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Abstract
Background: Duplicated genes are common in vertebrate genomes. Their persistence is assumed
to be either a consequence of gain of novel function (neofunctionalisation) or partitioning of the
function of the ancestral molecule (sub-functionalisation). Surprisingly few studies have evaluated
the extent of such modifications despite the numerous duplicated receptor and ligand genes
identified in vertebrate genomes to date. In order to study the importance of function in the
maintenance of duplicated genes, sea bream (Sparus auratus) PAC1 receptors, sequence
homologues of the mammalian receptor specific for PACAP (Pituitary Adenylate Cyclase-Activating
Polypeptide), were studied. These receptors belong to family 2 GPCRs and most of their members
are duplicated in teleosts although the reason why both persist in the genome is unknown.

Results: Duplicate sea bream PACAP receptor genes (sbPAC1A and sbPAC1B), members of family
2 GPCRs, were isolated and share 77% amino acid sequence identity. RT-PCR with specific primers
for each gene revealed that they have a differential tissue distribution which overlaps with the
distribution of the single mammalian receptor. Furthermore, in common with mammals, the teleost
genes undergo alternative splicing and a PAC1Ahop1 isoform has been characterised. Duplicated
orthologous receptors have also been identified in other teleost genomes and their distribution
profile suggests that function may be species specific. Functional analysis of the paralogue sbPAC1s
in Cos7 cells revealed that they are strongly stimulated in the presence of mammalian PACAP27 and
PACAP38 and far less with VIP (Vasoactive Intestinal Peptide). The sbPAC1 receptors are equally
stimulated (LOGEC50 values for maximal cAMP production) in the presence of PACAP27 (-8.74 ±
0.29 M and -9.15 ± 0.21 M, respectively for sbPAC1A and sbPAC1B, P > 0.05) and PACAP38 (-8.54
± 0.18 M and -8.92 ± 0.24 M, respectively for sbPAC1A and sbPAC1B, P > 0.05). Human VIP was
found to stimulate sbPAC1A (-7.23 ± 0.20 M) more strongly than sbPAC1B (-6.57 ± 0.14 M, P <
0.05) and human secretin (SCT), which has not so far been identified in fish genomes, caused
negligible stimulation of both receptors.

Conclusion: The existence of functionally divergent duplicate sbPAC1 receptors is in line with
previously proposed theories about the origin and maintenance of duplicated genes. Sea bream
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PAC1 duplicate receptors resemble the typical mammalian PAC1, and PACAP peptides were found
to be more effective than VIP in stimulating cAMP production, although sbPAC1A was more
responsive for VIP than sbPAC1B. These results together with the highly divergent pattern of tissue
distribution suggest that a process involving neofunctionalisation occurred after receptor
duplication within the fish lineage and probably accounts for their persistence in the genome. The
characterisation of further duplicated receptors and their ligands should provide insights into the
evolution and function of novel protein-protein interactions associated with the vertebrate
radiation.

Background
Increased gene number and complexity are generally
assumed to have contributed to the success of vertebrates.
The evolutionary driving forces behind this are still under
debate however gene and/or genome duplications and
exon shuffling events are proposed to have been of funda-
mental importance [1-5]. The increased complexity of
metazoan genomes have been attributed to rounds of
gene or whole genome duplication [1,6-9]. Analysis of
metazoa genomes reveals that a remarkable percentage of
duplicated genes exist [10-13] and whilst some genes
decay to non-functionality and are subsequently elimi-
nated from the genome, others are maintained either
through the acquisition of novel functions (neofunction-
alisation) or by partitioning the function of the ancestral
molecule between the duplicated isoforms (subfunction-
alisation).

The secretin family of G-protein coupled receptors
(GPCRs) (a.k.a. family 2 GPCRs) is a large hormone and
neuropeptide receptor gene family present in metazoan
genomes. Members of this family have been identified in
both protostomes and deuterostomes [14-16] and their
conserved sequence and gene organisation has led to the
proposal that they evolved from a common ancestral gene
as a consequence of total, or partial genome duplication
[14]. Vasoactive Intestinal Peptide (VIP) and Pituitary
Adenylate Cyclase Activating Polypeptide (PACAP) recep-
tors (VPAC and PAC1, respectively) are closely related
members of family 2 GPCRs. They are important pharma-
ceutical targets as their ligands, the brain-gut peptides VIP
and PACAP, control a number of important physiological
functions in mammals [17,18].

In humans three receptors exist, PAC1, VPAC1 and VPAC2
and binding studies reveal that VPACs are able to bind the
ligands, VIP and PACAP with similar affinities, while
PAC1 preferentially binds PACAP [18,19]. In vertebrates,
activation of PAC1/VPAC receptors occurs via three intra-
cellular transduction mechanisms. These involve either
cyclic AMP (cAMP) production, IP turnover via PLC or/
and calcium mobilization as a consequence of the activa-
tion of a G-protein complex [18,20-22]. In mammals, five
PAC1 isoforms, which result from the insertion of one or

two, 28 (hip or hop1 variant) or 27 (hop2 variant) amino
acid cassettes in intracellular loop 3 (IL3) have been iden-
tified [23,24]. In addition, two VPAC1 and VPAC2 iso-
forms have been recently described which lack TM6 and
TM7 [25]. In other vertebrates PAC1 splice isoforms have
been isolated, however no alternative splice forms of
VPAC have yet been identified and in vertebrates these lat-
ter receptors do not activate the IP3 signalling pathway
[26-28].

Teleosts, which diverged from the tetrapod lineage
approximately 450 million years ago (MYA), represent
one of the most successful vertebrate groups with over
25,000 species. The existence of a variety of teleost
genome sizes and ploidy levels has made them very useful
for studies of gene evolution and function [29]. Recently
duplicated PAC1 and VPAC receptor genes have been
identified in teleosts using in silico approaches [16] and in
Takifugu they have a differential tissue distribution [15].
In the present study duplicate PAC1 cDNAs were isolated
from the marine teleost, sea bream (Sparus auratus) and
their tissue expression and functional profile character-
ised using the peptides VIP, PACAP27, PACAP38 and SCT
(secretin). The persistence of duplicate sbPAC1 receptors
in teleost genomes is discussed in relation to the current
proposed theories for gene evolution in vertebrates.

Results
Sea bream duplicate PAC1 receptors
Two complete putative sbPAC1 cDNAs, namely sbPK713
(2368 bp) and sbPP1C (2791 bp), were isolated from a
sea bream kidney and pituitary cDNA libraries, respec-
tively (Figures 1 and 2). The isolated cDNAs encode puta-
tive proteins of 444 and 448 amino acids respectively, and
share an overall amino acid identity of 77% due to the
highly conserved TM domains and C-terminal regions; the
N-terminal domain is only 48% identical. The sbPK713
and sbPP1C cDNAs share 91% and 86% amino acid
sequence identity respectively, with the previously identi-
fied Takifugu PAC1A and PAC1B and for this reason were
designated sbPAC1A (AJ514930) and sbPAC1B
(AJ514931). Analysis of sea bream genomic DNA by RT-
PCR coupled with Southern blot (data not shown) con-
firmed that both sea bream PAC1 cDNAs are encoded by
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Nucleotide and predicted protein sequence of sbPAC1A receptorFigure 1
Nucleotide and predicted protein sequence of sbPAC1A receptor. Seven TM domains are highlighted with black lines 
and the conserved N-terminal cysteine residues and putative N-glycosylation sites are annotated respectively by a circle and by 
"+". The microsatellite identified in the 5'UTR is underlined and the stop codon is indicated by "*".

