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Abstract
Background: Robustness is a fundamental property of biological systems and is defined as the
ability to maintain stable functioning in the face of various perturbations. Understanding how
robustness has evolved has become one of the most attractive areas of research for evolutionary
biologists, as it is still unclear whether genetic robustness evolved as a direct consequence of
natural selection, as an intrinsic property of adaptations, or as congruent correlate of environment
robustness. Recent studies have demonstrated that the stem-loop structures of microRNA
(miRNA) are tolerant to some structural changes and show thermodynamic stability. We therefore
hypothesize that genetic robustness may evolve as a correlated side effect of the evolution for
environmental robustness.

Results: We examine the robustness of 1,082 miRNA genes covering six species. Our data suggest
the stem-loop structures of miRNA precursors exhibit a significantly higher level of genetic
robustness, which goes beyond the intrinsic robustness of the stem-loop structure and is not a
byproduct of the base composition bias. Furthermore, we demonstrate that the phenotype of
miRNA buffers against genetic perturbations, and at the same time is also insensitive to
environmental perturbations.

Conclusion: The results suggest that the increased robustness of miRNA stem-loops may result
from congruent evolution for environment robustness. Potential applications of our findings are
also discussed.

Background
Robustness, a fundamental and ubiquitously observed
phenomenon in biological systems, is defined as the abil-
ity to maintain stable functioning in the face of various
perturbations, and is characterized as genetic or environ-
mental robustness, depending on whether the perturba-

tions are inheritable or not [1]. Genetic robustness
describes insensitivity of a phenotype facing genetic muta-
tions, and the insensitivity to environmental factors is
called environmental robustness. Phenotype robustness
appears at various levels of biological systems, including
gene expression, protein folding, metabolic flux, physio-
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logical homeostasis, development, and even organism fit-
ness [2]. It is consequently not surprising that biologists
have a long-standing interest in robustness, going back to
Fisher's work on dominance [3-5], and to Waddington's
developmental canalization research [6,7]. Hiroaki
Kitano argues that the requirements for robustness and
evolvability are similar, since robustness facilitates evolu-
tion and evolution favours robust traits [8]. A proper
understanding of the origin of robustness in biological
systems will catalyze our understanding of evolution [9].

The evolution of mechanism underlying the buffering of
the phenotype against genetic and environmental influ-
ences has received much theoretical and experimental
attention in recent years, yet the evolutionary origin of the
observed robustness remains unresolved. Whether it is a
consequence of natural selection or a nonadaptive corre-
lated side-effect of other phenotypic traits is by and large
unknown. A recent review article categorized the theories
addressing the evolution of genetic robustness into three
main classes: adaptive, intrinsic, and congruent [2]. The
most straightforward explanation for the evolution of
robustness, according to the Darwinian tradition, is adap-
tive robustness. In this scenario, almost all mutations lead
to deviations from the optimum, and robustness is
favored by natural selection. High mutation rates, large
populations, and asexual reproduction generally favor the
evolution of robustness [10,11]. Genetic robustness may
also evolve simply because buffering is a necessary conse-
quence of character adaptation; that is, robustness is a
nonadaptive correlated side effect of the stabilizing selec-
tion acting on other traits [12]. Additionally, because
environmental perturbations often have a higher fre-
quency and stronger impact on fitness, they will serve as
the driving force; that is, genetic robustness evolves as a
correlated side-effect of the evolution for environmental
robustness. This is an appealing hypothesis as there is no
aspect of an organism that is inherently and persistently
vulnerable to genetic but not environmental perturba-
tions [12]. Support for this theory comes from a recent
computational study of RNA secondary structure by Ancel
and Fontana [13], who find that RNA shapes that are
robust against environmental (thermodynamic) perturba-
tions are also robust against mutational perturbations.
Simplified modeling of protein structures suggests that a
similar correlation between genetic robustness and ther-
modynamic stability might also exist for proteins [14-16].
Further supports come from recent studies of heat-shock
proteins, such as Hsp90 and GroEl, which are thought to
have evolved to protect organisms from environmental
and developmental perturbations, but appear to also
buffer against genetic perturbation in Drosophila [17], Ara-
bidopsis [18], and Escherichia coli [19]. However, to date,
the extent to which each of these evolutionary forces con-
tributes to the evolution of robustness remains unre-

solved, partly due to the difficulty in providing evidence
for robustness in natural biological systems [20].

Addressing this challenge, recent studies have resorted to
bioinformatics and experimental approaches. One impor-
tant effort to provide the evidence of environmental
robustness has focused on the thermodynamic stability of
noncoding RNA secondary structures [21-26]. Although
the shuffling sequences generated in these studies rule out
the bias of base composition, they do not preserve the
structural phenotype of the native RNA sequences. Conse-
quently, it cannot be determined whether the observed
increased robustness goes beyond the intrinsic robustness
of specific, functionally important structures. Comparing
with environmental robustness, genetic robustness, on
the other hand, is connected with major technical difficul-
ties [20]. The classical approach has inferred genetic
robustness from the increase in genetic variance after a
major mutation or exposure to an environmental chal-
lenge during development [2], as exemplified by the
measurements of vibrissae number in mice, ocelli in D.
subobscura, and wing- and cross-vein interruptions and
scutellar bristle numbers in D. melanogaster, which are all
discussed in detail by Scharloo [27]. However, the evi-
dence is often indirect and suffers from the lack of a natu-
ral reference genotype [20]. Experimental evolution is a
more direct approach that has been applied to the study
of robustness recently, which utilizes direct laboratory
observation of short-term evolutionary processes, mostly
in microbes [19,28]. Although its evolutionary potential
is limited by time constraints, this approach does not suf-
fer from a lack of control and promises exciting new data
and insights for a more comprehensive theory of the evo-
lution of genetic robustness [2].

