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Abstract

Background: The duplication-degeneration-complementation (DDC) model has been proposed
as an explanation for the unexpectedly high retention of duplicate genes. The hypothesis proposes
that, following gene duplication, the two gene copies degenerate to perform complementary
functions that jointly match that of the single ancestral gene, a process also known as
subfunctionalization. We distinguish between subfunctionalization at the regulatory level and at the
product level (e.g within temporal or spatial expression domains).

Results: In contrast to what is expected under the DDC model, we use in silico modeling to show
that regulatory subfunctionalization is expected to peak and then decrease significantly. At the same
time, neofunctionalization (recruitment of novel interactions) increases monotonically, eventually
affecting the regulatory elements of the majority of genes. Furthermore, since this process occurs
under conditions of stabilizing selection, there is no need to invoke positive selection. At the
product level, the frequency of subfunctionalization is no higher than would be expected by chance,
a finding that was corroborated using yeast microarray time-course data. We also find that product
subfunctionalization is not necessarily caused by regulatory subfunctionalization.

Conclusion: Our results suggest a more complex picture of post-duplication evolution in which
subfunctionalization plays only a partial role in conjunction with redundancy and
neofunctionalization. We argue that this behavior is a consequence of the high evolutionary
plasticity in gene networks.

in the context of cis-regulatory elements, the model

Background

The duplication-degeneration-complementation (DDC)
model [1,2] has been proposed to explain the unexpect-
edly high retention of duplicate genes [3-5]. Briefly, the
hypothesis proposes that, following gene duplication,
redundant functions will degenerate at random from the
daughter copies until their joint function matches that of
the parent gene. The force for retention arises from the
need to maintain ancestral functionality (and therefore
requires only stabilizing selection). Originally proposed

assumes regulatory elements with unique functions (e.g.
spatial expression domains). In this context, each ances-
tral regulatory element is retained in at least one of the
two daughter genes (Figure 1a). If each gene retains at
least one ancestral element, while all redundant elements
degenerate, we reach a state known as subfunctionaliza-
tion. Perhaps the best studied example of this phenome-
non involves the paralogous genes Hoxal and Hoxb1 in
mouse development. Hoxal is highly sensitive to retinoic
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The duplication-degeneration-complementation (DDC) model. (a) A gene with four regulatory elements (black
boxes), each controlling independent functions such as expression domains, is duplicated. Random null mutations in the regula-
tory elements (open boxes) through degeneration lead to subfunctionalization, where the regulatory elements complement
each other to achieve the full ancestral repertoire. (b) Temporal subfunctionalization, illustrated here by the temporal expres-
sion patterns of a hypothetical ancestor and two evolved duplicates. The expression level of the duplicates has evolved such
that the ancestral expression pattern is maintained in complementary temporal domains via the combined expression of the

two duplicates.

acid, and is important for segment identity in rhom-
bomere 5 in the hindbrain. Hoxb1 is important for rhom-
bomere 4 identity, and and is activated by Hoxal, though
its expression is maintained by autoregulation [6]. Tvrdik
and Capecchi [7] reconstructed a hypothetical ancestral
form of this system composed only of Hoxal with a Hoxb1
autoregulatory element introduced into its promoter
region, and found no marked disparity with wild type.
These results suggest that autoregulation and high retinoic
acid sensitivity have degenerated in Hoxal and Hoxbl
respectively, leading to the current state of subfunctional-
ization. This example illustrates how spatial subfunction-
alization (complementary expression in rhombomeres 4
and 5) is directly reflected by cis-regulatory subfunctional-
ization.

Subfunctionalization may also be observed in the tempo-
ral expression domain (Figure 1b). Following a gene
duplication event, the temporal expression pattern of the
ancestral singleton gene is maintained by the duplicate
daughter genes. However, degeneration of the temporal
expression pattern can lead to each duplicate being
expressed in distinct, though complementary, time
domains. Clearly, temporal subfunctionalization can
occur independently, or together with, spatial subfunc-
tionalization. Indeed, reported examples of temporal sub-
functionalization [8-10] show both types coexisting.

Several authors have investigated the prevalence of sub-
functionalization using genomic data. Here, it is often
assumed that cis-regulatory binding motifs (or protein-
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DNA interactions found via chromatin immunoprecipita-
tion) are equivalent to the independent regulatory ele-
ments of the DDC model. This approach was taken by
Papp et al. [11], who examined the evidence for subfunc-
tionalization in duplicated yeast genes and found that the
number of shared regulatory motifs has decreased over
time, while the total number of motifs has remained
unchanged, suggesting an important additional role for
neofunctionalization (i.e. the recruitment of novel inter-
actions). Evangelisti and Wagner [12] reached similar
conclusions. Adopting a similar approach, He and Zhang
[13] analyzed both protein-protein interactions in yeast
and spatial gene expression in human tissue, and sug-
gested a new model termed subneofunctionalization.
Under subneofunctionalization, gene duplication is fol-
lowed by rapid subfunctionalization together with sub-
stantial and prolonged neofunctionalization.

