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Abstract

Background: At the last glacial maximum, Fennoscandia was covered by an ice sheet while the tundra occupied most of the
rest of northern Eurasia. More or less disjunct refugial populations of plants were dispersed in southern Europe, often trapped
between mountain ranges and seas. Genetic and paleobotanical evidences indicate that these populations have contributed much
to Holocene recolonization of more northern latitudes. Less supportive evidence has been found for the existence of glacial
populations located closer to the ice margin. Scots pine (Pinus sylvestris L.) is a nordic conifer with a wide natural range covering
much of Eurasia. Fractures in its extant genetic structure might be indicative of glacial vicariance and how different refugia
contributed to the current distribution at the continental level. The population structure of Scots pine was investigated on much
of its Eurasian natural range using maternally inherited mitochondrial DNA polymorphisms.

Results: A novel polymorphic region of the Scots pine mitochondrial genome has been identified, the intron | of nad7, with
three variants caused by insertions-deletions. From 986 trees distributed among 54 populations, four distinct multi-locus
mitochondrial haplotypes (mitotypes) were detected based on the three nad7 intron | haplotypes and two previously reported
size variants for nadl intron B/C. Population differentiation was high (Gst = 0.657) and the distribution of the mitotypes was
geographically highly structured, suggesting at least four genetically distinct ancestral lineages. A cosmopolitan lineage was widely
distributed in much of Europe throughout eastern Asia. A previously reported lineage limited to the Iberian Peninsula was
confirmed. A new geographically restricted lineage was found confined to Asia Minor. A new lineage was restricted to more
northern latitudes in northeastern Europe and the Baltic region.

Conclusion: The contribution of the various ancestral lineages to the current distribution of Scots pine was asymmetric and
extant endemism reflected the presence of large geographic barriers to migration. The results suggest a complex biogeographical
history with glacial refugia shared with temperate plant species in southern European Peninsulas and Asia Minor, and a genetically
distinct glacial population located more North. These results confirm recent observations for cold tolerant species about the
possible existence of refugial populations at mid-northern latitudes contributing significantly to the recolonization of northern
Europe. Thus, Eurasian populations of nordic plant species might not be as genetically homogenous as assumed by simply
considering them as offsets of glacial populations located in southern peninsulas. As such, they might have evolved distinctive
genetic adaptations during glacial vicariance, worth evaluating and considering for conservation.
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Background

The cold periods of the Pleistocene have had a dramatic
impact on most organisms in temperate regions. Whereas
the Artic ice sheet began to grow about 2.5 Myr ago, more
severe climatic oscillations occurred mainly during the
last 700 000 year [1] with the consequence that the Euro-
pean biota has experienced repeatedly some drastic cli-
mate changes. Tree species responded through migration
to regions where environmental conditions allowed them
to survive [2,3]. Phylogeography investigates on the spa-
tio-temporal dynamics of populations. It relies on infer-
ence from two main sources of information, i)
macrofossils and pollen in sediment profiles, ii) popula-
tion structure in DNA markers ideally inferred at the
sequence level. Cytoplasmic markers, which are unipar-
ently inherited in most plant species, are especially well
suited for phylogeographic studies. They helped infer the
number of genetically distinct ancestral lineages, their
location during the last glacial maximum, and the post-
glacial migration routes for several tree and plant species
in Europe [e.g. [4-11]]. These studies and others based on
fossil evidence suggested that most plant and tree refuges
were located in southern European peninsulas and the
Balkans [12-15]. Glacial refugia and recolonization routes
were found to coincide often for a number of plant and
animal species [[3,16] and [17]]. In North America, com-
mon patterns are also starting to emerge and much knowl-
edge has been rapidly gained from the analysis of species
with wide distributions [e.g. [18-20]]. However, there is
now increasing evidence that some European species were
established much further north and east than previously
assumed during glacial time [21-25]. Similar inferences
have also been made in North America, where genetic and
palynological evidence is accumulating for the presence of
glacial populations much closer to the ice fronts as once
thought [e.g. [26-29]]. Phylogeographic studies in Europe
also indicate asymmetric contributions of glacial refugia
to Holocene colonization: some ancestral lineages
remained endemic, because of geographic barriers limit-
ing migration, while others contributed considerably to
the postglacial colonization of more northern latitudes
[[3,6,8] and [30]].