Using a plausible background model is another strategy
applied to elucidate the evolution of robustness, allowing
evaluation of the significance of any greater robustness
found in the wild-type (WT) [2]. Wagner and Stadler have
compared the mutational stability of conserved and non-
conserved elements in the secondary structure of a RNA
viral genome with respect to point mutations, using non-
conserved elements as the reference set [29]. Their
research has demonstrated that the conserved elements
show a consistently lower variability than non-conserved
elements, suggesting that the virus evolves to a state of
increased mutational robustness. While their data do not
prove that selection that acts directly on the mutational
stability of the RNA secondary structure, increases ther-
modynamic stability, this study do provide the first hint
that "genetic canalization" (genetic robustness) can, in
fact, evolve as a correlated response to selection for "envi-
ronmental canalization" (thermodynamic stability), as
predicted by population genetic models [1]. On the other
hand, experimental studies have demonstrated that
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miRNA secondary structures are tolerant to some struc-
tural changes [30-33], with reports that miRNA precursors
exhibit a significantly higher level of thermodynamic sta-
bility [21]. We therefore hypothesize that miRNA genetic
robustness may evolve as a correlated side effect of the
evolution for environmental robustness. To our knowl-
edge, no systematic effort has been made to test this
hypothesis in a genome-wide scale, with the exception of
an experimental study on the effect of single point muta-
tion for limited miRNAs [30-33].

Previous researches have demonstrated that miRNAs are
abundant endogenous ~22-nucleotide (nt) noncoding
RNAs, occupying between 1–5% of the genes in any given
animal genome [34]. miRNAs regulate gene expression at
the post-transcriptional level for cleavage or translational
repression through the binding of a minimal-recognition
'seed' sequence [35-38]. Recent comparative phylogenetic
studies have revealed that conserved miRNA-binding
sequences are in more than one-third of all genes, suggest-
ing that miRNA regulation may be relevant to a large por-
tion of cellular processes [39-44]. Mature miRNAs are
cleaved from ~70 nt precursors (pre-miRNA) that fold
into a stem-loop hairpin structure, through the action of
Dicer endonuclease [45-47]. The miRNA stem-loop struc-
ture is conserved in evolution, and plays a crucial role
throughout miRNA gene maturation processing steps
[33,46,48-50]. Additionally, there is a selective pressure to
stabilize the stem-loop structure and some structural
changes are tolerated [51], which may result in the evolu-
tion of robustness. As well, the use of program packages
for RNA secondary structure prediction, such as Mfold
[52] and Vienna RNA package [53], facilitates genotype-
phenotype mapping and measurement of the structural
robustness of a given miRNA stem-loop sequence, by
comparing the predicted structure of this sequence with
the predicted structure of all its one-mutant neighbors.
Different types of reference sequences, with similar phe-
notypes and/or with exact or nearly exact mononucleotide
and dinucleotide base composition as the real pre-
miRNA, can be easily generated for miRNAs, allowing for
careful control of the effects of secondary structure evolu-
tion. These merits make the miRNA stem-loop structure
an ideal system to study the evolution of genetic robust-
ness.

In our previous study, we have developed a method to
quantitatively measure the genetic robustness of RNA sec-
ondary structure [54]. Here, we will apply this method to
investigate the robustness of 1,082 miRNA genes from six
different species. Our data suggest that the hairpin struc-
tures of miRNA precursors exhibit a significantly higher
level of mutational robustness. Additionally, through the
careful design of reference backgrounds, we show that this
excess robustness goes beyond the intrinsic robustness of

the stem-loop structure, and is not the byproduct of a base
composition bias. Examination of the environmental
robustness of real miRNA stem-loops also demonstrates
that the phenotype of miRNAs buffers against genetic var-
iations, at the same time is insensitive to environmental
perturbations. These data suggest that the increase in
genetic robustness may evolve as a correlated side effect of
the evolution for environmental robustness.

Results

For each real pre-miRNA, the robustness  at threshold

level T1 is compared with that of 1,000 random sequences,

and the P-value versus Z-score is showed in Figure 1(a).
Figure 2(a) shows the corresponding P-value distribution
of genetic robustness for the 1,082 miRNAs at threshold
level T1. Of the 1,082 miRNA investigated, 920 (85.0%),

534 (49.4%), 376 (34.8%) miRNA genes show significant
increases in robustness at FDR-controlled P-values of <
0.05, < 0.01, and < 0.005, respectively (Figure 3 and Table
S1, Additional file 15). We further compare the robustness
y1 of each real pre-miRNA with that of 1,000 pseudo pre-

miRNAs, and the P-value versus Z-score is showed in Fig-
ure 1(b), so as to exclude the intrinsic robustness associ-
ated with the stem-loop hairpin structure. The
corresponding P-value distribution of genetic robustness
for the 1,082 miRNAs at threshold level T1 is showed in

Figure 2(a). Our results suggest 787 (72.7%) miRNA
genes of 1,082 are significantly more robust than pseudo
pre-miRNAs at FDR-controlled P-value of < 0.05 (Figure 3
and Table S2, Additional file 15). These data suggest that
the genetics of miRNA robustness is not a byproduct of
the specific stem-loop structure. Additionally, investiga-
tion of the robustness y1 of miRNA genes within species is

similar for each species individually (Table 1 – 2).

The mononucleotide and dinucleotide frequencies of an
RNA sequence, not preserved in random sequences, are
crucial for the physical stability of the secondary structure
[21-23,26]. It is consequently essential to verify that the
greater robustness of real pre-miRNAs is not a byproduct
of a bias in the base composition of the real pre-miRNA
sequences, compared with random sequences. To this
end, we generate four types of shuffled miRNAs that pre-
serve the exact or nearly exact mononucleotide and dinu-
cleotide base composition as the real pre-miRNA (see

Methods). The robustness  of each real pre-miRNA is

compared with that of 1,000 shuffled sequences gener-
ated by four types of shuffled methods, and the P-value
versus Z-score is showed (Additional files 1 and 2). More
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than 910 of the 1,082 (>84% for the four types of shuffled
methods) miRNA sequences have a significantly larger

 at FDR-controlled P-value of < 0.05, with a high pro-

portion (>34% for the four types of shuffled methods) is
also observed at FDR-controlled P-value of < 0.005 (Fig-
ure 3 and Table S1, Additional file 15). To further confirm

that the excess robustness goes beyond the intrinsic
robustness of the stem-loop structure, we generate four
types of reference sets for each miRNA, consisting of 1,000
shuffled pseudo pre-miRNAs that preserve not only the
stem-loop structure, but also the exact or nearly exact
mononucleotide and dinucleotide frequencies as real pre-

γ 1
m

P-value distribution of genetic robustness for the 1,082 miRNAs at threshold level T1Figure 2
P-value distribution of genetic robustness for the 1,082 miRNAs at threshold level T1. For each real pre-miRNA, 

the robustness  is compared with that of 1,000 random sequences (a) and random pseudo pre-miRNAs (b).
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Correlation between Z-scores and P-values of genetic robustness for all the 1,082 miRNAs at threshold level T1Figure 1
Correlation between Z-score and P-value of genetic robustness for all the 1,082 miRNAs at threshold level T1. 

