and complementary aspects of the evo-
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lutionary history of sardine. The significant genetic struc-
turing evidenced by mitochondrial data might be
reflecting past isolation of sardine populations into two
distinct groupings during Pleistocene [31]. Afterwards,
sardine populations expanded and secondary contact was
re-established around the Gibraltar Strait. Microsatellite
data reveal the existence of a present day single evolution-
ary unit that shows weak genetic structuring due to isola-
tion by distance. At micro geographical scale, genetic drift
is supposed to overcome gene flow as geographical dis-
tance increases [59] because of the effect of different life-
history traits such as e.g. larval retention, homing behav-
ior, or reduced dispersal capacity, that need to be further
studied in sardines.

Periodic population extinctions and recolonizations at
the regional level are common in sardines and other clu-
peids and may be responsible for the shallow coalescence
of mitochondrial genealogies [20]. In this regard, mito-
chondrial and nuclear markers exhibit different perform-
ance in detecting instances of genetic bottlenecks.
Mitochondrial control region sequence data support the
existence of a past (Pleistocene) genetic bottleneck of sar-
dines in Safi that is only detected at the nuclear level using
the IAM. In addition, analyses of microsatellite data under
both the SMM and IAM revealed potential genetic bottle-
necks at Kavala and Nador, which would be too recent to
be detected by mitochondrial data.

Different types of genetic markers occasionally may
render contrasting population genetic structure patterns
for a given species [21,60]. In some instances, discordance
among marker classes may result from methodological
biases, which when appropriately corrected allow obtain-
ing reconciled patterns [21,60]. In other cases, conflicting
results in describing population genetic structure may
arise from the differential effects of genetic drift and muta-
tion on a marker class [21]. In such cases, discordance
could be interpreted as a source of alternative and comple-
mentary information useful for investigating how evolu-
tionary processes at different time scales shape patterns of
genetic heterogeneity. In this study, the comparison of
two classes of molecular markers with different mutation
rates and modes of inheritance has allowed us to gain
complementary and broader insights on sardine historical
and contemporary population genetics and dynamics,
which ultimately could serve to improve fishery manage-
ment of this commercially important marine pelagic fish
species.

Conclusion

The discordant genetic structuring patterns inferred based
on mitochondrial and microsatellite data appear to be
pointing to complementary aspects of the evolutionary
history of sardine. Past isolation of sardine populations

http://www.biomedcentral.com/1471-2148/7/197

into two distinct groupings is supported by mitochondrial
data whereas current gene flow within a single evolution-
ary unit and a weak genetic structuring due to isolation by
distance are evidenced by microsatellite data. This study
shows that only the combination of molecular markers
with different modes of inheritance and mutation rates is
able to disentangle the complex patterns of population
structure and dynamics of a small marine pelagic fish such
as the sardine.

Methods

Sample collection

We extended the sample collection of a previous study
[61] from about 25-30 to nearly 50 mature sardine spec-
imens per landing port. Overall, population genetic anal-
yses included 433 individuals from six localities (Dakhla,
Tantan, Safi, Larache, Quarteira and Pasajes) in the Atlan-
tic Ocean (N = 293) and three localities (Nador, Barcelona
and Kavala) in the Mediterranean Sea (N = 140) (Fig. 3).
The sardines from the Pasajes location were assigned to
the subspecies S. p. pilchardus based on distribution area,
and mitochondrial haplotypes frequencies. The sardines
from the remaining locations were assigned to the subspe-
cies S. p. sardina based on the same criteria.

Microsatellite genotyping

Genomic DNA of newly analyzed specimens was
extracted from fresh muscle following standard phenol-
chloroform procedures as previously reported [61]. Spe-
cific polymorphic microsatellites (SAR1.5, SARI1.12,
SAR2.18, SAR9, SARI19B3, SARI19B5, SARA2F and
SARA3C) of S. pilchardus were PCR amplified following
optimized reaction conditions [62]. Forward primers were
labeled with fluorescent dye (Invitrogen), and PCR ampli-
fied products were genotyped on an ABI 3730 automated
sequencer (Applied Biosystems). Data collection and siz-
ing of alleles were carried out using GeneMapper v3.7
software (Applied Biosystems). Approximately 10% of the
samples were re-run to assess repeatability in scoring.

Statistical analyses

Microsatellite genetic diversity was quantified per locus
and per sampling site as the observed and expected heter-
ozygosities [63], number of alleles (N,), and number of
alleles standardized to those of the population sample
with the smallest size (Ng) [64], using both GENETIX 4.02
[65] and FSTAT 2.9.3 [66] (Additional file 2). Deviations
from HW equilibrium (by estimating the inbreeding coef-
ficient, F|) and linkage disequilibrium for each locus and
sardine sampling site were assessed using GENEPOP
version3.3 [67]. Significance of both analyses was tested
with a Markov chain Monte Carlo (MCMC) that was run
for 1000 batches of 2000 iterations each, with the first 500
iterations discarded before sampling [68]. P values from
multiple comparisons were corrected using a Bonferroni
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Figure 3
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¢ A

Locations of sardine samples collected in the Atlantic Ocean and Mediterranean Sea (red circles). The yellow colored area
shows the distribution of S. pilchardus. Details for sample sizes are listed in Table I.

correction [69]. Significant differences of genetic diversity
measures between S. pilchardus subspecies were tested
using a one-way ANOVA test.