  
  gcgttctgcagcagcagcagcaacaacagcagcagcagaagcggaggcacctgtcgttttccaggacgagctgagaacca    80 
  tttttagggagtaaaaacaaggcatcctacgagaccattcgcagcagaaacaccgcggggggtcagcgaataccgatggc   160 
  ttcgcgtgtagacatttgcgcctcgcagaattacgcatcgaccccttgatggtggagtgtgttgccgctgaggggagcaa   240 
  tttcagtgcatccctgtgaacacacacgcacacacacacacacacacacacacacacacacacacccagacacacacaca   320 
 
                                              M   K   G   Y   L   L   T   A   I        9 
  cacatatatcgtggagccttttggatacaagcacaggagaca ATG AAA GGC TAC CTG CTG ACT GCA ATC     389 
 
   F   L   L   P   L   V   A   S   E   S   E   H   C   I   I   K   R   E   H   E      29 
  TTC CTG TTG CCC TTG GTG GCT TCA GAG TCC GAG CAC TGT ATA ATC AAG CGT GAG CAC GAG    449 
 
   K   C   M   E   R   I   M   S   H   N   P   S   D   D   L   E   L   A   C   P      49 
  AAA TGC ATG GAG AGG ATC ATG TCG CAC AAT CCG AGC GAT GAC CTT GAG TTA GCA TGT CCA    509 
 
   W   M   W   D   N   L   T   C   W   Q   A   A   R   E   G   E   V   V   V   V      69 
  TGG ATG TGG GAT AAC CTG ACC TGC TGG CAG GCG GCC AGG GAG GGT GAA GTT GTT GTG GTC    569 
 
   N   C   P   D   L   F   H   E   F   M   D   P   D   E   E   M   E   K   V   S      89 
  AAC TGT CCA GAC CTC TTC CAT GAG TTC ATG GAC CCT GAC GAG GAG ATG GAG AAG GTC AGT    629 
 
   R   N   C   T   K   D   G   W   S   E   P   F   P   H   Y   V   D   V   C   F     109 
  CGT AAC TGC ACC AAG GAC GGC TGG TCC GAA CCG TTC CCT CAC TAC GTG GAC GTT TGC TTC    689 
 
   F   Y   D   N   T   T   D   P   E   E   Y   Y   A   S   V   K   A   L   Y   T     129 
  TTC TAT GAC AAC ACC ACG GAT CCC GAG GAG TAC TAC GCC TCA GTC AAG GCC CTG TAC ACT    749 
 
   V   G   Y   S   T   S   L   V   S   L   T   T   A   M   V   I   L   C   R   F     149 
  GTC GGC TAC AGC ACG TCG CTG GTG TCT CTG ACT ACA GCC ATG GTC ATC CTC TGC AGA TTC    809 
 
   R   K   L   H   C   T   R   N   F   I   H   M   N   L   F   V   S   F   I   L     169 
  AGG AAG CTC CAC TGC ACC AGG AAC TTC ATT CAC ATG AAC CTG TTT GTG TCC TTC ATC CTG    869 
 
   R   A   I   S   V   F   I   K   D   G   V   L   Y   A   Q   E   D   S   D   H     189 
  AGG GCC ATC TCC GTC TTC ATC AAG GAC GGT GTG CTG TAC GCT CAG GAG GAC AGC GAC CAC    929 
 
   C   F   V   H   T   V   A   C   K   A   V   M   V   F   F   H   Y   C   V   M     209 
  TGC TTC GTT CAC ACA GTG GCG TGT AAA GCA GTA ATG GTT TTC TTC CAT TAC TGT GTC ATG    989 
 
   S   N   Y   F   W   L   F   I   E   G   L   Y   L   F   T   L   L   V   E   T     229 
  TCC AAC TAT TTC TGG CTG TTC ATC GAA GGT CTG TAT CTC TTC ACT CTG CTG GTG GAG ACT   1049 
 
   F   F   P   E   R   R   Y   F   Y   W   Y   T   I   V   G   W   G   T   P   T     249 
  TTC TTT CCG GAG AGA CGC TAC TTC TAC TGG TAC ACC ATC GTA GGA TGG GGA ACT CCA ACC   1109 
 
   I   C   V   T   V   W   A   V   L   R   L   H   F   H   D   T   G   C   W   D     269 
  ATC TGT GTC ACA GTC TGG GCA GTG CTG AGG CTC CAC TTC CAT GAC ACT GGA TGC TGG GAT   1169 
 
   T   N   E   N   T   A   L   W   W   V   I   K   G   P   V   V   A   S   I   M     289 
  ACA AAT GAG AAC ACT GCC CTC TGG TGG GTG ATC AAG GGA CCA GTC GTG GCT TCT ATC ATG   1229 
 
   I   N   F   V   L   F   I   G   I   I   V   I   L   V   Q   K   L   Q   S   P     309 
  ATC AAT TTC GTC CTC TTC ATT GGA ATA ATC GTC ATC CTG GTC CAG AAG CTG CAG TCC CCT   1289 
 
   D   I   G   G   N   E   S   S   I   Y   L   R   L   A   R   S   T   L   L   L     329 
  GAT ATC GGA GGG AAC GAA TCA AGC ATT TAC CTG CGT CTG GCG CGC TCC ACC CTC CTA CTC   1349 
 
   I   P   L   F   G   I   H   Y   T   V   F   A   F   S   P   E   D   F   S   K     349 
  ATC CCG CTG TTT GGT ATT CAC TAC ACT GTG TTC GCC TTC TCA CCT GAA GAC TTC AGC AAG   1409 
 
   R   E   R   L   V   F   E   L   G   L   G   S   F   Q   G   F   V   V   A   V     369 
  AGG GAG AGA CTG GTC TTT GAG CTG GGG CTG GGA TCC TTT CAG GGC TTT GTT GTA GCC GTC   1469 
 
   L   Y   C   F   L   N   G   E   V   Q   S   E   I   K   R   K   W   R   S   W     389 
  CTC TAC TGT TTC CTC AAT GGA GAG GTG CAG TCG GAG ATA AAG AGG AAA TGG CGC AGC TGG   1529 
 
   T   V   N   R   Y   F   A   V   D   L   K   Q   Q   R   H   P   S   L   A   S     409 
  ACG GTG AAC CGA TAC TTT GCT GTG GAC CTG AAG CAG CAA AGG CAC CCT TCG TTG GCC AGC   1589 
 
   S   G   V   N   G   G   T   Q   L   S   I   L   S   K   S   S   S   Q   I   R     429 
  AGC GGA GTG AAC GGC GGG ACT CAG CTG TCG ATC CTC AGC AAG AGC AGC TCC CAG ATA CGC   1649 
 
   M   S   S   P   L   A   E   N   A   N   I   S   L   P   T   *                     445 
  ATG TCC AGC CCG CTG GCG GAG AAC GCC AAC ATC AGC CTC CCC ACC TGA  gcgtctgatcggcac  1712 
 
  aagacaaacctcaaggtgccgtttccacttagcgtacatccaaaccaaccagaacagaccaaagtggcccctcacacctc  1792 
  ttatattttgtagtttggccttcaaaaattaggtattacttagagcatttactggatattcattagaggatgtcatactt  1872 
  tctaatttcatttgacaatgtaatcaaatttatttaagtgtttcagttgactctgttgattgtgaaacatttaatatttc  1952 
  tatgaacaaacccaaattcaacttgatttaaacatgaaaagagatattcgaaatcccctttctaccagttattttaaata  2032 
  gatacgccctgttattgtttgatttataaatgataataatcataatgtagatttggtgccaaaaatggtacaagtcgtga  2112 
  cagagaaaaaacacatcttatgtaggggtcatatttggctgtcggtgtgtaaagtaaatgtgcttcagagtgccatacag  2192 
  gttgcccgactggatctgatctcacaacagtccaaagtgaaacaacaaccaaacgttcgccttgcttgtacaaatgctca  2272 
  ttgtttaaatgttccatcctcaatttaaacatttttctacaatcagccgtaagtacagagtatgtcaaaagatatataca  2352 
  aaaaaaaaaaaaaaaa                                                                  2368 