For each real pre-miRNA, the robustness  is compared with that of 1,000 random sequences (a) and random pseudo pre-

miRNAs (b), and the Z-score and P-value are computed. The curve for a normal distribution of mean 0 and a standard devia-
tion of 1 is also displayed.
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miRNA (see Methods). Of the 1,082 miRNA genes, over
810 (>75%) miRNAs show significant more robust than
shuffled pseudo pre-miRNA sequences at FDR-controlled
P-value of < 0.05 (Figure 3, Table 2, Additional files 3 and
4, and Table S2- Additional file 15), suggesting that the
genetic robustness of miRNA is not a byproduct of the
specific stem-loop structure and that there is no bias of the
base composition on the intrinsic robustness analysis.
These results also demonstrate that the different types of
shuffled methods are indistinguishable (Figures 3, Addi-
tional files 1, 2, 3, 4, Tables 1, 2, and Table S1–S2, Addi-
tional file 15).

To test the effect of the threshold level on robustness, we
also analyze the genetic robustness at different threshold

levels (from T1 to T9). Figure 4 shows the number of sig-
nificantly robust miRNAs with FDR-controlled P-values of
< 0.05, < 0.01, < 0.005, and < 0.001 at different threshold

levels, where the robustness , i = 1, 2, �, 9 for each real

pre-miRNA is compared to that of 1,000 random
sequences and pseudo pre-miRNA sequences at each
threshold level. Increased threshold levels result in a rapid
increase in the number of robust miRNA sequences. After
threshold level T6, the number of miRNAs with FDR-con-
trolled P-values of < 0.05, < 0.01, < 0.005, and < 0.001 as
filters is almost identical, and is almost equal to 1,082 at
T9. Similarly, we also show the number of significantly
robust miRNAs with different FDR-controlled P-values at

different threshold levels, where the robustness , i = 1,

γ i
m
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m

Table 1: Z-scores of the robustness  at threshold level T1. Rates for each real pre-miRNA compared to 1,000 random and four 

types of shuffled sequences.

Species Random Zero-markov Mononucleotide First-markov Dinucleotide

H. sapiens -2.39 ± 0.64 -2.42 ± 0.63 -2.42 ± 0.63 -2.45 ± 0.63 -2.44 ± 0.64
C. elegans -2.50 ± 0.92 -2.48 ± 0.89 -2.47 ± 0.89 -2.52 ± 0.90 -2.49 ± 0.89

D. melanogaster -2.44 ± 0.75 -2.39 ± 0.74 -2.39 ± 0.74 -2.43 ± 0.74 -2.40 ± 0.73
D. rerio -2.39 ± 0.59 -2.40 ± 0.58 -2.40 ± 0.57 -2.44 ± 0.57 -2.41 ± 0.57

M. musculus -2.23 ± 0.79 -2.25 ± 0.77 -2.26 ± 0.77 -2.29 ± 0.77 -2.27 ± 0.76
R. norvegicus -2.32 ± 0.78 -2.37 ± 0.75 -2.37 ± 0.76 -2.40 ± 0.76 -2.37 ± 0.75

Average -2.37 ± 0.71 -2.38 ± 0.69 -2.38 ± 0.69 -2.42 ± 0.70 -2.40 ± 0.69
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m

Number of genetically robust miRNAs with FDR-controlled P-values of < 0.05, 0.01, 0.005, and 0.001 at threshold level T1Figure 3
Number of genetically robust miRNAs with FDR-controlled P-values of < 0.05, 0.01, 0.005, and 0.001 at thresh-
old level T1. 2D histogram plots of the number of miRNAs with significantly genetic robustness. Each bar is con-
stituted with an outer hollow sub-bar and an inner solid sub-bar, which represents the number of significantly robust real pre-
miRNAs compared with random/shuffled sequences and random/shuffled pseudo pre-miRNAs, respectively.
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2, �, 9 of each real pre-miRNA, is compared with that of
1,000 shuffled sequences and shuffled pseudo pre-miR-
NAs at each threshold level, respectively (Additional files
5 and 6). These data demonstrate the threshold levels
have not affect robustness and the different types of shuf-
fled methods are indistinguishable (Figure 4 and Addi-
tional files 5 and 6).

Due to the correlation between the thermodynamic stabil-
ity of the minimum free energy structure of a given
sequence and its genetics robustness [55], the increased
genetic robustness described above may arise from the
increased thermodynamic stability of miRNAs, as recently
reported by Bonnet et al. [21]. If so, genetic robustness
may have evolved as a correlated side effect of environ-
mental robustness. Here, we not only examine the ther-
modynamic stability of miRNAs in an analogous manner

to that done by Bonnet et al. [21] but also using a back-
ground model, based on random and shuffled pseudo
pre-miRNAs, that maintain the stem-loop structure as in
the real pre-miRNA (see Methods). Figure 5 graphs P-
value against Z-score of environmental robustness for all
the 1,082 miRNAs, and the corresponding P-value distri-
bution is showed in Figure 6. Comparison with random
sequences suggests 917 out of 1,082 (84.8%) show a high
level of thermodynamic stability at FDR-controlled P-
value of < 0.05, similar to that previously reported [21]
(Figure 7, Table 3, and Table S3, Additional file 15). As
comparing with random pseudo pre-miRNAs, significant
thermodynamic stability is also observed in most miRNAs
(904 of 1,082, 83.5%) at FDR-controlled P-value of <
0.05, suggesting that it is not a byproduct of the special
stem-loop structure (Figure 7, Table 4, and Table S4, Addi-
tional file 15). There are also a high proportion of miRNA
sequences at each FDR-controlled P-value (Figure 7, Table

Number of genetically robust miRNAs with FDR-controlled P-values of < 0.05, 0.01, 0.005, and 0.001 at different threshold lev-elsFigure 4
Number of genetically robust miRNAs with FDR-controlled P-values of < 0.05, 0.01, 0.005, and 0.001 at differ-

ent threshold levels. For each real pre-miRNA, the robustness , i = 1, 2, �, 9 is compared with 1,000 random sequences 

(a) and random pseudo pre-miRNAs (b).
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Table 2: Z-scores of the robustness  at threshold level T1. Rates for each real pre-miRNA compared to 1,000 random and four 

types of shuffled pseudo pre-miRNAs.