Here, we adopt a modeling approach that integrates both
network complexity and population-level dynamics to
investigate the importance of subfunctionalization fol-
lowing gene duplication. The model is used to examine
apparent discrepancies between existing genomic studies
and the DDC model. In general terms, the relationship
between subfunctionalization at the regulatory level (e.g.
in cis-regulatory motifs) and at the level of the product
(e.g. in temporal expression domains), remains unclear
(with the exception of a some isolated examples, such as
the mouse Hox1 genes mentioned above). This issue is
also investigated using the model. The distinction we
make between regulatory level and product level subfunc-
tionalization should not be confused with genotype and
phenotype respectively, since both levels (regulatory and
product) involve genotypic (though not necessarily phe-
notypic) differences.

Broadly following the modeling framework of Siegal and
Bergman [14], we consider a finite population of M indi-
viduals, each modeled as a gene regulatory network. It is
assumed that the population has recently undergone a
whole genome duplication, increasing the number of
genes in each individual from N to 2N, while maintaining
the same number (N) of protein products as before the
duplication. The genes i and i + N are paralogous. Each
genotype is represented by a 2N x N interaction matrix W,
the elements W;; € {-1, 0, +1} represent the positive(+1),
zero(0) or negative(-1) influence of product j (from genes
jandj + 1) on gene i.

At the network (phenotype) level, we adopt a Boolean
model of gene regulation [15-17] which, though simple,
captures essential features such as the threshold response
[18], and additive regulation [19]. We do not assume each
input can independently regulate its target, as in the DDC
model, though such a scheme can indeed be represented.

http://www.biomedcentral.com/1471-2148/7/213

The phenotype corresponds to the temporal output s(t) of
a dynamical system (see Methods - Network Dynamics)
produced by the genotype (the matrix W), using initial
conditions s(0) that are assigned randomly a priori, and
are kept constant throughout each simulation.

All M individuals in the initial population are identical
and are copies of a randomly generated founder individ-
ual. To create the founder, we generate a N x N matrix Q,
with nonzero elements assigned at random with probabil-
ity ¢; (the initial connectivity, or fraction of nonzero ele-
ments in the matrix W.). Each nonzero element is then
assigned the value +1 or -1 with equal probability. The ele-
ments of Q are duplicated rowwise in the 2N x N founder
matrix W, such that W; ;= W, ;= Q; ;. Subsequent gener-
ations are produced by cloning random individuals from
the population (subject to mutation and selection). Here,
the process is continued for 10000 generations.

Reproduction assumes mutation (in the form of changes
to the cloned matrix W) at a rate 1. We make a distinction
between a link deletion (where W;; changes from -1 — 0,
or +1 — 0) and a link addition (W;; changes from 0 — -1,
or 0 > +1, each with equal probability). Thus defined,
mutation represents a broad range of mutation classes
encompassing changes in cis-regulatory elements [20],
alternative splicing regulation [21], or trans-acting factors
[22] leading to link deletions or additions. Focusing on
the regulatory level for mutations in this way is justified
by recent work recognizing the overwhelming relative
importance of regulatory divergence in paralog gene evo-
lution [23]. We introduce a global deletion bias parameter
b € (-1, 1), which defines a relative increase (if positive),
or decrease (if negative) in probability for deletions (see
Methods - Mutation). Deletion bias is chosen according
to its observed effect on ¢, the connectivity in the final
generation (see Methods - Connectivity and deletion
bias). The DDC model assumes that overall connectivity
decreases as a consequence of the elimination of redun-
dant interactions. The lower bound for connectivity under
the hypothesis is ¢;= ¢;/2, since any further loss would start
to eliminate non-redundant interactions. We therefore
define the relative change in connectivity, D = ¢/c;- 1, and
examine two cases: D = 0 (¢y= ¢; no change in connectiv-
ity), and D =-0.5 (¢;= ¢;/2, elimination of half the interac-
tions, as expected under the DDC model).

We adopt a regime of strict stabilizing selection such that
the phenotype, i.e. the temporal pattern of gene expres-
sion [s(0),...,s(tp)], remains identical through sucessive
generations. This assumption concides with the neutrality
premise of the DDC model, in that the combined behav-
ior of each duplicated pair will be the same as that of the
single ancestral gene. It also means there is no need to
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invoke positive selection. Unless otherwise stated, we
assume M = 500, N =10 and = 0.1 [14].

Throughout each simulation we measure connectivity,
regulatory and temporal subfunctionalization and neo-
functionalization (see Methods - Measures for paralogous
genes). Briefly, regulatory subfunctionalization is consid-
ered to exist if some ancestral inputs (the inputs to gene i
correspond to the ith row of matrix W) are lost in each of
the paralogs, but together they still complement each
other to represent the original input set. Neofunctionali-
zation exists if new inputs evolve in either of the evolved
paralogs. We also measure the number of shared links
between two paralogs (H;, for ancestral gene i). Paralogs
are considered to be temporally subfunctionalized (as the
examples in figures 1 and 2 show) if one is ON and the
other is OFF at a particular timepoint, and the reverse is
true (OFF and ON respectively) at some other timepoint.
We forsake spatial modeling and use only temporal mod-
eling, focusing therefore on temporal subfunctionaliza-
tion at the product level. Thus construed, the model
allows us, for example, to relate regulatory changes (such
as regulatory subfunctionalization and neofunctionaliza-
tion) to product-level (in this case, temporal) subfunc-
tionalization. Figure 2 shows a simple example of how
regulatory changes (phenotypically neutral at the protein
level) can lead through regulatory subfunctionalization,
subneofunctionalization to neofunctionalization, while
inducing temporal subfunctionalization at the product
level.