+

+

+

+
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Nucleotide and predicted protein sequence of sbPAC1B receptorFigure 2
Nucleotide and predicted protein sequence of sbPAC1B receptor. The seven TM domains are highlighted with black 
lines and the conserved N-terminal cysteine residues and putative N-glycosylation sites are annotated respectively by a circle 
and by "+". The microsatellite identified in the 5'UTR is underlined and stop codon is indicated by "*".

 atttcccccccacatctcatccatatcatcttctgtgttgaatctggtgtgattggactttttattcaacacaacccgtt    80 
 catttcgcacatctatcatgctaaattagatttgcgcgcgcgagagatattgtgtgtgtgagagagagacacacagaaag   160 
 agtgagagagagagagagagagagagagagagagagaggagtggggggtgggtagttgaaatgcgcggtgcattcttgtg   240 
 tggagggcgaagcgagcagccatccgcaggacagcaggattgctcgaaatatcctcagtgagaatcagccgttatcggtt   320 
 aggcatccacatttcgtccgaagtggaagttgtgtttccaggggccggcggagagcctcggacctccacagcctggtgag   400 
 ggttgatttgcaccttgcggagtgcgcagccctcaatccgcccggaggatccccagcgcaggatttggatttggagaatt   480 
 atcgacacaatgatcccgaggtgagctgaggtcctgttgtgtccgtctgtcagattttaagaactcagaggaaactccca   560 

                  M   P   A   A   N   I   S   P   L   I   F   T   L   L   L   F      16 
 gctgagaaactcgaa ATG CCT GCT GCC AAC ATC AGT CCA CTG ATC TTC ACC CTC CTC CTG TTT    623 

  L   S   S   V   S   S   Q   Q   V   S   S   N   C   V   I   K   R   E   E   E      36 
 CTC TCC TCG GTT TCG AGC CAA CAG GTC TCT TCA AAC TGT GTG ATC AAG AGG GAG GAG GAG    683 

  K   C   M   E   M   M   A   S   D   D   P   G   N   D   P   E   F   G   C   P      56 
 AAA TGC ATG GAA ATG ATG GCC TCA GAC GAT CCT GGG AAC GAT CCA GAA TTT GGC TGT CCA    743 

  W   M   W   D   N   L   T   C   W   Q   P   A   R   I   G   E   V   V   E   V      76 
 TGG ATG TGG GAC AAC CTG ACG TGT TGG CAG CCC GCC AGG ATT GGT GAG GTG GTC GAA GTC    803 

  K   C   P   E   L   F   S   Q   F   M   S   E   E   D   Y   E   L   G   T   V      96 
 AAA TGT CCC GAA CTC TTC TCT CAG TTC ATG AGT GAA GAA GAC TAT GAG CTG GGG ACG GTG    863 

  S   R   N   C   T   M   F   G   W   S   E   T   F   P   H   Y   I   D   A   C     116 
 AGT CGA AAC TGC ACC ATG TTC GGC TGG TCT GAG ACC TTC CCT CAT TAC ATC GAT GCC TGC    923 

  L   Y   E   E   T   G   S   N   H   T   D   T   Y   Y   A   S   V   K   A   L     136 
 CTG TAT GAA GAA ACA GGC AGC AAC CAT ACG GAC ACA TAC TAT GCA TCG GTG AAG GCT CTA    983 

  Y   T   V   G   Y   S   T   S   L   V   S   L   T   M   A   M   V   I   L   C     156 
 TAC ACA GTG GGC TAC AGC ACC TCT TTG GTC TCC CTC ACC ATG GCC ATG GTC ATC CTG TGC   1043 

  R   F   R   K   R   H   C   T   R   N   F   I   H   I   N   L   F   V   S   F     176 
 AGG TTC AGG AAG CGT CAC TGT ACC AGG AAC TTC ATC CAC ATC AAT CTG TTT GTG TCG TTC   1103 

  I   L   R   A   I   S   V   F   I   K   D   G   V   L   Y   A   K   E   D   S     196 
 ATC CTG AGA GCT ATT TCA GTC TTC ATC AAA GAC GGC GTG CTG TAC GCC AAA GAG GAC AGC   1163 

  E   H   C   F   I   H   T   V   E   C   R   A   V   M   I   F   F   H   Y   C     216 
 GAG CAC TGC TTC ATA CAC ACT GTG GAG TGT CGA GCA GTG ATG ATC TTC TTC CAT TAC TGC   1223 

  V   L   S   N   Y   F   W   L   F   I   E   G   L   Y   L   F   T   L   L   V     236 
 GTC CTT TCT AAC TAC TTC TGG CTT TTC ATC GAG GGG CTG TAC CTT TTC ACT TTA CTG GTA   1283 

  E   T   F   F   P   E   K   R   Y   F   Y   W   Y   I   I   I   G   W   G   T     256 
 GAA ACC TTC TTC CCT GAA AAA AGA TAC TTC TAC TGG TAC ATC ATT ATT GGC TGG GGA ACC   1343 

  P   T   V   C   V   T   I   W   A   V   L   R   L   H   F   D   D   V   G   C     276 
 CCC ACA GTG TGT GTG ACC ATC TGG GCA GTG CTA AGG CTG CAC TTT GAT GAT GTT GGC TGT   1403 

  W   D   M   N   D   N   A   A   I   W   W   V   I   K   G   P   V   L   A   S     296 
 TGG GAC ATG AAC GAC AAC GCT GCC ATC TGG TGG GTG ATC AAG GGA CCT GTG CTC GCT TCA   1463 

  I   M   I   N   F   V   L   F   V   G   I   I   I   I   L   V   Q   K   L   Q     316 
 ATC ATG ATC AAC TTT GTT CTC TTC GTT GGC ATC ATC ATC ATC CTC GTC CAG AAG TTA CAG   1523 

  S   P   D   I   G   G   N   E   S   S   I   Y   L   R   L   A   R   S   T   L     336 
 TCC CCA GAT ATC GGT GGA AAT GAA TCC AGT ATT TAC CTA AGG TTG GCC CGC TCC ACT CTG   1583 

  L   L   I   P   L   F   G   I   H   Y   T   V   F   A   F   S   P   E   N   V     356 
 CTG CTG ATT CCT CTG TTT GGG ATC CAC TAC ACT GTG TTT GCC TTC TCT CCT GAG AAT GTT   1643 

  S   K   K   E   R   L   V   F   E   L   G   L   G   S   F   Q   G   F   V   V     376 
 AGC AAG AAG GAG CGT CTG GTG TTT GAA CTC GGA CTC GGA TCC TTC CAG GGC TTT GTG GTG   1703 

  A   V   L   Y   C   F   L   N   G   E   V   Q   S   E   I   K   R   K   W   R     396 
 GCC GTC CTC TAC TGC TTC CTG AAT GGA GAG GTG CAA TCG GAG ATC AAG AGG AAA TGG CGC   1763 

  S   W   T   V   N   R   Y   F   A   V   D   L   K   H   R   H   P   S   L   A     416 
 AGC TGG ACG GTG AAC AGG TAC TTT GCT GTG GAC CTG AAG CAC CGG CAT CCT TCG CTG GCG   1823 

  S   S   G   V   N   G   G   T   Q   L   S   I   L   S   K   S   S   S   Q   I     436 
 AGC AGT GGG GTG AAC GGG GGG ACG CAG CTG TCC ATC CTC AGC AAG AGC AGC TCG CAG ATC   1883 