Scots pine (Pinus sylvestris L., subgenus Diploxylon) is a
long-lived evergreen monoecious forest tree species grow-
ing in a large variety of ecological conditions from western
Europe to Asia. Of all pine species, it has the largest distri-
bution [31,32]. Its natural range extends northwards from
Spain to northern Fennoscandia, and westwards from
longitudes 5°W in Spain and Scotland to 135°E in Sibe-
ria. While most of its natural range is contiguous, there are
also large populations of Scots pine disconnected from
the main natural range such as in Scotland, Spain, France,
Turkey, and former Yugoslavia. Extensive variations in
phenotypic traits as well as geographic races and types
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have been reported [33-37]. Much of this variation has
been usually attributed to adaptation to edaphic and cli-
matic factors [35,38]. Studies carried out over the last 30
years using isozymes, terpenes and flavonoid markers
have also revealed the existence of distinct evolutionary
units in Scots pine, which might be indicative of isolation
in different glacial refugia. Although these studies were
not entirely congruent and not aimed at deciphering
effects related to glacial and postglacial history, they
helped define biogeographical hypotheses for the western
and northwestern European range of Scots pine [39-45].
Because of the regional scope of many of these studies and
the different phenotypic or genetic attributes used, much
biogeographical knowledge on the glacial and postglacial
history of Eurasia remains to be gained from analysing the
broad geographic distribution of Scots pine and by using
homologous gene markers with stronger historical
imprints.

In the Pinaceae, mtDNA is maternally inherited and dis-
persed through seeds only [46,47]. This mode of disper-
sion helps avoid the problems with inferring history from
present-day distributions of nuclear or cpDNA markers
because the latter are dispersed by both seeds and pollen
in the Pinaceae, which produce a more rapid breakdown
of the historical genetic signatures induced by glacial
vicariance. However, one of the major difficulties one
faces with plant mtDNA is the low level of variation in
their exons and introns [48,49], which limits the detec-
tion of variation between and within species at the
sequence level [e.g. [47,50]]. An indel has been discovered
in the intron B/C of the mitochondrial gene nad1 in Scots
pine, which allowed identifying a genetically distinct
ancestral lineage in the Iberian Peninsula [6]. Restriction
fragment length polymorphisms (RFLP) of a region
encompassing the mitochondrial gene coxl have also
been found in populations of Scots pine from western
Europe [5,51], which helped identifying two genetically
distinct groups of populations each distributed on a large
latitudinal range. The possibility for a refuge at northern
latitudes was suggested in a previous study [5]. Given the
little diversity observed in the mtDNA regions surveyed
and the population sampling limited mostly to western
Europe, it is likely that the pan-Eurasian Scots pine pos-
sesses more genetically distinct ancestral lineages. Such
evidence would contribute towards a more complete
understanding of the historical factors and processes lead-
ing to the current distribution of species genetic diversity
throughout Eurasia.

In an effort to discern from a phylogeographic perspective
the possible existence and contribution of mid-northern
refugia to the glacial and postglacial history of Eurasian
biota, we investigated the extant genetic structure of Scots
pine with a set of populations covering much of the natu-
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ral range in Europe and also in Asia. We also report on a
novel polymorphic mtDNA region in Scots pine, the
intron 1 of the gene nad7, which is indicative of unknown
genetically distinct maternal lineages. The location of one
of these lineages in northern Europe supports the view
that Quaternary refugia located outside European penin-
sulas at mid-northern latitudes might have played a signif-
icant role in the Holocene recolonization of Europe [22].