Our in silico results show that, in contrast to what is
expected under the DDC model, regulatory subfunction-
alization peaks and then decreases significantly, while
neofunctionalization increases monotonically, eventually
affecting the majority of genes. These results are in agree-
ment with existing bioinformatics studies [11-13]. We
argue that this behavior is a consequence of the high evo-
lutionary plasticity in gene networks [24,25]. Focusing on
temporal subfunctionalization, we found it occurring at
relatively modest frequencies, with the median not usu-
ally exceeding 20% of duplicate pairs across conditions.
We compared these frequencies to a null ("uncon-
strained") model with no stabilizing selection (i.e. any
mutation is accepted), giving us a distribution for the fre-
quency of temporal subfunctionalization that would be
expected by chance. From the comparison, we find that
the actual frequencies observed are no higher than those
of the null model, again contrary to expectations under
the DDC model. We corroborated this finding using yeast
microarray time-course data by showing that even the old-
est paralogs exhibit similar frequencies of temporal sub-
functionalization to what would be expected by chance.
Lastly, using the model, we show that regulatory subfunc-
tionalization does not necessarily cause subfunctionaliza-
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tion at the product level. We find that behavior analogous
to genetic dominance in duplicate gene pairs creates the
potential for escaping local minima in network space,
thus dramatically simplifying network structure.

Results and Discussion

Regulatory subfunctionalization and neofunctionalization
A previous study of cis-regulatory elements in yeast [11],
has shown that, although the total number of regulatory
motifs has remained unchanged over time (correspond-
ing to relative change in connectivity, D = 0), the number
of shared regulatory motifs in paralogous genes has
decreased. Figure 3(a) shows how the model reproduces
this behavior, observable in the progression of H; (the
number of shared links between two paralogs, see Meth-
ods - Measures for paralogous genes) for a particular set
of conditions (initial connectivity, ¢;= 0.45, D = 0). Across
all conditions, we find that H; declines significantly
(Mann-Whitney, P < 10-1¢, comparing initial to final gen-
eration for all cases, i.e. ¢;= 0.3, 0.45, 0.6 and D = 0, -0.5)
in agreement with previous observations [11,12].

Clearly, if H; declines and connectivity remains the same
(D = 0), then neofunctionalization must be playing an
important role. Indeed, in all cases analyzed (including D
=-0.5), median neofunctionalization increases monoton-
ically, approaching a relatively high steady state value, as
the example in figure 3(c) shows. We find that the most
important factor determining final (steady state) neofunc-
tionalization appears to be the deletion bias (Supp. Figure
2 in Additional file 1), with greater deletion bias leading
to less neofunctionalization. This makes intuitive sense
since, by definition, new links are less likely to be created
when the deletion bias is higher.

Less intuitive is the progression of regulatory subfunction-
alization. Figure 3(b) shows its progress over time for a
particular set of conditions (though the results are quali-
tatively equivalent across all conditions). As predicted by
the DDC model, the proportion of paralogous genes in a
state of subfunctionalization increases following the
genome duplication (at t = 0), as degeneration of redun-
dant inputs occurs. Under the DDC model, we expect to
observe a monotonical increase in subfunctionalization,
reaching some stable peak. This should be particularly
true of the case where mean connectivity declines (D = -
0.5), since the theory predicts the degeneration of redun-
dant links. However, in contradiction to the DDC model,
the level of subfunctionalization peaks, and then falls to a
final level significantly below this peak (Mann-Whitney
comparing peak and final distributions, P < 10-1¢ in all
cases). Furthermore, we find that final subfunctionaliza-
tion is reduced as we decrease D (Supp. Figure 3 in Addi-
tional file 1), an unexpected result since under the DDC
model, we actually expect greater subfunctionalization as
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A simple example of network evolution. (a) At the regulatory level, gene 4 receives inputs from genes | and 2 in the
ancestral state (inputs to genes |, 2 and 3 not shown). A hypothetical protein expression pattern for this system is also shown
(b). Following duplication and degeneration, regulatory subfunctionalization arises for gene 4 (dotted interactions are lost). A
new input from gene 3 means we additionally have neofunctionalization, i.e., subneofunctionalization. After further degenera-
tion (a, right) regulatory subfunctionalization is lost, while neofunctionalization is retained. (c) All three post-duplication states
(sub-, subneo-, neo-functionalization) will result in temporal subfunctionalization for gene 4, since in the second and third
timesteps only the first copy (u,) is ON, whereas in the fifth and sixth timesteps only the second copy (v,) is ON.
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Evolution of measures over time for a particular set of conditions (c = 0.45, D = 0). (a) Number of shared regulatory
elements (H) between paralogous cis-regulatory elements declines over time. (b) Regulatory subfunctionalization (see Methods
— Measures for paralogous genes) as a proportion of the number of eligible genes (defined as the number of rows with two or
more nonzero entries), since we need to adjust for genes with N < 2, which cannot be subfunctionalized. (c) Neofunctionaliza-
tion increases monotonically, then stabilizes. (d) Temporal subfunctionalization as a proportion of the number of genes. Graphs
show median values and 95% confidence interval (errorbars) over 200 independent runs.
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we decrease D. Note that under default conditions, we
observe a certain amount of redundancy in the post-dupli-
cation network (see Methods - Connectivity and deletion
bias). Generally speaking, a redundant interaction is any
interaction that can be removed from the network with no
phenotypic effect, i.e. without causing changes in the tem-
poral expression pattern [s(0),...,s(tp)]; however, as the
example in figure 4 shows, the phenotypic effect of
removing a link may depend on how it is removed. If
there are redundant interactions in the founder network,
such interactions might be deleted in both duplicates dur-
ing evolution with no phenotypic effect. In these circum-
stances, we would not recognize the gene as regulatory
subfunctionalized according to the definition, in spite of
the possibility that the remaining non-redundant interac-
tions may in fact be subfunctionalized. In other words, if
the founder network, prior to duplication, had consisted
solely of non-redundant interactions, regulatory subfunc-
tionalization would have been recognized. To minimize