  R   M   S   S   L   Q   A   E   T   P   A   T   *                                 449 
 CGC ATG TCC AGC CTG CAG GCC GAG ACC CCG GCC ACT TGA A cggcgccggcggggactccacgtcga  1949 

 ccatcgacgcagccgcctccagacctgatgccaccaaatctgccacacccaccctcgttcccatgaccagcctcaccaac  2029 
 cccttcctcaacccgtaccccaacccatacccagacgacaccatgatggaaacccagctcaactccaccgacccagaaca  2109 
 gcctctagtctgacctgctccactctgatcctgaatgtcaggtgccaaataatgaatctcctcgtgtcctggttcaggcg  2189 
 cagctgcagggtaaaaaaaaatatatatagtcctcctgttcctgagcagtctgtcatcttcaaaagggcatgagtgggat  2269 
 actcctgtatatctagtgtctctttgggctgggacatgcagaagaagcatggtctcatctctctgtacatattgtattag  2349 
 tgtttaaggttgtgtggtgctacagtacagcacagagggaccagagagctctacagtgtgtcctctcacagagatcattc  2429 
 cagtctgaggagggttttacatctgtccttgaccttcaccctcaaactgtatttcagattagaactccactcagacataa  2509 
 cagctgatgtgccatttgaaatggtttattttgataaaaaaaaagcaatgggcaatgtaaataccttaaaggagcagtcc  2589 
 actgattttacacgtgaagattatttagctaaaagcagttacattgtcttggttggcttctttctttagtaagaacaaac  2669 
 caagatcatggaaaggaggatatactgaaaagagggtttggactaaattcatgacatctcagcctctgctgctttgattc  2749 
 tgaccctctttgatgtacagaaaatatcgagtttacatgtgtagttttgttaaatatgttgaaaactatttataaagtaa  2829 
 aggttaacatcaaatcagtgttaaaaaaaaaaaaaaaaaaaaaa                                      2873 

+

+

+

+

+
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single genes and are not the result of alternative splicing.
This observation is confirmed by mapping of sbPAC1A
and sbPAC1B genes in the recently released sea bream
gene-based radiation hybrid (RH) map, to group 6 (RH6)
and 2 (RH2), respectively [30].

A microsatellite sequence is present in the 5'UTR region of
both receptors and sbPAC1A contains an imperfect (AC)32
dinucleotide repeat and sbPAC1B an imperfect (GA)28
repeat upstream of the initiation codon (Figures 1 and 2).
Genotyping of the microsatellites using genomic DNA
from sea bream caught at different geographic locations
and a family panel, revealed both microsatellites are pol-
ymorphic and the locus sbPAC1B scores more alleles (8
alleles) than sbPAC1A (4 alleles) (Additional file 1).

Sequence comparisons and phylogenetic analysis
Sequence comparison of sbPAC1A and sbPAC1B with ver-
tebrate homologue receptors revealed six conserved
cysteine residues and two putative N-glycosylation sites at
the N-terminal domain which are implicated in ligand-
binding [20](Figure 3). Additional conserved motifs char-
acteristic of PAC1 are also present. Within intracellular
loop three (IL3) the amino acid motifs, P-D-M and R-L-A-
R (Basic-L/A-L/A/V/S-Basic), important for functional
coupling with the Gsα protein, are conserved in the tele-
ost and tetrapod receptors. Amino acid residues K322 and
E394, which are involved in activation of the cAMP path-
way in humans [21] are also conserved suggesting that a
similar receptor signalling pathway may exists in sea
bream. A putative signal peptide sequence is also present
along with the consensus signature motif of TM7 in mam-
malian PACAP and VIP receptors: FQGBBVXXBYCFXNX-
EVXQ (where X is any amino acid and B is a basic amino
acid [15,31]. Duplicate PAC1 genes also exist in other tel-
eosts genomes, such as stickleback
(ENSGACP00000022696 and ENSGACP00000007143),
Tetraodon (GSTENP00011829001 and
GSTENP00034495001), Medaka

(ENSORLP00000022250 and ENSORLP00000016315)
and zebrafish (NM_001013444 and XM_701685) (Table
1). In contrast, a single copy of a PAC1 gene was identified
in the Atlantic salmon (Salmon salar, CK885244) and rain-
bow trout (Oncorhynchus mykiss, AY706216). It seems
likely that further PAC1 receptors exist in salmonids and it
is expected that these will be identified as sequence cover-
age of their genomes is enriched.

Phylogenetic analysis of sbPAC1A and sbPAC1B receptors
with the vertebrate PAC1, VPAC1, VPAC2, PRP, GHRH and
SCT receptors confirmed their identity as duplicated
members of the vertebrate PAC1 family (Figure 4, Addi-
tional file 2). The tree topology indicates that vertebrate
PAC1, VPAC (1 and 2), PRP and GHRH receptors evolved
from a common ancestral gene and that a teleost specific
duplication has occurred which is in line with the pro-
posed partial or whole genome duplication event within
their lineage [9,12,15,16,32,33].

Linkage analysis
Gene environment comparisons of the PAC1 homologue
genomic regions revealed it is highly conserved across ver-
tebrates (Figure 5). In human, PAC1 is localized on chro-
mosome 7 and in chicken it maps to chromosome 2 and
is in close proximity with the chicken GHRH and VPAC1
receptors. In teleosts the duplicate genes map to different
genome regions and are localised in the Takifugu scaffolds
N000080 and N00239 and in zebrafish chromosomes 10
and 2. Three genes (RT-like protein, PDE1C and
NeuroD6-B genes) were found to be shared between the
Takifugu, chicken and human genomic regions analysed.
The PAC1 gene is linked with the PRPR gene in Takifugu
and chicken suggesting these genes arose by tandem
duplication, although it has been lost in the human. In
Xenopus, in which the genome assembly is incomplete,
PAC1 maps to the final region of scaffold_333 and
NeuroD6-B and PDE1C to scaffold_588 suggesting that

Table 1: Accession numbers of the putative teleost PAC1, VPAC, PRPR and GHRHR identified in silico.

PAC1 VPAC1 VPAC2 PRPR GHRHR

TAKIFUGU AJ494861 AJ296144 AJ408877 AJ296145 SINFRUP00000146089
AJ490804 AJ296143 AJ408878 SINFRUP00000161807

TETRAODON GSTENP00011829001 GSTENP00023906001 GSTENP00016553001 GSTENP00034494001 GSTENT00012645001
GSTENP00034495001 GSTENP00015127001 GSTENP00011830001

ZEBRAFISH NM_001013444 NM_001013353 Not identified ENSDARP00000054330 DQ991247
XM_701685 ENSDARP00000046126 ENSDARP00000070262

STICKLEBACK ENSGACP00000022696 ENSGACP00000004382 ENSGACP00000002397 ENSGACP00000007119 ENSGACP00000015575
ENSGACP00000007143 ENSGACP00000016961 ENSGACP00000023187 ENSGACP00000022701

MEDAKA ENSORLP00000022250 ENSORLP00000011730 ENSORLP00000023740 ENSORLP00000016356 ENSORLP00000020808
ENSORLP00000016315 ENSORLP00000014962 ENSORLP00000007394 ENSORLP00000022227

SALMON CK885244 Not identified CB511922 Not identified Not identified
TROUT AY706216 AY706218 AY706217 CU069615 Not identified Not identified
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Multiple sequence alignment of vertebrate PAC1 receptorsFigure 3
Multiple sequence alignment of vertebrate PAC1 receptors. The seven TM domains are boxed, the P-D-I/M motif indi-
cated by " "and the R-L-A-R motif by "*". The alternative receptor hop splice isoform is indicated by a dotted box and the puta-
tive signal peptide sequence with a double ended arrow. Conserved cysteines and putative N-glycosylation sites in the N-
terminal domain are indicated by " " and "+", respectively. Accession numbers of sequences used in the multiple amino acid 
sequence alignment were; human (Homo sapiens, P41586), rat (Rattus norvegicus, P32215), bovine (Bos taurus, Q29627), Rana 
(Rana ridibunda, Q90Y07), Xenopus (Xenopus laevis, Q9PTK1), Goldfish (Carassius auratus, O7376, Takifugu (Takifugu rubripes, 
AJ494861 for PAC1A and AJ490804 for PAC1B) and sea bream sbPAC1A (AJ514930) and sbPAC1B (AJ514931).
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these two regions are contiguous in the genome although
so far no homologue of PRPR was identified.