Species Random Zero-markov Mononucleotide First-markov Dinucleotide

H. sapiens -2.11 ± 0.62 -2.14 ± 0.61 -2.14 ± 0.61 -2.17 ± 0.61 -2.17 ± 0.62
C. elegans -2.18 ± 0.89 -2.17 ± 0.86 -2.16 ± 0.86 -2.20 ± 0.87 -2.18 ± 0.84

D. melanogaster -2.14 ± 0.74 -2.11 ± 0.71 -2.07 ± 0.80 -2.15 ± 0.72 -2.15 ± 0.72
D. rerio -2.07 ± 0.61 -2.11 ± 0.56 -2.13 ± 0.67 -2.13 ± 0.56 -2.11 ± 0.55

M. musculus -1.96 ± 0.77 -2.00 ± 0.74 -2.00 ± 0.75 -2.04 ± 0.75 -2.02 ± 0.73
R. norvegicus -2.02 ± 0.75 -2.07 ± 0.73 -2.08 ± 0.73 -2.09 ± 0.73 -2.07 ± 0.72

Average -2.07 ± 0.70 -2.10 ± 0.67 -2.10 ± 0.68 -2.13 ± 0.67 -2.11 ± 0.66
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3, Additional files 7 and 8, and Table S3, Additional file
15), when compared with the four types of shuffling
sequences. Over 90% of the 1,082 miRNA sequences
show a high level of thermodynamic stability at FDR-con-
trolled P-value of < 0.05, based on four types of shuffled
methods (Figure 7, Table 3 and Table S3, Additional file
15). There is also a high proportion of miRNAs (>72% for
the four types of shuffled methods) with FDR-controlled
P-value < 0.005 as filter (Figure 7, Table 3, and Table S3,

Additional file 15). The reference sets of shuffled pseudo
pre-miRNAs generated for each miRNA are utilized to fur-
ther confirm that the increased thermodynamic stability is
not the product of the specific stem-loop structure (Figure
7, Additional files 9 and 10, Table 4, and Table S4- Addi-
tional file 15). Our data suggest that more than 1010 of
the 1,082 (>93% for the four types of shuffled methods)
miRNA sequences show a high level of thermodynamic
stability at FDR-controlled P-value of < 0.05, with a high

P-value distribution of environmental robustness for the 1,082 miRNAsFigure 6
P-value distribution of environmental robustness for the 1,082 miRNAs. For each real pre-miRNA, the free energy is 
compared with that of 1,000 random sequences (a) and random pseudo pre-miRNAs (b).

10 10 10 100
400

600

800

1000

10 10 10 100
400

600

800

1000

P P

Correlation between Z-scores and P-values of environmental robustness for all the 1,082 miRNAsFigure 5
Correlation between Z-scores and P-values of environmental robustness for all the 1,082 miRNAs. For each real 
pre-miRNA, the free energy is compared with that of 1,000 random sequences (a) and random pseudo pre-miRNAs (b), and 
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played.
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proportion (>68% for the four types of shuffled methods)
is also observed at FDR-controlled P-value of < 0.005 (Fig-
ure 7, Table 4, and Table S4- Additional file 15). Addition-
ally, examining the thermodynamic stability of miRNA
genes within species provides a similar picture for each
species separately (Figure 7, Additional files 7, 8, 9, 10,
Table 3 – 4, and Additional file 15, Tables S3–S4).

We also investigate the correlation between genetic
robustness and thermodynamic stability of miRNA. Fig-
ure 8 shows the scatter plots of Z-scores of genetic and
environmental robustness for all the 1,082 miRNAs.
Although a strong correlation is not observed (Pearson's
correlation coefficient is 0.43, 0.40 for random sequences
and random pseudo pre-miRNAs, respectively), most of
the significantly genetic robust miRNA genes exhibit sig-
nificant thermodynamic stability at the same time. Of the
1,082 miRNA genes investigated, 789 (72.9%) and 662

(61.2%) miRNAs are showed significantly genetic and
environmental robustness with FDR-controlled P-value of
< 0.05 (Figure 9, Table S5 and S6 Additional file 15), com-
pared with random sequences and random pseudo pre-
miRNAs, respectively. These also can be seen from the 3D
histogram plots of Z-scores of genetic and environmental
robustness (Figure 10). Furthermore, the correlation
between the genetic and environmental robustness is not
a byproduct of a base composition bias (Additional files
11, 12, 13, 14 and Tables S5–S6 Additional file 15). Our
results demonstrate that the stem-loop structures of miR-
NAs buffer against genetic variations, at the same time is
also insensitive to environmental perturbations, indicat-
ing that the increase in genetic robustness may evolve as a
correlated side effect of the evolution for environmental
robustness.

Table 3: Z-scores of free energy. Comparison between each real pre-miRNA and 1,000 random and four types of shuffled sequences.