Temporal expression

Gene 1

Gene 2
Gene 3

Gene 4
time
@
redundant
inputs @/
duplication
Ancestral
Figure 4
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Degeneration
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this unrecognized subfunctionalization, we repeated the
simulations using parsimonious founder networks (see
Methods - Parsimonious founder networks), in which no
single interaction can be deleted without phenotypic
change. We furthermore set b = 1 (i.e. only deletions will
occur during evolution) to eliminate neofunctionaliza-
tion. Even in these extreme conditions, we find a signifi-
cant decline in regulatory subfunctionalization in two out
of three cases (Mann-Whitney, ¢;= 0.3:P = 0.988, ¢;= 0.45:
P =37 x 107 ¢;=0.6: P =1.2 x 10°5). Since there is no
neofunctionalization in this case, the result is somewhat
surprising. A closer analysis shows however, that some
parsimonious founder networks do indeed contain redun-
dant interactions, albeit such that they can only be
removed by two or more simultaneous deletions. After
duplication, however, it may be possible for these interac-
tions to degenerate in single steps due to a "dominance"
effect, as shown in figure 4.

First copy

Second copy

2

OIOIO @@/@

Final state

An example of the dominance effect following duplication. The inset (top left) gives an example time course for the
protein products of the four genes. Regulation of gene 4 in the ancestral network includes two redundant interactions from
genes 2 and 3, which cannot be removed in succession without perturbing the dynamics (since genes 2 and 3 have identical
dynamics, their contributions cancel out). However, following duplication, these interactions can be lost successively (albeit in
order, with the input from gene 3 degenerating first), since any dynamic perturbations will be masked by the intact second
copy. Since the first copy now produces the correct dynamics, the degeneration process can be repeated in the second copy.
Further degeneration might lead to a final state of complementation between the two copies.
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Although we enforce stabilizing selection at the level of
the expression pattern [s(0),...,s(¢p)], it could be argued
that positive selection is not completely absent from the
model, due to pressure on connectivity through the dele-
tion bias parameter, b. This may be particularly true when
D =-0.5, since here there is pressure to reduce the number
of links in the network. However, we have just shown that
the main results (the behavior over time of regulatory sub-
functionalization and neofunctionalization) are qualita-
tively equivalent for both D = 0 and D = -0.5. It could
further be argued that merely by having a nonzero dele-
tion bias b (recall that b is chosen to obtain D =0or D = -
0.5 as outcomes, see Methods -Connectivity and deletion
bias) creates some degree of positive selection, since there
is, by definition, a bias in choosing link deletions com-
pared to link additions. However, in the particular case of
¢;= 0.6, both positive and negative values for deletion bias
b were used (b was -0.173 and 0.497 for D =0and D = -
0.5 respectively), suggesting that our main results also
hold across positive and negative deletion bias values.

Temporal subfunctionalization

Figure 3(d) shows an example for the progression of tem-
poral subfunctionalization (see Methods - Measures for
paralogous genes) with ¢; = 0.45. Across all conditions
tested, we observe a relatively limited level of temporal
subfunctionalization, not exceeding a median 8% of
genes. In order to ensure these observations do not
depend on the particular conditions used, it is informative
to estimate an upper bound for temporal subfunctionali-
zation. Intuitively, temporal subfunctionalization is most
likely to occur when the founder network has minimal
redundancy. Repeating these measurements using parsi-
monious founder networks, we do observe an increase rel-
ative to the non-parsimonious case, with temporal
subfunctionalization stabilizing (at generation 10000)
around a median value not exceeding 20%, although with
very large variance. Even in this extreme case, the fre-
quency of temporal subfunctionalization remains, in
most cases, fairly limited. We also measured the preva-
lence of temporal subfunctionalization in the uncon-
strained model (see Supp. text and Supp. Figure 4 in
Additional file 1), and, as expected, found an increase rel-
ative to the non-parsimonious case, with a median value
again not exceeding 20%. Because there are no evolution-
ary constraints on the expression level of the paralogs in
the unconstrained model, we can conclude from this
result that temporal subfunctionalization in the "normal"
(non-parsimonious) case, actually occurs at a lower fre-
quency than would be expected by chance (Mann Whit-
ney comparing final distributions, P < 107 in all cases).
Clearly, under the DDC hypothesis we would expect tem-
poral subfunctionalization to be far more common.