Tissue expression of sbPAC1 receptors
PAC1 tissue distribution was carried out in several sea
bream tissues by RT-PCR using specific primers for each
receptor (Figure 6). These primers were designed in order
to amplify all potential receptor transcripts. The sbPAC1A
was found to be expressed in the pituitary, kidney, duode-
num and skin and weakly in heart and gonads whilst
sbPAC1B was restricted to brain and pituitary. A larger
sbPAC1A PCR product was also amplified which had an
overlapping tissue distribution with sbPAC1A with the
exception of heart and gonads. Sequence analysis indi-
cates that the larger sbPAC1A PCR product corresponds to
the homologue of the mammalian PAC1hop1 isoform
and contains an insertion of 28 amino acids within IL3
region. No other PAC1A isoforms were amplified and no
alternative splice forms for sbPAC1B were detected.

Functional studies of duplicate sbPAC1
The sbPAC1A and sbPAC1B were successfully expressed in
Cos7 and Hek293 cell lines as confirmed by immunoflu-
orescence and Western blot analysis. Cos7 cell extracts
subject to Western blot contained a specific immunoreac-
tive fusion protein of approximately 52 kDa in transfected
cells, which corresponds to the estimated molecular
weight in silico of the fusion proteins, (T7PAC1A is 52.75
kDa and T7PAC1B is 52.32 kDa). Cos7 and Hek293 cell
lines expressing the recombinant vector were activated by
Forskolin and gave maximal cAMP production. Negative
control experiments in which Cos7 and Hek293 cells were
transfected with pcDNA3 without insert and incubated
with the maximum concentration used of test peptide (10-

6 M), revealed that Hek293 cells are responsive to PACAP
and VIP peptides. This suggests the existence of endog-
enous receptors in Hek293 which is confirmed by availa-
ble proteome data [34]. For this reason only the results
obtained with transfected Cos7 cells are presented.

Phylogenetic analysis of the vertebrate PAC1 membersFigure 4
Phylogenetic analysis of the vertebrate PAC1 members. This figure represents the upper quartile of the consensus 
tree, for full image and details please refer to Additional file 2. Sea bream PAC1 receptors are in bold and the novel teleost 
PAC1 receptors identified are refereed by their Ensembl nomenclature. PAC1 accession numbers are: Human, P41586; Mouse, 
P70205; Rana, Q90Y07; Takifugu1A, AJ494861, Takifugu1B, AJ490804; zebrafish1A, NM_001013444 and zebrafish1B, 
XM_701685.
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The cAMP potency profile of Cos7 transfected cells
expressing the recombinant sbPAC1 receptors in the pres-
ence of different concentrations of VIP and PACAP
(PACAP38 and PACAP27) peptides is depicted in Figure 7.
All mammalian peptides were able to stimulate cAMP
production in a dose dependent manner. The peptide acti-
vation profile for the sbPAC1A gene was as follows
PACAP27 ≈ PACAP38 > VIP as assessed by the LOGEC50 val-
ues for cAMP production for each peptide (-8.74 ± 0.29 M,
-8.54 ± 0.18 M and -7.23 ± 0.20 M, respectively). The stim-
ulation of cAMP production by VIP was significantly
lower (P < 0.05) than for PACAP peptides. The peptide
activation profile of sbPAC1B was also tested and found to
be similar to sbPAC1A and is as follows PACAP27 ≈
PACAP38 > VIP and the LOGEC50 values for maximal cAMP
production for each peptide are -9.15 ± 0.21 M, -8.92 ±
0.24 M and -6.57 ± 0.14 M, respectively. The stimulation
of cAMP by VIP was significantly lower than PACAP27 and
PACAP38 (P < 0.001). Human SCT causes a negligible

increase above the basal concentration of cAMP produc-
tion in non-stimulated Cos7 cells transformed with either
sbPAC1A or sbPAC1B (data not shown). Comparison of
the potency profile of each peptide (PACAP27, PACAP38
and VIP) for the duplicate sea bream receptors revealed
that PACAP stimulates both receptors equally. In contrast,
VIP is significantly more potent for sbPAC1A (-7.23 ± 0.20
M) compared to sbPAC1B (-6.57 ± 0.14 M, P < 0.05).

Discussion
In the present study, duplicate sea bream PAC1 genes
(sbPAC1A and sbPAC1B) have been isolated and function-
ally characterised. Structural motif identification and
expression assays reveal they are functional family 2
GPCR members. The sbPAC1B is predominantly found in
brain and pituitary while sbPAC1A has a widespread dis-
tribution but is absent from brain. The overall tissue dis-
tribution of the sbPAC1 receptors is similar to the single
mammalian PAC1 receptor and suggests they may have

Short-range linkage analysis of the PAC1 receptorsFigure 5
Short-range linkage analysis of the PAC1 receptors. The gene environment of Takifugu, chicken and human PAC1 
regions is represented. Homologue genes present in all three study organisms are represented by open boxes and black boxes 
represent flanking genes that had no corresponding homologues. Genes are named according to the HUGO annotation and 
PAC1 genes are in bold. Takifugu scaffolds (assembly 4) are represented using the NIX annotation [40]. The gene environment 
of PAC1 in Xenopus is not represented since it was very incomplete. The Takifugu gene environment is represented and the 
scale corresponds approximately to 10 Kb and the relative position of linked genes in the chromosomes of the chicken and 
human is given.
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similar functions in the endocrine, nervous, gastrointesti-
nal and reproductive systems [17,18]. In common with
the mammalian PAC1 receptor both sbPAC1 receptors are
highly stimulated by PACAP but poorly by VIP and SCT.
The tissue distribution of PAC1 receptors in sea bream is
different from that in Takifugu in which PAC1B has a wide-
spread tissue distribution and PAC1A distribution is
restricted to brain, gill and gonads [15]. Therefore, despite
the high sequence conservation between teleost PAC1A or
PAC1B genes (91% and 86%, respectively), the paralogue
genes seems to have evolved in a species specific manner
in relation to tissue distribution and possibly function.

Duplicate PAC1 genes have been identified in other tele-
osts and also for other family 2 GPCR members [14,15] as
expected in light of the proposed partial or full genome
duplication event suggested to have occurred within the
teleost lineage [32,33,35-37].

Analysis of teleost genomes indicates that duplicate PAC1
genes are linked with the recently reclassified GHRH-like
receptor which based upon ligand binding characteristics
has been reassigned as a teleost PRP receptor (PRPR)
[38,39]. In Takifugu, PAC1A and PRPR genes are localised
on scaffold N000080 and PAC1B/PRPR in scaffold
N002399 and in the zebrafish genome on chromosome
10 and 2, respectively [40,41]. In terrestrial vertebrates,
with the exception of mammals, co-localization of both
receptors is also observed suggesting that PAC1 and PRPR
genes arose by tandem gene duplication prior to the tele-
ost divergence and that PRPR gene was subsequently lost
in the mammalian lineage (Figure 6).