Species Random Zero-markov Mononucleotide First-markov Dinucleotide

H. sapiens -3.96 ± 1.27 -4.31 ± 1.40 -4.36 ± 1.40 -6.05 ± 1.85 -5.63 ± 1.87
C. elegans -2.51 ± 1.52 -3.34 ± 1.45 -3.37 ± 1.46 -4.85 ± 2.18 -4.87 ± 2.09

D. melanogaster -2.30 ± 1.05 -3.53 ± 1.08 -3.53 ± 1.08 -4.83 ± 1.51 -4.85 ± 1.56
D. rerio -2.87 ± 1.33 -3.53 ± 1.19 -3.64 ± 1.23 -4.91 ± 1.69 -4.67 ± 1.64

M. musculus -3.63 ± 1.25 -3.89 ± 1.40 -3.87 ± 1.34 -5.41 ± 1.83 -4.95 ± 1.84
R. norvegicus -3.68 ± 1.33 -3.60 ± 1.30 -3.68 ± 1.33 -5.25 ± 1.80 -4.80 ± 1.86

Average -3.26 ± 1.42 -3.75 ± 1.35 -3.81 ± 1.35 -5.28 ± 1.86 -4.98 ± 1.83

Number of miRNAs with significantly environmental robustness at FDR-controlled P-values of < 0.05, 0.01, 0.005, and 0.001Figure 7
Number of miRNAs with significantly environmental robustness at FDR-controlled P-values of < 0.05, 0.01, 
0.005, and 0.001. 2D histogram plots of the number of miRNAs with significantly genetic and environmental 
robustness. Each bar is constituted with an outer hollow sub-bar and an inner solid sub-bar, which represents the number of 
significantly robust real pre-miRNAs compared with random/shuffled sequences and random/shuffled pseudo pre-miRNAs, 
respectively.
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Discussion
There has been a growing interest of evolutionary biolo-
gists in the origins, mechanisms and consequences of
robustness [2], which is a fundamental and ubiquitously
observed property of biological systems [8]. A greater
understanding of the evolution of robustness is needed to
clarify whether genetic robustness evolved as a direct con-
sequence of natural selection (adaptive robustness), as a
byproduct of stabilizing selection acting on fitness-related
traits (intrinsic robustness), or as a correlated response to
environmental robustness (congruent robustness) [2].
Recent studies have demonstrated that the stem-loop
structures of miRNA are tolerant to some structural
changes and show thermodynamic stability. We therefore
hypothesize that the genetic robustness of miRNAs may
evolve as a correlated side effect of the evolution for envi-
ronmental robustness in the current study. Using the
method proposed in our previous study [54], we examine
the robustness of 1,082 miRNA genes covering six species,
and show that the stem-loop structures of miRNA precur-

sors exhibit a significantly higher level of genetic robust-
ness at different FDR-controlled P-values. Additionally,
we generate a reference background of phenotypes similar
to real pre-miRNAs (pseudo pre-miRNAs), and demon-
strate that this excess robustness of miRNA genes goes
beyond the intrinsic robustness of the stem-loop struc-
ture. The effect of base composition bias on robustness is
ruled out by careful design of corresponding shuffling ref-
erence backgrounds. Examination of the environmental
robustness of real pre-miRNAs also demonstrates that the
phenotype of miRNA buffers against genetic perturba-
tions, and at the same time is insensitive to environmental
perturbations. These results suggest that increased genetic
robustness may evolve as a correlated side effect of the
evolution for environmental robustness.

Pang et al. [56] argue that even slight changes in miRNA
sequences can fundamentally alter their function, when
they interpret the conservation of miRNAs and snoRNAs.
Our data suggest this interpretation might be premature.

Correlation between genetic and environmental robustnessFigure 8
Correlation between genetic and environmental robustness. Scatter plots of Z-scores of genetic robustness and envi-
ronmental robustness. The Z-scores are obtained by comparing the robustness of real pre-miRNAs with that of 1,000 random 
sequences (a) and random pseudo pre-miRNAs (b).
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Table 4: Z-scores of free energy. Comparison between each real pre-miRNA and 1,000 random and four types of shuffled pseudo pre-
miRNAs

Species Random Zero-markov Mononucleotide First-markov Dinucleotide

H. sapiens -3.81 ± 1.22 -4.16 ± 1.38 -4.22 ± 1.36 -5.73 ± 1.78 -5.27 ± 1.79
C. elegans -2.39 ± 1.49 -3.22 ± 1.42 -3.25 ± 1.42 -4.57 ± 2.05 -4.59 ± 2.01

D. melanogaster -2.20 ± 1.03 -3.42 ± 1.06 -3.43 ± 1.04 -4.57 ± 1.46 -4.61 ± 1.52
D. rerio -2.74 ± 1.29 -3.40 ± 1.16 -3.51 ± 1.19 -4.61 ± 1.62 -4.37 ± 1.58

M. musculus -3.48 ± 1.20 -3.75 ± 1.37 -3.74 ± 1.33 -5.12 ± 1.76 -4.62 ± 1.78
R. norvegicus -3.52 ± 1.25 -3.44 ± 1.26 -3.51 ± 1.29 -4.96 ± 1.74 -4.46 ± 1.77

Average -3.12 ± 1.37 -3.62 ± 1.32 -3.68 ± 1.32 -4.98 ± 1.78 -4.66 ± 1.76
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Experimental studies also have demonstrated that stem-
loop structures of miRNAs are, to a certain degree, tolerant
to some structural changes, as exemplified by studies in
which no effects are noted resulting from changes in the
loop sequence [30-33] and further suggesting that the

sequence/structure requirements for miRNA processing
are quite lax, in agreement with our results.

A recent study, published during the course of our work,
reports that the stem-loop structures of miRNA precursors
show excess robustness with respect to mutational pertur-