Results

mtDNA polymorphisms and population differentiation
Out of 15 mtDNA regions surveyed (Table 1), intraspe-
cific polymorphism was detected for only two loci in Scots
pine. Polymorphism was detected de novo for the intron 1
of nad7 with three length variants. They were 1175, 1170
and 1143 bp long and are hereafter called haplotypes A,
B, and C, respectively. The size differences were caused by
two single indels: one of 32 bp exclusive to haplotype C
and one of 5 bp exclusive to haplotype B (Table 2). As pre-
viously reported from a more limited sampling [6], two
size variants were detected for the intron B/C of nadil
among the 986 samples analysed herein. These fragments
differed by a 31 bp indel and are hereafter called haplo-
types A (217 bp) and B (248 bp). A third variant restricted
to Italy was recently reported for this gene [30]. It was not
detected in our sampled trees which were all from outside
the Italian Peninsula. Primers for these two mtDNA
regions were also tested on 100 to 500 individuals for
each of five other pines of the subgenus Diploxylon (P. res-
inosa, P. mugo, P nigra, P. heldreichii, and P. contorta) and
positive amplifications were obtained (data not shown).

Table I: Mitochondrial regions tested!.
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The first four species belong to the section Pinus, but the
first three are members of subsection Pinus (as for Scots
pine) and Pinus heldreichii is member of subsection Pinas-
ter. As for P. contorta, it belongs to section Trifoliae, subsec-
tion Contortae. Fragment length polymorphism was
detected for both nad1 intron B/C and nad?7 intron 1 in P.
heldreichii. For P. nigra, only nad1l intron B/C showed pol-
ymorphism. No polymorphism was detected in P. mugo
and P. resinosa. For P. contorta, polymorphism was only
observed for nad7 intron 1 involving the same minisatel-
lite-like marker as previously reported for this species and
the closely related P. banksiana [20].

For Scots pine, the nomenclature used for mitochondrial
multi-locus haplotypes (mitotypes) followed a two-letter
code after the haplotypes observed for nad7 intron 1 (A, B,
C) and nadl intron B/C (A, B), respectively (Table 2).
Among the four observed mitotypes, the most abundant
one was AA (72.3 %), followed by BA (17.3 %), CA (5.8
%), and AB (4.6 %) (Table 3). The minimum spanning
tree indicates that the mitotypes were more or less
arranged as a star phylogeny with little sequence variation
among them and no recombination (Figure 1B). The
observed number of mitotypes per population (nh) was 1
or 2 without exception, with an average of 1.50 (Table 3).
The mitotype diversity index per population (H) was low
to moderate (average of 0.141) and ranged from 0 to
0.500 (Table 3). Population differentiation was high
among the 54 populations, with Gg; and Ny values of
0.657 and 0.685, respectively (Table 4). When excluding
the six more diverse populations from a presumed zone of

Genomic region Annealing

temperature (°C)

matR (intronl) 58 550
mh05 59 1500 4
mh09 62 180
mh09' 62 900 4
mh33 55 900 4
mh35 59 Not amplified
mh44 59 Not amplified
nad| intron B/C, primers H/I 2 55 217-248
nad3 intron | 58 120
nad3-rps|2 (i.r.) 3 58 360
nad5 intron | 55 1100
nad5 intron 4 59 900
nad7 intron | 6l 1200
SSU rRNA region VI 62 400

SSU rRNA region V7 50 250

PCR product size (bp)

Restriction enzymes tested Primer source

Sau3Al, Rsal, Hindlll, Msel, Taql, BstUI [47]
- [on
- [on
- [on
- [91]
- [9o1
- o1
- [6]
- [92]
- [92]
Sau3Al, Rsal, Hindlll, Msel, Taql, BstUI, [47]
Sau3Al, Rsal, Hindlll, Msel, Taql, BstUI, Tru9l [93]
Sau3Al, Rsal, Hindlll, Taql, BstUI, Tru9l [47]
- [94]
- [94]

ITargeted regions, annealing temperatures, expected size of PCR products and restriction enzymes tested for primer pairs used to amplify 15

mtDNA regions of Scots pine.