http://www.biomedcentral.com/1471-2148/7/213

To corroborate our findings with biological data, we
investigated the prevalence of temporal subfunctionaliza-
tion in vivo. We proceeded by comparing paralogous genes
in yeast (see Methods -Analysis of yeast data) to determine
whether their expression (based on time-course data
[26,27]) fit a pattern consistent with temporal subfunc-
tionalization. Two paralogs are considered to be tempo-
rally subfunctionalized if one is ON and the other is OFF
at a particular timepoint, and if the behaviour is reversed
(OFF and ON respectively) at some other timepoint,
within a single time-course (see Methods -Analysis of
yeast data). Roughly speaking, we expect two expression
patterns which are negatively correlated to exhibit a tem-
poral subfunctionalization pattern with greater probabil-
ity than if they were positively correlated. Figure 5 shows
the correlation coefficient for each paralog pair in one
time course ("elutriation") against the K, value, used here
as a proxy for divergence time. Each point is labeled as
temporally subfunctionalized (filled circles) or not (open
circles).

Note that the thresholds used to decide OFF/ON states (in
order to discretize the data) are arbitrary, such that varying
the thresholds will change the observed proportion of
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Temporal subfunctionalization. Observed temporal sub-
functionalization in vivo for the "elutriation" time course data-
set. K values calculated for each yeast paralog (see Methods
— Analysis of yeast data) are plotted against the correlation
coefficient of the expression values. Paralogs for which tem-
poral subfunctionalization is observed are shown with filled
circles, those for which none is found are shown with open
circles.

Page 8 of 14

(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:213

directly comparing temporal subfunctionalization for the
biological data with that for the simulated data, and com-
pare them indirectly. We proceed by considering where
the observed temporal subfunctionalization lies with
respect to an appropriate null distribution using a permu-
tation analysis. The null distribution was therefore
obtained from random pairings (as opposed to paralog
pairs) of time-courses by means of permutation. This null
distribution was then used to estimate the probability (P-
value) that actual temporal subfunctionalization is less
than would be expected by chance. Table 1 shows the fre-
quency of temporal subfunctionalization in youngest
(lowest K, quartile) and oldest (highest K, quartile)
groups, as well as the corresponding P-values. For the
youngest (i.e. lowest) K| quartile, we find that actual tem-
poral subfunctionalization was significantly less than
would be expected by chance, whereas for the oldest K
quartile, the actual value was within the distribution.
Most importantly, we see that, even for the oldest paralog
pairs, actual temporal subfunctionalization is never
greater than would be expected by chance, as was the case
with the simulated data. This result contradicts the DDC
model hypothesis.

The relationship between regulatory and temporal
subfunctionalization

We observed above that regulatory and temporal subfunc-
tionalization have different temporal patterns (compare
Figure 3(b) and 3(d)). Regulatory subfunctionalization
tends to peak rapidly followed by a prolonged decline,
whereas temporal subfunctionalization tends to increase
monotonically at a slower rate. From this observation, it
appears unlikely that all temporal subfunctionalization
will be caused by regulatory subfunctionalization in nor-
mal conditions. We measured the frequency of genes with
coinciding regulatory and temporal subfunctionalization
(i.e. the fraction of N x M paralog pairs having both regu-
latory and temporal subfunctionalization simultane-
ously). If the two types of subfunctionalization are
independent of one another, we expect the coinciding fre-
quency to equal the product of their independent fre-
quencies. whereas if regulatory subfunctionalization

Table I: Temporal subfunctionalization frequencies

http://www.biomedcentral.com/1471-2148/7/213

causes temporal subfunctionalization, the coinciding fre-
quency should be higher. Figure 6 shows the two frequen-
cies, under the same conditions as figure 3 (¢;= 0.45, D =
0), are very close. Across all conditions, the coinciding fre-
quency was not found to be significantly greater than the
product of independent frequencies (Mann-Whitney
comparing final distributions, P > 0.999 in all cases).

Repeating this procedure using parsimonious founder net-
works and b = 1 as before, should allow us to obtain an
upper bound for coinciding regulatory and temporal sub-
functionalization. Under these extreme conditions, we do
indeed observe that the coinciding frequency is signifi-
cantly greater than the product (Mann-Whitney, P < 1.7 x
10-¢ for ¢; = 0.3, 0.45, 0.6). Interestingly though, even in
this case, we find that temporal subfunctionalization is
not always due to regulatory subfunctionalization
(although the variance across simulations is very large). In
these conditions, it may be hard to imagine how temporal
subfunctionalization can occur without regulatory sub-
functionalization. As before, we find that redundant inter-
actions, albeit such that they can only be removed by two
or more simultaneous deletions, explain this phenome-
non (see Figure 4).

Conclusion

Our results confirm previous analyses revealing the coex-
istence of subfunctionalization and neofunctionalization
in biological networks following gene duplication [11-
13]. This was unexpected since we have adopted a stabiliz-
ing selection model that is expected to favor subfunction-
alization alone, according to the assumptions of the DDC
model. In particular, it is unnecessary to invoke positive
selection to explain the high prevalence of neofunctional-
ization. Our results can be explained in terms of evolution
in neutral spaces [28]. Previous studies of gene networks
[24,25] and RNA folding [29] have illustrated the preva-
lence in biological systems of evolutionary plasticity in
combination with phenotypic neutrality [30]. We have
shown how this evolutionary plasticity enables the coex-
istence of subfunctionalization and neofunctionalization,
as has been observed in genomic studies.