Distribution of Z-score of genetic and environmental robustnessFigure 10
Distribution of Z-score of genetic and environmental robustness. 3D histogram plots of Z-scores of genetic and envi-
ronmental robustness. The Z-scores are obtained by comparing the robustness of real pre-miRNAs with that of 1,000 random 
sequences (a) and random pseudo pre-miRNAs (b).
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Number of miRNAs with significantly genetic and environmental robustness at FDR-controlled P-values of < 0.05, 0.01, 0.005, and 0.001Figure 9
Number of miRNAs with significantly genetic and environmental robustness at FDR-controlled P-values of < 
0.05, 0.01, 0.005, and 0.001. 2D histogram plots of the number of miRNAs with significantly genetic and envi-
ronmental robustness. Each bar is constituted with an outer hollow sub-bar and an inner solid sub-bar, which represents 
the number of significantly robust real pre-miRNAs compared with random/shuffled sequences and random/shuffled pseudo 
pre-miRNAs, respectively.
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bation, compared with random RNA sequences with sim-
ilar stem-loop structures [57], suggesting that this excess
robustness of miRNAs goes beyond the intrinsic robust-
ness of the stem-loop hairpin structure. The study further
demonstrates that this excess robustness is not the
byproduct of a base composition bias. These results are in
much agreement with our findings, although the quanti-
tative measures of genetic robustness defined in these two
studies are quite different. The authors then reexamine the
thermodynamic stability of miRNA utilizing the method
used by Bonnet et al. [21], with a background model
based on inversely folded sequences rather than the shuf-
fled sequences, and find that most of the statistical effect
vanished, suggesting that the excess robustness of miRNA
stem-loops is the result of direct evolutionary pressure
toward increased robustness. The different conclusions
(adaptive robustness vs. congruent robustness) may have
resulted from differences in the reference backgrounds
employed. The reference backgrounds in our study are
made up of random and shuffled pseudo pre-miRNA
sequences with preserved phenotypes that are similar to
real pre-miRNAs (see Methods). Their reference back-
grounds, on the other hand, are produced by inverse fold-
ing.

On the other hand, Hermission and Wagner classify
robustness as adaptive and intrinsic [58]. The adaptive
robustness in their definition encompass both adaptive
and congruent scenarios within the classification system
established by de Visser et al. [2]. They consider robust-
ness to be adaptive if the buffering of that trait with
respect to some source of variation has the target of natu-
ral selection. In other words, robust character states are
selected because of their reduced variability. According to
this view, our study and the study of Borenstein and Rup-
pin [57] come to the same conclusion of adaptive robust-
ness, which is a property that evolves for its own sake. The
difference is that the natural forces, assumed to be respon-
sible for its evolution, function as a kind of stabilizing
selection acting directly on a character, or on some highly
correlated pleiotropic trait [58].

Our study will facilitate the in silico identification of
novel miRNAs. Computational identification of miRNAs
is based largely on the phylogenetic conservation and the
structural characteristics of miRNA precursors [59-61]. A
recent study integrating bioinformatics predictions with
microarray analysis and sequence-directed cloning, that
does not include inter-species conservation, identifies
hundreds of new human miRNAs, many of which are
poorly conserved beyond primates [62]. The significantly
greater robustness of the miRNA stem-loop structures that
buffers environmental and genetic perturbations may also
facilitate improved miRNA identification on a single
genome and can serve as a complementary method to fil-

ter out random pseudo pre-miRNA sequences. Our find-
ings may also be utilized for the improvement of in vitro
selection or SELEX (Systematic Evolution of Ligands by
Exponential enrichment), an experimental method for
selecting functional RNAs from a large pool (1015) of ran-
dom sequences [63,64]. The use of designed sequences
with thermodynamic stability and genetic robustness, in
lieu of random sequences, may increase the probability of
identifying novel functional RNAs.

The in silico approach utilized in the current study is a
simple yet powerful, biologically well-grounded model
for studying the evolution of genetic robustness. The
importance of this computational approach is empha-
sized by the fact that the large numbers of perturbations
(more than 2 × 109 point mutants are generated and
folded) analyzed here are not easily studied in laboratory
experiments. Although this in silico study can not com-
pletely rule out all alternative hypotheses, the carefully
designed reference background model and the statistical
analysis of the results strongly support the hypothesis of
congruent evolution of robustness. A greater understand-
ing of the evolution of robustness will require quantitative
knowledge of the forces producing robustness, such as the
distribution of fitness effects of mutations [12]. Further
researches are needed to fully elucidate the mechanisms
of the evolution of robustness.

Conclusion
The current study investigate the evolutionary origin of
genetic robustness – a fundamental evolutionary molecu-
lar biology problem which has not been fully elucidated.
We have shown that miRNA stem-loop structures exhibit
a significantly higher level of genetic robustness at differ-
ent FDR-controlled P-values, which goes beyond the
intrinsic robustness of the stem-loop structure and is not
a byproduct of a base composition bias. Furthermore, we
have demonstrated that the phenotypes of miRNAs buffer
against genetic perturbations, and at the same time are
also insensitive to environmental perturbations. Our find-
ings suggest that the increased robustness of miRNA stem-
loops may evolve as a correlated side effect of evolution
for environmental robustness.

Methods
Real pre-miRNAs, reference sets and RNA folding
1,082 real pre-miRNA sequences included in the analysis
are selected from MicroRNA Registry release 7.1, which all
have been experimentally verified to avoid a possible bias
introduced by consideration of predicted miRNA precur-
sors (Table 5) [65,66]. The available sequences covered six
species: H. sapiens, D. melanogaster, D. rerio, C. elegans, M.
musculus, and R. norvegicus.
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In addition to the real pre-miRNAs specified in Table 5, a
reference set consisting of 1,000 random RNA sequences
for each real pre-miRNA is generated, and an additional
reference set consisting of 1,000 hairpin sequences with
similar stem-loops as real pre-miRNAs (pseudo pre-miR-
NAs) using a similar idea of the RNAinverse program in
Vienna RNA package [53] is also generated to investigate
whether the increased robustness stemmed intrinsically
from the miRNA stem-loop structures. To rule out the
effect of base composition bias on robustness, four types
of reference sets for each real pre-miRNA are made using
four different sequence shuffling methods: mononucle-
otide shuffling, dinucleotide shuffling and shuffling
based on a zero and first order Markov model. Each type
of reference set is also consisted of 1,000 shuffled
sequences that preserved the exact or nearly exact mono-
nucleotide and dinucleotide frequencies as real pre-
miRNA. Additionally, four types of shuffling reference sets
which consisted of 1,000 shuffled pseudo pre-miRNAs
that preserved not only the stem-loop structure but also
the exact or nearly exact mononucleotide and dinucle-
otide frequencies as real pre-miRNA are generated for each
miRNA. These sequence shuffling methods first generate
the corresponding shuffling sequences preserving exact or
nearly exact mononucleotide and dinucleotide frequen-
cies with the methods previously used in the studies of the
thermodynamic stability of RNA secondary structures [21-
23,26], and then search for the shuffling sequences with
similar stem-loop as real pre-miRNAs using a similar idea
of the RNAinverse program [53].