A bimodal test for each locus and sampling site was per-
formed to detect possible genotyping errors due to prefer-
ential amplification of one of the two alleles, misreading
of bands or transcription errors, using the program
DROPOUT [70]. Additionally, MICRO-CHECKER v2.23
[36], was used to explore the existence of null alleles, and
to evaluate their impact on the estimation of genetic dif-
ferentiation.

Genetic and spatial variation between populations

Several alternative methods were used to determine sar-
dine population genetic structure. The program STRUC-
TURE 2.0 [38] uses a model-based Bayesian clustering
approach to determine the number of populations (K)
with the highest posterior probability and to estimate
admixture proportions. Simulations were conducted
using an admixture model and correlated allele frequen-

cies between populations (MCMC consisted of 5 x 105
burn-in iterations followed by 2 x 10¢ sampled itera-
tions). Additionally, the inference of the best value of K
was also based on the modal value of AK [71]. The range
of possible tested Ks was from one to nine, and five trial
runs of STRUCTURE were carried out for each putative K.

The program STRUCTURAMA [72] infers population
genetic structure from genetic data by allowing the
number of populations to be a random variable that fol-
lows a Dirichlet process prior [39,40]. We run 1 x 106
MCMC cycles, and we let o (the prior mean of the number
of populations) be a random variable. The first 1 x 105
cycles were discarded as burn-in.

We finally applied a Bayesian assignment test as imple-
mented in the program GENECLASS 2.0 [73], which pro-
vides the probability for each individual of belonging to
the reference population. The computation followed the
partial exclusion method [74], and simulation consisted
of 10,000 individuals.
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The relative contributions of mutation and genetic drift to
genetic differentiation of sardine populations could be
determined by comparing the variance in allelic identity
(Fsr IAM [44]) and allelic size (Rg;, SMM [41]). The pro-
gram SPAGEDI 1.1 [75] generates a simulated distribu-
tion of Rgyvalues (pRg;) for testing the null hypothesis of
no contribution of SSM to genetic differentiation (pRg; =
Fgr), and the alternative hypothesis that genetic differenti-
ation is caused mainly by SMM-like mutation (pRg;> Fgr,)
[42]. The test rendered a significant result (P < 0.000), and
thus, further analyses of genetic differentiation between
samples were mostly based on Rg pairwise comparisons,
as estimated by the program RST-CALC [76].

To determine the amount of genetic variability parti-
tioned within and among populations, an analysis of
molecular variance (AMOVA) [77] was performed with
ARLEQUIN v3.0 [78]. For all calculations, significance
was assessed by 20,000 permutations, and reported P-val-
ues were Bonferroni adjusted [69]. The Mantel test was
used to test correlation between geographical and genetic
distances as implemented in GENEPOP version3.3 [67].
The logarithm of geographical distance in kilometers was
regressed against either R¢as estimated in RST-CALC [76]
or genetic distances based on Bayesian assignment values
(Dyg) as computed in SPASSIGN [79].

To detect possible genetic bottlenecks (i.e. significant het-
erozygote excess) in any of the analyzed population sam-
ples, we assumed the SMM, 1AM, and TPM, and applied
the Wilcoxon sign-rank test as implemented in the soft-
ware BOTTLENECK [80].

Gene flow among sardine populations

The program MIGRATE v 2.1.0 [81] was used to infer the
population size parameter ® (i.e. 4 N,u, were N, is the
effective population size and u is the mutation rate per
site) and the migration rate, M (M = m/x, were m is the
immigration rate per generation) among sardine popula-
tion samples based on the maximum likelihood method
[82]. A subset of 20 individuals per population sample
was analyzed due to computational constraints. The anal-
yses were carried under the SMM. Fg; estimates and a
UPGMA tree were used as starting parameters for the esti-
mation of ® and M. The MCMC run consisted of ten short
and two long chains with 5,000 and 50,000 recorded
genealogies respectively, after discarding the first 100,000
genealogies (burn-in). One of every 20 and 200 recon-
structed genealogies was sampled for the short and long
chains, respectively. To test the null hypothesis that the
number of emigrants/ immigrants between the Atlantic
Ocean and Mediterranean Sea has equal rates, a nested
mixed-model ANOVA was performed using two variables
(basin and location of origin), with emigrant and immi-
grant rates as repeated measurements.
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