Youngest Oldest
Dataset f(TSF) P f(TSF) P
alpha 0.015 0 0.108 0.075
cdcl5 0.056 0.009 0.092 0.021
elutriation 0.011 0 0.130 0.068
a30 0.010 0 0.117 0.023
a38 0.010 0 0.150 0.205

Frequency of temporal subfunctionalization for the youngest (lowest K, quartile), and oldest (highest K_ quartile) groups in each of the yeast time-
course datasets. Also shown is the P-value for the randomized time-courses. Here, P < 0.025 indicates the actual frequency is significantly below
that expected by chance (see Methods — Analysis of yeast data), and P > 0.975 that it is significantly greater.
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Figure 6

Rates of coinciding regulatory and temporal subfunc-
tionalization. Rates of coinciding regulatory and temporal
subfunctionalization under the same conditions as figure 3 (c;
= 0.45, D = 0). The dotted line shows the product of the
median independent frequencies. Graph shows median values
and 95% confidence interval (errorbars) over 200 independ-
ent runs.

The differences between our model and the DDC model
arise from the distinct scope of each model. The scope for
the DDC model is the individual (duplicated) pair of
genes, in which inputs are assumed to represent nonre-
dundant functions. However, a network composed
entirely of such genes would lack robustness (any link
deletion would, at a minimum, change the output of the
target gene), which contradicts available evidence
[14,31,32]. In contrast, in our model the phenotype is a
consequence of the behaviour of the entire network. Here,
given adequate conditions (deletion bias, b < 1), we
expect a certain amount of redundancy, and therefore
robustness, to exist. Indeed, such redundancy is expected
as an outcome of the evolutionary process [33]. A recent
study of divergent regulatory architectures associated with
mating type in yeast [34] inferred a succession of pheno-
typically neutral changes in which an ancestral transcrip-
tion activator (present in C. albicans) was replaced by a
repressor in modern S. cerevisiae, via an ancestor in which
both activator and repressor were simultaneously present,
illustrating the importance of redundancy in evolution.
Other studies have shown a widespread turnover of tran-
scription factor binding sites in both mammals [35] and
insects [36], and occurring even under conditions of stabi-
lizing selection [37].

http://www.biomedcentral.com/1471-2148/7/213

Clearly, in our model, if two or more genes have the same
expression pattern, s(t), over time, then target genes can
switch between these inputs with no phenotypic conse-
quences. Such a switch is likely to occur via an intermedi-
ate genotype in which both inputs are simultaneously
present. From the earliest analyses of time-course data
from DNA microarrays [38], it has been clear that many
genes share very similar temporal expression patterns
[39], a fact that would facilitate switching of the type
described. Recent evidence from the segmentation clock
(the oscillatory network controlling vertebrate somite
development) suggests that current models based on a
small number of elements [40,41] need to be revised in
the light of findings implicating a large network of inter-
related components [42], all of which are regulated peri-
odically. Although we should exercise caution in compar-
ing model gene networks with the segmentation clock
(which additionally involves cell-signaling and dynamic
complex formation), it seems likely that the presence of a
greater number of periodically-expressed genes increases
the opportunities for interaction turnover. Recent studies
have observed significant divergence of gene expression
between paralogous genes [43,44]. Even under the neu-
trality conditions of our model, any variation is tolerated
so long as the expression dynamics are unaffected. This is
a consequence of the threshold response of each gene,
which is dependent only on the sign (not the magnitude)
of the combined inputs. Thus, the fact that the threshold
response is a key feature of gene regulation [18,45] sug-
gests an explanation for gene expression variation in both
our model and observed data.

Our model assumes a whole genome duplication (WGD)
event. Such events have made major contributions of
duplicated genes in vertebrates [46], plants [47-49] and
yeast [50]. However, we want to emphasize that our con-
clusions also extend to smaller scale duplications, includ-
ing single gene duplications. Note that, in the model, the
output of each gene is unaffected by duplication. Because
the network outputs (and therefore the inputs also)
remain identical throughout the simulation, each paralog
pair evolves independently, irrespective of whether the
other genes are duplicated or not. Therefore, even if only
a subset of genes are duplicated, this subset would evolve
in the same way as it would following WGD. Clearly
though, this argument applies only to duplication events
which are phenotypically neutral (an assumption of our
model). Many small-scale duplication events involving,
for example, proteins that are active as protein complexes,
may be deleterious due to dosage effects [51].

We also needed to verify that the results using the yeast
data apply to duplicates not originating from the WGD.
For this purpose, we used a published list of gene pairs
formed by WGD [52], and removed these from our origi-
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nal dataset. To ensure we were using gene pairs in a com-
parable age range, we also removed those paralogs with K
values outside the range observed for the WGD dataset.
We then repeated the analysis, and found the frequency of
temporal subfunctionalization to be not significantly
higher than would be expected by chance, as with the orig-
inal dataset (alpha: P = 0.059, cdc15: P = 0.004, elutria-
tion: P = 0.031, a30: P = 0.001, a38: P = 0.004).