The RNAfold in Vienna RNA package (version 1.6) [53] is
utilized with default parameter values (T = 37°C) to pre-
dict the secondary structures, based on Zuker's minimum
free energy algorithm [52]. The current study only utilized
optimal folding results.

Robustness evaluation
Experimental researches have demonstrated that the sec-
ondary structures of miRNAs are tolerant to some struc-

tural changes [30-33]. To reflect this flexibility in
sequence/structure requirements, at a given threshold, Tj,
we define the robustness [54], γj, as follows:

γj = �Nj(d)�, j = 1, 2, ..., 9. (1)

where d is the structure distance between the secondary
structure of the WT sequence and the secondary structure
of the mutant, and Nj(d) is number of mutants with struc-
ture distance lesser than or equal to the threshold Tj. γj is
the average of Nj(d) over all 3 × L one-mutant neighbors.
The maximum value of the structural distance between
the secondary structure of the WT sequence and the sec-
ondary structure of the mutants is used as a baseline value
to evaluate the threshold level [54]. The threshold Tj, j = 1,
2, ..., 9 is set to 10%, 20%, ..., 90% of the maximum value
of the metric, respectively. The larger value of the robust-
ness γj at threshold Tj indicates a relatively higher level of
robustness.

We compare the secondary structure between WT and its
mutant using a variety of distance measures for secondary
structures [53,67-69], including topological indices [70],
tree-edit and string-eidt distance [53,71], and base-pair
distance [55]. While the data in this paper are obtained by
base-pair distance, the qualitative results are obtained
independent of the distance measure used.

Statistical significance analysis

At each threshold Tj, we evaluate the robustness  of the

real pre-miRNA and ϒj = { , i = 1, 2, ..., N} of the corre-

sponding 1,000 random sequences in reference set X (N is
the number of the sequences in the reference set, |X|),

then compare  with ϒj. Z-score and P-value are

employed here to determine whether the phenotype of a
real pre-miRNA sequence shows significantly robust from
that of reference sequences, which have been widely

γ j
m

γ j
ri

γ j
m

Table 5: Robustness analysis of miRNA within each species

Species Ns Length %GC No. of genetically 
robust miRNAs (%)

No. of 
environmentally 

robust miRNAs (%)

H. sapiens 242 85.48 ± 14.49 47.67 ± 7.88 177(73.1) 233(96.3)
C. elegans 112 98.29 ± 6.42 44.61 ± 6. 89 93(83.0) 74(66.1)

D. melanogaster 75 87.67 ± 12.74 41.60 ± 5.39 54(72.0) 48(64.0)
D. rerio 350 94.36 ± 18.49 45.11 ± 6.51 254(72.6) 254(72.6)

M. musculus 191 80.26 ± 12.48 48.19 ± 8.26 130(68.1) 177(92.7)
R. norvegicus 112 90.96 ± 9.14 50.34 ± 7.96 77(68.8) 105(93.8)

Ns, total number of experimentally verified miRNA sequences; Length, distribution of miRNA sequence length; %GC, distribution of GC content of 
miRNA sequences; No. of genetically (environmentally) robust miRNAs (%), the number of significantly genetically (environmentally) robust 
miRNAs (%) at FDR-controlled P-value of < 0.05, comparing with random pseudo pre-miRNAs.
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applied in statistical significance analysis [21-24,26,72].
The Z-score is the number of standard deviations by

which  of a real pre-miRNA sequence differs from the

mean , i = 1, 2, ..., N of the random reference

sequences set X and is defined as:

where <·> and σ (·) denote the mean and the standard

deviation of the ϒj. The P-value of  of a real pre-miRNA

is the fraction of sequences in X having robustness larger
than the real pre-miRNA sequence, that is, the area under

the distribution function to the right of the , and is

defined as:

where M is the number of sequences in X with larger

robustness than  of the real pre-miRNA sequence.

The statistical significance analysis of environmental
robustness is similar to that done for genetic robustness,
in which the robustness γj at a threshold Tj is simply
replaced by the free energy of the sequences. The thermo-
dynamic stability of pre-miRNAs is examined as previ-
ously reported [21], but also used a background model
based on the random and shuffled pseudo pre-miRNAs.

False discovery rate
Because the above statistical significance analysis involves
the simultaneous testing of thousands of hypotheses,
multiple hypotheses testing is important to control the
overall Type I error rate. We will use direct control of the
false discoveries using the commonly applied FDR crite-
rion. The FDR, based on the outcomes of m statistical tests
(Table 6), is defined as the expected proportion of false
positives among the rejected hypotheses, i.e.

where V is the number of false positives and R is the
number of rejected hypotheses. Therefore, an FDR cut-off
has a meaningful interpretation.

To compute the FDR, we apply the Benjamini Hochberg
procedure [73]. Considering testing H1, H2, �, Hm based
on the corresponding P-values P(1), P(2), �, P(m). Let P(1) ≤

P(2) ≤ � ≤ P(m) be the ordered P-values, and denote by H(i)
the null hypothesis corresponding to P(i). Define

and reject all H(i), i = 1, 2, �, k. If no such i exists, reject no
hypothesis.
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Additional File 1
Correlation between Z-scores and P-values of genetic robustness for all the 
1,082 miRNAs and all four types of shuffled methods at threshold level 
T1. For each real pre-miRNA, the robustness  is compared with that 
of 1,000 zero-markov shuffling sequences (a), monoshuffling sequences 
(b), first-markov shuffling sequences (c) and dishuffling sequences (d), 
and the Z-score and P-value are computed. The curve for a normal distri-
bution of mean 0 and a standard deviation of 1 is also displayed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S1.pdf]
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Table 6: Possible outcomes of the m statistical tests.