Stimulation of cAMP production and not peptide affinity
or activation of alternative signalling pathways has been
investigated and revealed that sbPAC1 receptors are highly
stimulated and have identical potency profiles for the
mammalian PACAP27 and PACAP38 peptides compared to
VIP. The latter peptide was found to be more potent for
sbPAC1A in comparison to sbPAC1B. Although, the iden-
tification in teleosts of duplicate genes for the ligands and
the existence of two potentially active PACAP peptides
raises further issues in relation to PAC1 receptor activation
and function. Two copies of PACAP are present in Tak-
ifugu (DQ659331 and DQ659332), Tetraodon (Q4RN19
and Q4RH43) and zebrafish (NW_652622 and
NW_634478), but functional studies with the duplicate
receptors and their ligands are scarce. The ligand binding
characteristics of the duplicated zebrafish zfPACAP27 pep-
tides for the zebrafish PAC1 receptor, the sequence homo-
logue of sbPAC1A, was tested and both peptides strongly
stimulate in a similar way the cAMP and phospholipase
pathways [28,42] suggesting conservation of function. A
further measure of complexity is also introduced by the
identification of duplicate VIP genes in teleost genomes
[38,43] and it will be of importance in future to establish
the affinity of the duplicate peptides for the duplicate
receptors, as well as compare their tissue distribution in
teleosts.

Moreover, a microsatellite is identified for the first time in
the 5'UTR of PAC1 receptors. Genotyping analysis of the
microsatellite reveals it is polymorphic in sea bream and
raises intriguing questions about its potential influence
on gene expression. Analysis of homologue regions in

Tissue expression of the duplicate sbPAC1A and sbPAC1B receptorsFigure 6
Tissue expression of the duplicate sbPAC1A and sbPAC1B receptors. Expression was carried out by RT-PCR using 
specific primers to amplify potential receptor transcripts. PCR products of approximately 1200 bp, 1000 bp and 1280 bp were 
obtained and corresponded to sbPAC1A, sbPAC1B and sbPAC1Ahop1 isoform, respectively.
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other teleosts [41] also reveals the presence of a microsat-
ellite in the 5'UTR. For example, in the stickleback PAC1A
and PAC1B respectively, two perfect microsatellite repeats
(TG)21 and (CA)34 and an imperfect (CA)21 dinucleotide
repeat are present. The PAC1A gene in medaka contains a
(TG)8 repeat, although no microsatellite is present in the
paralogue gene (Additional file 3). So far no microsatel-
lites have been described or identified in the mammalian,
chicken, frog and goldfish homologue receptors [28,44-
46]. The importance of PACAP in growth and develop-

ment [17,18] and the presence of a microsatellite in its
receptor suggests it may be a useful tool for genomic and
functional analysis. A previous study of early growth vari-
ation in the Artic charr (Salvelinus alpinus, [47]) revealed a
strong marker-trait association with a single nucleotide
polymorphism (G/A) of the 18th base pair of the intronic
region between the exons that code for PACAP-related
peptide and PACAP in the PRP/PACAP gene precursor.

The human SCT peptide failed to significantly stimulate
cAMP production by the sbPAC1 receptor which may indi-
cate either a failure to activate the cAMP signalling path-
way or a failure to bind the receptor. The preceding results
are at odds with the physiological role attributed to secre-
tin in fish, pancreatic stimulation via cholecystokinin and
oxyntomodulin [48]. However, SCT has only been identi-
fied by immunohistochemistry in the gastrointestinal
tract of the flower fish (Pseudophoxinus antalyae) [49]. The
failure to identify in teleosts a gene for the SCT receptor or
its ligand suggests they probably evolved subsequent to
teleost divergence or were lost during the teleost radiation
and the significant sequence differences between SCT and
VIP or PACAP probably explains the absence of activity of
SCT in the present study [16].

Gene duplicates and generation of alternative splice iso-
forms are major contributors to functional diversity of the
vertebrate proteome. In teleosts, the existence of gene
duplicates is proposed to reduce the incidence of gene iso-
forms since they are assumed to generate functional
redundancy of single-copy gene splice isoform [50], and
this may explain reduced number of PAC receptor splice
isoforms detected in the sea bream. In sea bream, a
PAC1Ahop receptor isoform was identified with an over-
lapping tissue distribution with the shorter PAC1A recep-
tor transcript, but it was different from the tissue
distribution reported for alternative splice isoforms in
zebrafish and goldfish [26,28]. Recently in zebrafish, two
novel IL3 splice isoforms were characterised, a hop2 iso-
form (insertion of 87 bp) present in ovaries and a novel
skip isoform (resulting in a truncated protein) in the gills
[28]. Characterisation of a recently isolated PAC1 and
hop1 receptor isoform in the goldfish reveals that they
have similar activation profiles raising question about
their functional role [26]. The mounting evidence for the
presence of hop1 receptor isoforms in all vertebrates sug-
gests that a homologue transcript was probably also
expressed by the PAC1 receptor gene in ancestral metazoa
[50]. In order to understand the functional relevance of
duplicate receptors and isoforms it will be important to
establish if they are co-localised in vivo in order to estab-
lish possible interactions.

Expression studies of the sbPAC1 genes demonstrated they
are functional family 2 GPCRs and PACAP and VIP pep-

Production of maximal cAMP by the recombinant Cos7 cell expressing sbPAC1A (A) and sbPAC1B (B)Figure 7
Production of maximal cAMP by the recombinant 
Cos7 cell expressing sbPAC1A (A) and sbPAC1B (B). 
Transfected cells expressing the receptors were incubated 
with different concentrations of PACAP27 (�) PACAP38 (�) 
and VIP ( ). Data was normalized and receptor potency pro-
files is given as percentage of intracellular cAMP produced 
per well and error bars indicate the ± SEM of a minimum of 
three independent experiments performed in duplicate. Only 
the lower error bars are represented.
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tides were able to stimulate cAMP production in a dose
dependent manner. Such assays also indicate that both
sea bream receptors are specific PACAP receptors and have
different activation profiles for VIP although, as only
cAMP production was measured, it remains to be estab-
lished if a similar activation profile occurs for the alterna-
tive IP3 signalling pathway. One hypothesis for the
apparent functional divergence and differential expres-
sion of sea bream paralogue receptors may be related to
functional specialisation related to the existence in tele-
osts of duplicate ligands which might also explain the sig-
nificant amino acid changes (48% sequence identity)
observed in the N-terminal region. In mammals, impor-
tant amino acid motifs involved in receptor binding have
been identified and mutation studies reveal the impor-
tance of the N-terminus [20]. Amino acid motifs involved
in ligand binding are conserved between tetrapod and tel-
eost homologue receptors and include the motifs W-D, G-
W-S and the following amino acids W, P and P (Figure 3).
However, the amino acid motifs that account for potential
ligand selectivity of the teleost duplicated receptors are
still unknown, future receptor mutation studies should
help to clarify this issue.