2nad| intronB/C have been amplified (following Demesure et al [95] protocol) and tested with different restriction enzymes, only internal primers

H and | of Soranzo et al [6] have shown polymorphism.
3Intergenic region.
4Multiple fragments.
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Table 2: Mitochondrial DNA sequence polymorphisms detected in Scots pine!.

Mitotype nad7 intron | (positions 621-681) nad| intron B/C (positions 101-137)

AA GGGATGCGTAAGCAGGCTCGACTGTTAAGGAGAGGGGCAAATAAGTAAAAA GGA-———m———m——mmm e mmm e
AAAGGGCCTG ---GAG

BA GGGATGCGTAAGCAGGCTCGACTGTTAAGGAGAGGGGCAAATAAGTAAAAA GGA——————————— e
AA-————— CTG ---GAG

CA GGG - = ———m e GGA————— e
GGCAAATAAGTAAAAAAAAGGGCCTG ---GAG

AB GGGATGCGTAAGCAGGCTCGACTGTTAAGGAGAGGGGCAAATAAGTAAAAA GGACCCTTTAGGGGGCTCGACCATAGGGAGA
AAAGGGCCTG GGAGAG

IPolymorphisms detected in the intron | of the mitochondrial gene nad7 and in the intron B/C of the mitochondrial gene nad! in Scots pine, and

nomenclature used for multi-locus haplotypes (mitotypes).

contact in central and northeastern Europe between two
distinct mtDNA lineages (see below), the Ggand Ngpval-
ues increased to 0.746 and 0.767, respectively, among the
remaining populations. However, the presence of a for-
mal phylogeographic structure was not supported, as Ng;
was not significantly higher than Gg;. Lack of test power is
likely the reason, given the small genetic divergence
observed among the four mtDNA variants detected.

Geographic structure

The geographic distribution of mitotypes appeared to be
essentially non-random, with clusters of mitotypes geo-
graphically quite well delineated (Figure 1A, see also
SAMOVA test below). The Mediterranean region showed
the highest diversity with three of the four mitotypes
revealed in the study. The cosmopolitan haplotype AA
was largely distributed and found in most of the popula-
tions sampled. Geographic structuring was evident for
other mitotypes. Mitotype CA was present only in Asia
Minor, in the Pontide Mountains of Turkey (populations
#14 to #16). Mitotype AB was found fixed in some high
mountain populations of the Iberian Peninsula (Iberian
cordillera - Zaragoza/Valencia provinces) (#52 and #54)
and was observed as a rare variant in some populations of
the Balkans (#3, #5, #6, #8 and #10). The distribution of
mitotype BA was quite unexpected: it was largely distrib-
uted in the lowland region of middle to northern latitudes
in eastern Europe. It was prevalent in the Baltic region and
quite frequent in Russia, west of the Ural Mountains. But
it was also detected in Siberia (population #44). A large
zone composed of populations with variable mixed
genetic background (mitotypes AA and BA) was observed
in central and northeastern Europe. It includes most if not
all populations bearing mitotype BA. The zone extends
from the southeast of Russia to the Baltic States (see pop-
ulations #32, #33, #35, #38, #40, #41, and #43). The
within-population mitotype diversity of these popula-
tions (H = 0.463) was much higher than elsewhere.

SAMOVA was conducted repeatedly by increasing the
value of the number of population groups (K) until the

For value reached a maximum of 0.785, which was
obtained for K = 4 (Table 4). For K = 3, a maximum F;
value of 0.720 was obtained. The four groups confirmed
trends from visual inspection and corresponded to: (I) the
majority of populations from Europe and Asia, (II) north-
eastern Europe, (III) Asia Minor and (IV) the high moun-
tains of the Iberian Peninsula. Group I was the most
widespread geographically, including 44 populations
(Table 4). It contained mostly the cosmopolitan mitotype
AA and, at a lower frequency, mitotype BA and AB. Differ-
entiation among the populations of the group was mod-
erate. Population differentiation within each of the three
other groups (11, III, and IV) was smaller. Group II from
northeastern Europe was largely dominated by mitotype
BA. The two remaining groups III and IV were highly
homogenous. Group III regrouped populations from Tur-
key fixed or nearly fixed for mitotype CA, and group IV
regrouped populations from the Iberian Peninsula fixed
for mitotype AB.