Notwithstanding its convenience in terms of data availa-
bility, yeast is not optimal for studying subfunctionaliza-
tion due to its large effective population size, M.
Following duplication, neutral (possibly subfunctional-
ized) alleles take in the order of M generations to reach
fixation, thus we would expect the incidence of subfunc-
tionalization to be lower when M is large. Although this
effect is somewhat attenuated by the use of laboratory
yeast strains (that have likely been subjected to periodic
bottlenecks), our yeast data analysis, as well as the results
of previous genomic studies [11-13], should be inter-
preted with certain caution for this reason. Our theoretical
results, on the other hand, use a relatively small popula-
tion size (M = 500), in which one would expect higher
subfunctionalization. In spite of the different population
sizes, the similarities between our theoretical results and
those of genomic analyses (using yeast), suggest that the
overall pattern of subfunctionalization and neofunction-
alization evolution following duplication is similar. As
suitable data becomes available for a wider range of
organisms, it will become possible to evaluate more effec-
tively the effects of population size in this context.

Although it would be fair to say that the model of gene
regulation we have chosen is somewhat crude, our choice
has been deliberate. Our model captures essential features
of gene network behavior (e.g. threshold response) and
emphasizes the importance of transcription regulation in
evolution [20,53,54] resulting in neutral space properties
that apply to real gene regulatory networks [28]. We con-
sider that choosing a more sophisticated model would
have resulted in qualitatively equivalent results, but with
reduced explanatory power. An important outcome of this
investigation has been to show the substantial benefits
that arise from considering the behavior of the entire net-
work as a system, as opposed to considering the individ-
ual genes in isolation. Our results suggest that
subfunctionalization alone cannot explain the high reten-
tion of duplicate genes. At the same time, a more complex
picture of post-duplication evolution emerges in which
redundancy and neofunctionalization play important
roles alongside subfunctionalization.

http://www.biomedcentral.com/1471-2148/7/213

Methods

Network dynamics

Network behavior is determined (using the 2N x N inter-
action matrix W) by a Boolean dynamical system of the
form s;(t + 1) = o(u,(t) + v,(¢t)) for the ith protein product,
where

N
ui(0) = o () Wi js,(0)
j

N
0i() = 0 Wi j5,(1))
j

and

) 1 ifx>0
o(x) =
0 otherwise

Starting from an initial state vector s(0) € {0, 1}, succes-
sive states s(t) are generated until we encounter a repeated
state s(tp) (tp> 0), such that s(t,) = s(t;) for some ¢ <t .
The initial state s(0) is constant for each simulation and is
set by randomly choosing each s;= 0 or 1.

Mutation
The probabilities for deletion and addition of a nonzero
element (W, ;) of the interaction matrix W, are

(1+b)
=m ——-
Pa X
and
(1-b)
=m- ——-
Pa i
respectively, where m = Lz is the mutation rate per ele-
2N

ment, b is a global deletion bias parameter b € (-1, 1), and
k is a normalizing factor to ensure that the mutation rate
per genotype () remains constant. To find k, we proceed
as follows. In a matrix with connectivity ¢, the probability
of a deletion is ¢pd, and the probability of an addition is
(1-¢)p,. To maintain a mutation rate of m per element, we

require

u
2N?

=m

pg + (1 - C)pu =

Substituting, we obtain
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m[c(lJrkb)Jr(l—c)(l_kb)]

The term within parentheses must be equal to 1, and
therefore

k=c(1+b) + (1-¢)(1-b)

Note that if the deletion bias is set to its highest value b =
1, then p, = 0 and only link deletions occur. Similarly, if it
is set to its lowest value b = -1, then p; = 0 and only link
additions occur.

Connectivity and deletion bias

It is convenient to elucidate the effect deletion bias (b) has
on connectivity (c) as the population evolves, and in par-
ticular, the effect of b on < the final value of ¢ at genera-
tion 10000. Intuitively, one would expect high b values
(b~1) to reduce connectivity, when compared to lower b
values (b~-1). Simulations were performed across a range
of values for b (b = -1, -0.5, 0, 0.5, 1), initial connectivity
(¢;= 0.3, 0.45, 0.6). In all cases we find the relationship
between b and median ¢, to be approximately linear. We
also find that, irrespective of ¢; a large range for ¢,is pos-
sible. Even for relatively high initial connectivity ¢; = 0.6
(Supp. Figure 1 in Additional file 1, right) connectivity
can be reduced to well below half the initial value (com-
pare ¢;/2 = 0.3 with 0.215, the upper bound for 95% con-
fidence interval), a decline beyond that predicted by the
DDC model. Note that the possibility of reducing ¢, to
below c¢;/2 suggests that there is redundancy in the
founder network, before duplication.

We define the relative change in connectivity, D = ¢j/c;- 1.
Under the DDC model, we expect a long-term decline in
connectivity to D = -0.5. We examine the two extremes: D
=0 (no change in connectivity), and D =-0.5 (elimination
of half the interactions). Again a range of conditions are
investigated for initial connectivity (¢;= 0.3, 0.45, 0.6). In
all cases, the appropriate deletion bias (b) is estimated
using linear regression results from the relevant dataset:
for example, a simulation with initial connectivity, ¢;= 0.3
(Supp. Figure 1 in Additional file 1, left) requires a value
of b = 0.43 to attain D = 0 (i.e. ¢;= 0.3).