An intriguing aspect about the sbPAC1 genes is their diver-
gent tissue distribution and this may be the basis of their
specific physiological functions and persistence in the
genome. Understanding the biological function of recep-
tors is complex as it is not only the availability and con-
centration of receptors but also of ligands and accessory
factors at a given site which will determine receptor pref-
erence/activity and ultimately biological function. Physio-
logical studies of the ligands, PACAP and VIP, in teleosts
are not very numerous and certainly do not encompass all
the actions assigned in mammals making it difficult cur-
rently to assign possible biological roles to the duplicate
receptors. However, one major function attributed to
PACAP is its role in GH-release [46,51,52]. In common
with mammals, PACAP38 is the predominant isoform in
teleost brain and this peptide is found to have a more
potent stimulatory effect on fish GH secretion by pituitary
cells when compared to GHRH and GnRH (potent mam-
malian GH releasing factors). In contrast, VIP has little or
no effect on GH release [46,51,52] and this has been taken
to suggest that teleost GH-release is mediated via PAC1
pituitary receptors and the sea bream PAC1B may play a
central role in this process. Relatively few studies have
been carried out to characterise the biological activity of
fish VIP and as in mammals it is proposed to have an
important role in the gastrointestinal system [51,53,54].
In cod, Gadus morhua, VIP stimulates gastric and pancre-
atic secretion [55,56] and in tilapia it is involved in ion
and water absorption by the intestine [57]. In sea bream,
tissue distribution of PACAP and VIP transcripts indicate
that PACAP is mainly restricted to nervous tissue whilst

VIP is abundant in the gastrointestinal system but is also
present in a wide range of other tissue (unpublished data).
The widespread distribution in non nervous tissue of
sbPAC1A indicates that this receptor may have a broader
physiological role. Unquestionably much more work is
required to elucidate the physiological relevance of dupli-
cate sbPAC1 and alternative approaches such as ligand
mutational studies; gene knock-down strategies and phys-
iological experiments will be needed.

Conclusion
Duplicate PAC1 receptors genes are present in the majority
of teleost genomes, although the reason for their persist-
ence is not yet clearly established. The present study with
duplicate sbPAC1 receptors suggests that their mainte-
nance may be due to a process of neofuncionalisation as
a consequence of the accumulation of mutations in the
ligand binding domain of the receptors after duplication.
Such a proposal is supported by the poor sequence con-
servation (48%) in the N-terminal ligand binding domain
of the receptor. The divergent tissue distribution of the
receptors, with one form predominantly found in nervous
tissue and the other with a more widespread distribution
is highly suggestive of functional divergence. The isolation
and characterisation of ligands for the receptors in teleosts
will be an important step in establishing receptor func-
tion, as will improved characterisation of the tissue distri-
bution of both receptors and ligands and the factors
regulating their expression.

Methods
Sea bream cDNA library screening
A homologous PAC1 receptor probe (620 bp) was
obtained by RT-PCR using sea bream brain cDNA and
degenerate primers flanking transmembrane regions 2
and 7 (Table 2). PCR reactions were performed in a 25 μl
reaction volume with 1 × PCR buffer (Biocat, Italy), 1,5
mM MgCl2 (Biocat), 0,2 mM dNTPs (GE healthcare, UK),
1 mM of each primer, EuroTaq DNA Polymerase 5 U/μl
(Biocat) and DNase Free water (Sigma-Aldrich). The PCR
product was used to screen sea bream pituitary and kidney
cDNA libraries constructed using the λ-Zap vector II kit
(Stratagene, USA) [58]. The phage libraries were titred to
obtain approximately 500,000 pfu per plate and blotting
procedures were performed in duplicate using Nylon
membranes (Hybond-N, GE healthcare, UK). Probes were
radioactively labelled using α-P32dCTP (GE healthcare,
UK) and the Rediprime kit (GE healthcare, UK) following
manufacturer's instructions. Membrane filters were
hybridised overnight at 58°C with Church-Gilbert
hybridisation solution (1 mM EDTA pH8; 0.5 M NaPO4
pH7.2, 7% (w/v) SDS) and washed under high stringency
conditions at 58°C and exposed to X-OMAT film (Kodak,
USA) at -80°C for 24 hours. Positive clones were selected
based on the intensity of signals and their presence on the
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duplicate plate. Single clones were excised into phagemid
vectors using the manufacturer's protocol and DNA was
extracted and sequenced to confirm its identity.

RT-PCR analysis of receptor tissue distribution
Tissue distribution and analysis of PAC1 splice variants
was carried out by RT-PCR. Total RNA was extracted from
sea bream pituitary, brain, kidney, gills, gut, heart,
gonads, liver and skin using TRI reagent (Sigma-Aldrich,
Spain). Mature sea bream of 11–13 months old weighing
approximately 350–500 g were sacrificed by decapitation
and their tissues collected and immediately frozen at -
80°C. cDNA was synthesised using 1 μg of sea bream total
RNA and a reverse transcription system kit (Promega,
Spain) and hexameric oligonucleotides following the
manufacture's instructions. The quality of cDNA obtained
was verified by PCR with sea bream EF1-α (a housekeep-
ing gene) using the following thermocycle; 94°C for 2
minutes; 25 cycles (94°C for 1 minute, 58°C for 1 minute
and 72°C for 1 minute) and a final extension step at 72°C
for 5 minutes. Specific primers for each sbPAC1 gene were
designed (Table 2) and PCR was performed as previously
described using the following cycle: 94°C for 2 minutes;
34 cycles (94°C for 1 minute, 62°C for 1 minute and
72°C for 1 minute) and a final step at 72°C for 5 minutes.
The products obtained were sequenced to confirm their
identity.

Genotype analysis
The variability of a microsatellite identified in the 5' UTR
of sbPAC1A and sbPAC1B was assessed using specific
primers (Table 2) and sea bream genomic DNA from fish
of diverse geographic origins (Morocco, Portugal, France
and Adriatic sea) and from a genomic panel composed of
parents and 50 first generation progeny. PCR reactions
were performed using fluorescently labelled forward
primers (0.3 μM; 6-FAM and TET; Metabion International

AG) and unlabelled reverse primers (0.3 μM) using the
following thermocycle: 95°C for 2 minutes; 35 cycles
(95°C for 30 seconds, 57°C for 30 seconds and 72°C for
30 seconds) and a final step at 72°C for 5 minutes. PCR
products were separated using high resolution 6% Long
Ranger acrylamide gels (Cambrex, USA) on a automated
ABI 377 sequencer (Applied Biosystems, USA) and data
was analysed with the GenScan software (Applied Biosys-
tems, USA).

Database searches, sequence alignments and phylogenetic 
analysis
The conserved amino acid sequence of sbPAC1 transmem-
brane (TM) domains was used to search for homologous
receptors in teleost genomes. Briefly, the amino acid
sequences of the seven TM domains were extracted, con-
catenated and used in BLAST sequence similarity searches
[59] against the Tetraodon nigroviridis [41], medaka
(Oryzias latipes), stickleback(Gasterosteus aculeatus),
zebrafish (Danio renio) [41] and atlantic salmon (Salmon
salar) [60] genome databases and NCBI EST database
[61]. The amino acid sequence of the TM domains of a
total of 52 receptors were concatenated and a multiple
sequence alignment was produced using the ClustalX
vs1.83 (Blosum matrix and Gap opening penalty 10 and
Gap extension 0.2) [62] and percentage of identity/simi-
larity calculated using Genedoc [63]. The alignment pro-
duced (length 170, with 162 informative sites) did not
require the insertion of gaps and was used to construct
phylogenetic trees using both maximum parsimony and
neighbour joining methods [64] with 1000 bootstrap rep-
licates, complete gap deletion and Poisson correction in
MEGA 3.1 phylogenetic programme [65].

Short-range linkage analysis
The gene environment of the Takifugu, Xenopus, chicken
and human PAC1 homologue regions were compared

Table 2: Primer sequences used for PCR amplification reactions.