Discussion

mtDNA diversity and population differentiation

DNA sequence variation is low in the mtDNA of conifers
[e.g. [47,50]]. Accordingly, little intraspecific variation has
been found in the mtDNA of P. sylvestris in western
Europe, including four RFLP variants for the cox1 region
[5] and three size variants at the locus nad1 intron B/C, of
which two were found endemic to the Iberian and Italian
Peninsulas [6,30]. The three new size variants reported
herein for the locus nad7 intron 1 indicate new region-
specific variants for northeastern Europe and Asia Minor.
No other length polymorphisms or substitutions were
detected in Scots pine in spite of the screening of 15 dis-
tinct mtDNA regions. Highly informative minisatellite-
like motifs such as those rarely detected in some spruce
[52,53] and pine taxa [20] could not be detected in Scots
pine.

The overall level of population differentiation estimated
in this study from mitotype variation at the nad1 intron B/
C and nad7 intron 1 loci was rather high and similar to
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Table 3: Multi-locus haplotype frequencies and genetic diversity estimates in 54 natural populations of Scots pine.

Population State! Latitude (N) Longitude? (E/w) Altitude (m) Sample size Mitotype counts3 nh* Hs
Nb Name AA AB BA CA

| Bansko BG 41°48' 23°30' 1400 16 16 - - - | 0

2 Borovo BG 41°30' 23°55' 1500 18 18 - - - | 0

3 Chehliovo BG 41°53' 23°55' 1600 20 19 - - - 2 0.095
4 Chiroka Laka BG 41°41" 24°35' na. 20 20 - - - | 0

5 Dospat BG 41°40' 24°30' 1550 10 9 | - - 2 0.180
6 Laki BG 41°51" 24°50' 1400 20 18 2 - - 2 0.180
7 Nevestino BG 42°06' 22°42' 1850 20 20 - - - | 0

8 Pechtera BG 42°03' 24°22' 1400 20 19 | - - 2 0.095
9 Simitli BG 41°53' 23°10' na. 20 20 - - - | 0

10 Smolian BG 41°30' 25°20' 1400 20 18 2 - - 2 0.180
I Velingrad BG 42°05' 24°00' na. 20 20 - - - | 0

12 Grosser Priel AT 47°42' 14°17' 620 20 18 - 2 - 2 0.180
13 Merkenstein AT 48°59' 16°08' 550 19 19 - - - | 0

14 ligaz Gakdake TR 41°02' 33°47' 1500 18 - - - 18 | 0

15 Eskipazan TR 40°53' 32°20' 1550 20 - - - 20 | 0

16 Ulupihar TR 40°53' 35°20' 1450 20 | - - 19 2 0.095
17 Zelenoborsk RU 67°10' 32°21" n.a. 17 4 - 13 - 2 0.360
18 Sosnovec RU 64°30' 34°45' na. 20 3 - 17 - 2 0.255
19 Sucoozero RU 63°00' 32°21" na. 20 3 - 17 - 2 0.255
20 Shala RU 61°47' 36°00' na. 19 17 - 2 - 2 0.188
21 Sortovala RU 61°42' 30°41" n.a. 15 7 - 8 - 2 0.498
22 Cugir seed orchard RO 45°52' 23°23' 230 14 14 - - - | 0