Called not 
significant

Called significant Total

Null true U V m0
Alternative true T S m - m0
Total M - R R m

Ns, total number of experimentally verified miRNA sequences; Length, 
distribution of miRNA sequence length; %GC, distribution of GC 
content of miRNA sequences; No. of genetically (environmentally) 
robust miRNAs (%), the number of significantly genetically 
(environmentally) robust miRNAs (%) at FDR-controlled P-value of < 
0.05, comparing with random pseudo pre-miRNAs.
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Additional File 2
P-value distribution of genetic robustness for the 1,082 miRNAs at thresh-

old level T1. For each real pre-miRNA, the robustness  is compared 

with that of 1,000 zero-markov shuffling sequences (a), monoshuffling 
sequences (b), first-markov shuffling sequences (c) and dishuffling 
sequences (d), and the Z-score and P-value are computed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S2.pdf]

Additional File 3
Correlation between Z-scores and P-values of genetic robustness for all the 
1,082 miRNAs and all four types of shuffled methods at threshold level 
T1. For each real pre-miRNA, the robustness  is compared with that 
of 1,000 zero-markov shuffling pseudo pre-miRNAs (a), monoshuffling 
pseudo pre-miRNAs (b), first-markov shuffling pseudo pre-miRNAs (c) 
and dishuffling pseudo pre-miRNAs (d), and the Z-score and P-value are 
computed. The curve for a normal distribution of mean 0 and a standard 
deviation of 1 is also displayed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S3.pdf]

Additional File 4
P-value distribution of genetic robustness for the 1,082 miRNAs at thresh-

old level T1. For each real pre-miRNA, the robustness  is compared 

with that of 1,000 zero-markov shuffling pseudo pre-miRNAs (a), mon-
oshuffling pseudo pre-miRNAs (b), first-markov shuffling pseudo pre-
miRNAs (c) and dishuffling pseudo pre-miRNAs (d), and the Z-score and 
P-value are computed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S4.pdf]

Additional File 5
Number of miRNAs with FDR-controlled P-values of < 0.05, 0.01, 
0.005, and 0.001 at different threshold levels. For each real pre-miRNA, 
the robustness , i = 1, 2, �, 9 is compared with that of 1,000 shuf-
fling RNA sequences based on zero-markov model (a), monoshuffling 
RNA sequences (b), shuffling RNA sequences based on first-markov 
model (c), dishuffling RNA sequences (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S5.pdf]

Additional File 6
Number of miRNAs with FDR-controlled P-values of < 0.05, 0.01, 
0.005, and 0.001 at different threshold levels. For each real pre-miRNA, 
the robustness , i = 1, 2, �, 9 is compared with that of 1,000 zero-
markov shuffling pseudo pre-miRNAs (a), monoshuffling pseudo pre-
miRNAs (b), first-markov shuffling pseudo pre-miRNAs (c) and dishuf-
fling pseudo pre-miRNAs (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S6.pdf]
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Additional File 7
Correlation between Z-scores and P-values of environmental robustness 
for all the 1,082 miRNAs. For each real pre-miRNA, the free energy is 
compared with that of 1,000 zero-markov shuffling sequences (a), mon-
oshuffling sequences (b), first-markov shuffling sequences (c) and dishuf-
fling sequences (d), and the Z-score and P-value are computed. The curve 
for a normal distribution of mean 0 and a standard deviation of 1 is also 
displayed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S7.pdf]

Additional File 8
P-value distributions of environmental robustness for the 1,082 miRNAs. 
For each real pre-miRNA, the free energy is compared with that of 1,000 
zero-markov shuffling sequences (a), monoshuffling sequences (b), first-
markov shuffling sequences (c) and dishuffling sequences (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S8.pdf]

Additional File 9
Correlation between Z-scores and P-values of environmental robustness 
for all the 1,082 miRNAs. For each real pre-miRNA, the free energy is 
compared with that of 1,000 zero-markov shuffling pseudo pre-miRNAs 
(a), monoshuffling pseudo pre-miRNAs (b), first-markov shuffling 
pseudo pre-miRNAs (c) and dishuffling pseudo pre-miRNAs (d). The 
curve for a normal distribution of mean 0 and a standard deviation of 1 
is also displayed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S9.pdf]

Additional File 10
P-value distributions of environmental robustness for the 1,082 miRNAs. 
For each real pre-miRNA, the free energy is compared with that of 1,000 
zero-markov shuffling pseudo pre-miRNAs (a), monoshuffling pseudo 
pre-miRNAs (b), first-markov shuffling pseudo pre-miRNAs (c) and 
dishuffling pseudo pre-miRNAs (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S10.pdf]

Additional File 11
Correlation between genetic and environmental robustness. Scatter plots 
of Z-scores of genetic robustness and environmental robustness. The Z-
scores were obtained by comparing the robustness of real pre-miRNAs with 
that of 1,000 zero-markov shuffling sequences (a), monoshuffling 
sequences (b), first-markov shuffling sequences (c) and dishuffling 
sequences (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S11.pdf]
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Correlation between genetic and environmental robustness. Scatter plots 
of Z-scores of genetic robustness and environmental robustness. The Z-
scores were obtained by comparing the robustness of real pre-miRNAs with 
that of 1,000 zero-markov shuffling pseudo pre-miRNAs (a), monoshuf-
fling pseudo pre-miRNAs (b), first-markov shuffling pseudo pre-miRNAs 
(c) and dishuffling pseudo pre-miRNAs (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S12.pdf]

Additional File 13
Distribution of Z-score of genetic and environmental robustness. 3D his-
togram plots of Z-scores of genetic robustness and environmental robust-
ness. The Z-scores were obtained by comparing the robustness of real pre-
miRNAs with that of 1,000 zero-markov shuffling sequences (a), mon-
oshuffling sequences (b), first-markov shuffling sequences (c) and dishuf-
fling sequences (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S13.pdf]

Additional File 14
Distribution of Z-score of genetic and environmental robustness. 3D his-
togram plots of Z-scores of genetic robustness and environmental robust-
ness. The Z-scores were obtained by comparing the robustness of real pre-
miRNAs with that of 1,000 zero-markov shuffling pseudo pre-miRNAs 
(a), monoshuffling pseudo pre-miRNAs (b), first-markov shuffling 
pseudo pre-miRNAs (c) and dishuffling pseudo pre-miRNAs (d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-223-S14.pdf]
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supplementary tables included in this study.
Click here for file
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