PRIMERS

Probe synthesis
PAC1 TM2fwd ct(g/t)(a/t)tt(g/t)tgtccttcatcctga TM7rev ac(a/c)acaaarccctg(a/g)aagga

Expression studies
SbPAC1A 713T31F cgagcgatgaccttgagttag 713T3R4 gggaggctgatgttggcgtt
SbPAC1B 1CF5 catacggacacatactatgca 1CR4 agtggccggggtctcggc
EGF EGFαfwd cgctgtgacaacctgctg EGFαrev agttccaataccgccgat

Cloning
SbPAC1A pcDNA3CD33T7NFwd 

ccgagatctagagtccgagcactgg
pcDNA3CD33T7NRev 
ggcgaattctcaggtggggaggctgat

SbPAC1B pcDNA3CD33T7NFwd 
ccgagatctacaacaggtctcttcaaac

pcDNA3CD33T7NRev ggcgaattctcaagtggccggggt

Microsatellite analysis
SbPAC1A SpauPK713F ggagtgtgttgccgctga SpauPK713R gtatccaaaaggctccacga
SbPAC1B SpauPP1CF acccgttcatttcgcaca SpauPP1CR ttcgccctccacacaaga
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using a sequence similarity approach. The human and
chicken gene environments were accessed using the NCBI
Mapview interfaces [61] and Xenopus using the Ensembl
database [41]. The gene environment of the Takifugu scaf-
folds (release17/05) was accessed using NIX annotation
[40] and the neighbouring genes were used to search for
orthologues in human, chicken and Xenopus genomes
using the tblastn algorithm [61].

Construction of the recombinant expression vector
Specific primers for each sbPAC1 gene were designed to
amplify the mature receptor sequence (Table 2) and were
cloned into pcDNA3 vector (Invitrogen, UK) containing a
signal peptide of CD33 and a T7-epitope tag (CD33-T7-
pcDNA3, [66]). In order to facilitate cloning, restriction
digestion sites for BglII and EcoRI enzymes were incorpo-
rated in the forward and reverse primers respectively.
Template amplification was carried out using the thermo-
cyle; 95°C for 2 minutes; 35 cycles of (95°C for 1 minute,
68°C for 1 minute and 70°C 2 minutes); 72°C for 10
minutes with a proof-reading Pfu DNA polymerase
(Promega, Spain) in a 25 μl reaction volume containing 1
× PCR buffer (Promega, Spain), 1,5 mM MgCl2 (Promega,
Spain), 0,2 mM dNTPs (Amersham), 1 mM of each primer
and 1,5 U Pfu DNA polymerase (3 U/μl)) and DNase Free
water (Sigma-Aldrich, Spain). The amplified PCR prod-
ucts were cloned into pGEMT-easy vector (Promega,
Spain), sequenced and subcloned into CD33-T7-pcDNA3
vector in frame with the T7-epitope tag. The recombinant
constructs produced (CD33-T7-pcDNA3+sbPAC1A and
CD33-T7-pcDNA3+sbPAC1B) were sequenced and used
to transfect mammalian Cos7 and Hek293 cells lines. The
CD86 (NM_175862) membrane protein of the immu-
noglobulin superfamily cloned in CD33-T7-pcDNA3
expression vector was used as positive control for cell
transfection (de Vet et al., 2001).

Mammalian cell transfections
Mammalian Cos7 and Hek293 cell lines were transfected
using the Effectene transfection kit (Qiagen, Germany)
and the success of transfection was assessed by western
blot and immunofluorescence assays using antisera raised
against the T7-epitope tag protein [66]. One day prior to
transfection, approximately 60,000 to 70,000 Cos7 and
Hek293 cells were seeded and transfections carried out
using approximately 0.4 μg of recombinant construct
(pcDNA3+sbPAC1A or B) and cells were grown for 2 days
at 37°C. The viability of transfected cells was determined
by dye exclusion using Trypan blue (0,4% solution,
Sigma) and the success of transfection calculated by fluo-
rescent confocal microscopy using DAPI (4',6-Diamidino-
2-phenylindole) and FITC (Fluorescein) staining for Cos7
cells and the FACS (Fluorescence Activated Cell Sorting)
method for Hek293 cells. The percentage of cell transfec-

tion was estimated to be approximately 30% in both cell
lines.

Immunofluorescence and western blot assays
An anti-T7 epitope monoclonal antibody (Novagen, UK)
was used in immunofluorescence and western blots assays
to assess the success of transfection and production of
recombinant fusion protein (T7+sbPAC1) as described in
de Vet et al., 2001 [66]. Briefly, for the immunofluores-
cence assay, cells were grown in 6 well plates (Greiner,
Germany) on sterile cover slips. Approximately 120,000
cells were used per well and cell transfections were carried
out using 0.4 μg of DNA as described above. Immunoflu-
orescence localization studies were performed [67] and
DAPI and FITC staining examined using a microscope
linked to a confocal imaging system (Bio-Rad, UK). West-
ern blots were carried out by lysing transfected cells (30
μl) in 1× Laemmli SDS-PAGE loading buffer [68] and pro-
teins were fractionated on a 10% SDS-PAGE gel with a
constant current of 35 mA. The fractionated proteins were
transferred to a nitrocellulose membrane (GE healthcare,
UK) and blocked (2% milk powder in 1 × PBS/
0.1%Tween) for 1 hour at room temperature. Incubations
were carried out with anti-T7 tag monoclonal antibody
(Novagen, UK) and a secondary antibody coupled to
Horse-Radish peroxidase as described in de Vet., 2001
[66]. Immunoreactive proteins were detected using the
ECL system (PerkinElmer Life Sciences, UK). The size of
the immunoreactive protein was comparable to the esti-
mated sizes of the recombinant receptor protein deter-
mined in silico using the Swiss Prot database interface
[69].

Ligand-binding studies
Ligand binding studies were performed two days after
transfections, in three independent experiments. Trans-
fected cells were incubated in duplicate with different con-
centrations (10-6 to 10-11M) of the human VIP, PACAP38
and secretin (SCT) peptides and ovine PACAP27 peptide
for 30 minutes (Sigma-Aldrich, Spain). Homologous sea
bream peptides are unavailable but their predicted amino
acid sequences are 82%, 100%and 92% identical to
human VIP, PACAP27 and PACAP38 respectively and
important amino acids at N-terminus potential involved
in receptor binding are totally conserved (unpublished
data). Prior to ligand-binding assays, Cos7 and Hek293
cells were washed 3 times with DMEM medium without
fetal calf serum and incubated in a CO2 incubator with 1
mM of IBMX (3-Isobutyl-1-Methylxantine) for 30 min-
utes. Ligand-binding assays were performed by incubating
the cells in fresh medium containing the peptides in the
presence of 1 mM IBMX for 30 minutes at 37°C in the
CO2 incubator. After incubation, cells were lysed and
stored at -80°C until required. Mammalian Cos7 and
Hek293 cells transfected with wild type pcDNA3 were
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used as negative controls which were incubated with the
highest tested peptide concentration (10-6mM). Prior to
assays the responsiveness of transfected Cos7 and Hek293
cells was tested by stimulating cAMP production using
Forskolin (10 mM, 1 mM and 0.1 mM; Sigma-Aldrich).

Radioimmunoassay (RIA) and statistical analyses
The quantification of cAMP produced was determined by
radioimmunoassay using the TRK432 kit (GE Healthcare,
UK) following the manufacturer's instructions. Cos7 and
Hek293 cells were lysed by sonication, centrifuged and
the supernatant heat denatured for 10 minutes at 100°C.
The concentration of cAMP produced (pmol/well) was
determined in duplicate for each sample and calculations
performed based on a linear regression curve constructed
using standard concentrations of labelled (3H) cAMP. The
cAMP data was normalized as a percentage of stimulation
above basal levels and plotted as a percentage of cAMP
production per well (%cAMP/well). The results are pre-
sented as the mean ± SEM of three independent experi-
ments in duplicate and analysis was performed using the
SigmaPlot9.01 programme. Data was analyzed by com-
paring the potency profile of each sbPAC1 receptor in the
presence of different concentrations of test peptides and
by comparing the potency profile of both receptors in the
presence of identical peptide concentrations. The presence
of significant differences in cAMP production was
assessed with the SigmaStat3.11 programme using two
way Anova and the Holm-Sidak method for pairwise mul-
tiple comparisons (P < 0.05 and P < 0.001 were consid-
ered statistically significant).
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