23 Kurim Tisnov (ov4 49°30°" 16°30' 400 12 7 - 5 - 2 0.486
24 Luzna Olesna cz 50°10' 13°70' 390 I I - - - | 0

25 Murat FR 45°06' 2°15' n.a. 9 9 - - - | 0

26 Balnagowan Wood UK 57°16' 3°09' 240 14 14 - - - [ 0

27 Morayshire UK 57°33' 3°29' na. 20 20 - - - [ 0

28 Hallestad District SE 58°46' 15°35' 85 13 il - 2 - 2 0.260
29 Rumsulla District SE 57°41" 15°35' 150 20 15 - 5 2 0.375
30 Kiuruvesi FI 63°40' 26°40' na. 19 | - 18 - 2 0.100
31 Vehkalahti FI 60°35' 27°20' na. 20 | - 19 - 2 0.095
32 Voronezh RU 50°30' 40°00' na. 19 13 - 6 - 2 0.432
33 Orlovsk RU 52°30' 37°00' n.a. 20 15 - 5 - 2 0.375
34 Kaunas LT 54°45' 24°05' 100 20 20 - - - | 0

35 Riga Lv 56°53' 24°08' n.a. 20 I - 9 - 2 0.495
36 Krasnoyarsk RU 60°00' 90°00' na. 20 20 - - - | 0

37 Spirinsk RU 54°00' 81°00' n.a. 20 20 - - - | 0

38 Vilnius LT 54°38' 25°28' 100 20 10 - 10 - 2 0.500
39 Krasnoe RU 54°00' 86°20' na. 20 20 - - - | 0

40 Rokiskis LT 55°48' 25°33' 120 20 8 - 12 - 2 0.480
41 Kaluzhkaya Ob. RU 54°00' 35°00' n.a. 20 12 - 8 - 2 0.480
42 Tatarskaya Ob. RU 55°00' 50°00' na. 20 19 - | - 2 0.095
43 Dainava LT 53°55' 23°40' 80 20 12 - 8 - 2 0.480
44 Novosibirsk RU 55°05' 82°45' 200 20 16 - 4 - 2 0.320
45 Kievskaya Ob. UA 50°00' 30°00' n.a. 20 20 - - - | 0

46 Groenendaal BY 50°50' 42°10' na. 18 18 - - - | 0

47 Baiyinna-Heilongjiang CN 52°21 125°40' na. 17 17 - - - [ 0

48 Jilin Prov. CN 43°00' 126°00' na. 17 17 - - - | 0

49 Sung-Hua-Chiang CN 46°00' 127°00' 700 17 17 - - - | 0

50 Heilongjiang Prov. CN 47°00' 127°00' na. 20 20 - - - | 0

51 Sierras Penibeticas ES 37°20' 2°50'w 2000 18 18 - - - | 0

52 Montes Universales ES 40°20' 1°50'w 1700 19 - 19 - - | 0

53 Guadarrama ES 40°45' 4°05'w 1900 19 18 | - - 2 0.100
54 Alto Tago ES 40°44' 2°10'w 1500 18 - 18 - - [ 0
Total 986 713 45 171 57 - -
Average 18.3 - - - - 1.50 0.141

IAT, Austria; BG, Bulgaria; BY, Belarus; CN, China; CZ, Czech Republic; ES, Spain; Fl, Finland; FR, France; LT, Lithuania; LV, Latvia; RO, Romania;
RU, Russian Federation; SE, Sweden; TR, Turkey; UA, Ukraine; UK, United Kingdom.

2The "w" indicates the longitude west of Greenwich meridian.

3The first letter of multi-locus haplotype (mitotype) refers to the haplotype observed at locus nad7 intron| and the second letter refers to the
haplotype observed at locus nad/ intron B/C following nomenclature in Table 2.

4Number of distinct mitotypes per population.

5Mitotype diversity.
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Table 4: Genetic diversity parameters and population differentiation estimates!.

Group Populations Region (Country) N2 hh3 A% H5 Gsr®  Ngp/

| 1,2,3,4,56,7,8,9,10, 11,12, 13,20, Most populations from Europe and Asia 795 3 148 0.147 0.262 0.270 0.785
21,22, 23, 24, 25, 26, 27, 28, 29, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 53

I 17,18, 19, 30, 31 Karelia and NE Scandinavia (Russia/Finland) 96 2 20 0.213 0.001 0.001
i 14,15, 16 Middle East (Turkey) 58 2 1.33 0032 0 0

v 52, 54 Iberian Peninsula (Spain) 37 | 10 0 n.a. na.
Total 986 4 1.50 0.141 0.657 0.685

IEstimates for groups of populations of Scots pine delineated by SAMOVA and maximizing geographic structure.
2Sample size.