Measures for paralogous genes

Recall that, in the initial population, all genotypes are
identical copies of a 2N x N matrix W, and that this matrix
is generated by rowwise duplication of a random N x N
matrix Q, such that W;;= W, ;= Q; ;. We measure regula-
tory subfunctionalization by comparing paralogous genes
in some evolved genotype, by comparing the rows W, and

W, N, with the ancestral row Q,. We define a simple qual-

http://www.biomedcentral.com/1471-2148/7/213

itative measure to detect subfunctionalization. We define
F;as the set of indices j,, such that Q;# 0, representing the
original inputs to gene i, and distinguishing between pos-
itive (j,, Q;, =+1) and negative (j, Q; =-1)inputs. We
define similar sets A, B; for the rows W, and W, in the

evolved genotype, representing the inputs to the paralo-
gous genes. Subfunctionalization exists if some original
inputs have been lost in each of the paralogs, but together
they still complement each other to represent the original
input set, i.e., if the following three conditions are met:

|F;| > |A;nFj| >0
|F;| > [B;nFj| >0
(AjVB) NF=F

Note that we need |F;| > 2 for regulatory subfunctionaliza-
tion to be possible.

Neofunctionalization exists if there are any new inputs in
either of the evolved paralogs, i.e.

|(A;UB)-F|>0

We define the number of shared links between two para-
logs, as H; = |A; N By|.

To measure temporal subfunctionalization, we consider
paralogs as subfunctionalized if one is ON and the other
is OFF at a particular timepoint, and if the behaviour is
reversed (OFF and ON respectively) at some other time-
point. More formally, if we define time courses for the two
paralogs as u;(t) and v;(t) (as above, under "Network
dynamics"), then the conditions are u;(ty) = 1, v;(ty) = 0,
u(ty) =0, v(ty) = 1. tx = ty .

Parsimonious founder networks

If there are redundant interactions in the founder net-
work, such interactions can be deleted in both duplicates
during evolution with no phenotypic effect. Conse-
quently, regulatory subfunctionalization would not be
recognized, in spite of the possibility that the remaining
non-redundant interactions may in fact be subfunctional-
ized. To address this issue, we generate parsimonious (i.e.
with minimal redundancy) founder networks. We imple-
ment the following algorithm to obtain networks with
(approximate) initial connectivity c;:

1. Generate a matrix Q' with full connectivity (¢ = 1), and
generate s(t).
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2. Delete connections in random order, retaining only
those deletions which do not alter the expression pattern,

s(t).

3. Repeat step 2 until all attempted deletions are unsuc-
cessful, i.e. alter s(t).

4. Accept Q' as new founder Q if it has connectivity (c)
between ¢; - A,and ¢; + A, otherwise return to step 1 (A, =
0.05 was used).

The matrix Q is then duplicated to create the matrix W in
the initial population. The algorithm works because, for a
large sample of initial random matrices Q', one observes ¢
values (for the founder matrices Q) across the entire range
[0, 1].

Analysis of yeast data

We used the program GenomeHistory [55] with the same
parameters as used for Saccharomyces cerevisiae in the orig-
inal study, resulting in a list of paralogous genes. The pro-
gram also estimates the number of synonymous (K|)
substitutions per synonymous site, and the number of
nonsynonymous (K,) substitutions per nonsynonymous
site. Following Evangelisti and Wagner [12]| we retained
only gene pairs with K, < 1 for further analysis. We use the
K, value as a proxy for divergence time. Because we make
only broad categorizations based on K,, we have retained
the lower accuracy K, values labeled as "saturated" by
GenomeHistory. Cell-cycle synchronized microarray data
for yeast was obtained from two sources: three distinct
time-courses (labeled as "alpha","cdc15", and "elutria-
tion") were obtained from the first [26], and two time-
courses (labeled as "¢30" and "@38") from a second,
more recent, dataset [27] (the "cdc28" time-course from
the first dataset was excluded due to its containing many
missing values, and the lower-resolution "@26" time-
course was excluded from the second dataset).

Paralogs A and B are considered to be temporally subfunc-
tionalized if A is ON and B is OFF at some time ty and A is
OFF and B is ON at some other time t,. Since the data are
continuous, these need to be discretized beforehand. Each
gene and time-course [time series S(t)] were discretized
independently by normalizing S(t) to the interval (0, 1) to
give a series S'(t), then assigning ON values where S'(t) >
6, and OFF values where S'(t) < 1 - 6. To verify that true
temporal subfunctionalization has occurred, we used sub-
cellular localization data [56] to exclude paralogs that do
not co-localize.

The null distribution (representing the distribution of
temporal subfunctionalization that would be expected by
chance) was generated by taking the paralogous pairs and
randomly shuffing the partners, for example in a dataset

http://www.biomedcentral.com/1471-2148/7/213

with 3 paralogous pairs, (x,, 1), (¥, 72), (x5 ¥5) = (x1, v3),
(x5, 71), (x5, ¥,). Separate datasets were generated for the
"youngest" (i.e. lowest K;) and "oldest" (i.e. highest K()
quatrtiles for K, in each time-course. Temporal subfunc-
tionalization was then measured for 1000 random
shuffes. These measurements were then used to estimate
the probability (P-value) that actual temporal subfunc-
tionalization is less than would be expected by chance,
defined as the fraction of random shuffes for which tem-
poral subfunctionalization is below the actual value. All
results shown use = 0.8. However, we repeated the anal-
ysis using @ through the range (0.5, 0.9), and obtained
qualitatively equivalent results, as shown in Supp. Table 1
in Additional file 1.
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