3Number of distinct multi-locus haplotypes (mitotypes) observed in each group.

4Average number of mitotypes per population in each group.

5Average mitotype diversity per population in each group.

éDifferentiation among populations in each group.

7Fixation index using PERMUT software [88].

8Differentiation among the four groups.

43 —— " ¥ / / _ ¢ N ) =] 120°E

4.

3
33

. 2
.51

-] 100°E

@
-

4

L

\

Figure |

Geographic distribution of multi-locus mtDNA haplotypes (mitotypes) in Scots pine natural populations from
Europe and Asia. (A) Gray color represents the natural range of Scots pine. The colours corresponding to the mitotypes are
defined in plate B. Note a large mixed zone involving the ancestral lineages AA and BA over northeastern Europe. (B) Haplo-
type network of the four mitotypes identified in this study. Each link represents one indel. The size of circles is proportional to
the relative frequency of mitotypes (for exact frequencies, see Table 3).
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that reported in earlier studies restricted to Scots pine pop-
ulations from western Europe based on RFLPs of the cox1
region (Ggp = 0.83; [5]) or indels of the nadl intron B/C
(Ggr=0.60; [6]). Such estimates are in line with averages
reported for maternally inherited markers for a number of
conifer and angiosperm taxa [54]. The amount of popula-
tion differentiation determined by nuclear markers such
as isozymes was generally much smaller in Scots pine with
Ggrvalues ranging between 0.025 and 0.076 [43,55-61]].
However, these studies were carried out mostly at the
regional level. Among-population differentiation was also
much higher for mtDNA markers than for paternally
inherited cpDNA markers in a Scots pine study covering
much of the species range (Ggy = 0.11; [62]), as usually
observed in other conifers [e.g. [54,63]].

Geographic structure

The present study confirms the existence of a genetically
distinct set of populations in the high mountains of the
Iberian Peninsula [5,6] while variants discovered in the
intron 1 of nad7 signal distinctive evolution in Asia Minor
and northeastern Europe. Haplotype B at locus nadl
intron B/C was observed mostly in the Iberian Peninsula
in some high elevation populations of the Zaragoza/
Valencia regions where it was fixed or nearly fixed. It was
observed only sparingly west of Catalonia. Such a distri-
bution indicates that these Catalan populations have been
isolated during glaciations and have not contributed to
the recolonization of Europe [[5,6] and [30]]. A distinct
dynamics of Catalan populations from the rest of the Ibe-
rian Peninsula has also been reported for other species
like Aleppo pine [64], Maritime pine [9,65], and white
oaks [8]. In the present study, haplotype B of nad1 intron
B/C has also been discovered, albeit at low frequency, in
five other populations located in Bulgaria, in the Balkan
Peninsula, thus far away from the center of prevalence for
this haplotype in the Iberian Peninsula. Long-distance
seed dispersal could be invoked but is unlikely over such
long distances, given the heterogenous topography and
relative isolation of Iberia. The probability of such long-
distance movements would be higher in the northern and
more eastern parts of Scots pine natural range, given the
lack of major physical barriers. Another perhaps more
plausible explanation for the rare presence of haplotype B
of nad1 intron B/C in some Balkan populations could be
that it is ancient and was present in more than one south-
ern ice refugia. Its high or low frequency, depending on
the region considered, could be attributable to stochastic
variation, especially if southern refugia populations suf-
fered from severe bottlenecks. The weak occurrence of this
haplotype in the Balkans might also result from human
activity, as previously suggested for the rare presence of
this variant in Poland [6]. Whereas the hypothesis of seed
source transfer cannot be totally ruled out, it is difficult to
sustain because of (i) the lack of hard evidence for such
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seed source transfer between the Balkans and the Iberian
Peninsula in the past; (ii) natural stands in which seeds
were collected existed long before forest management
activities began in Europe; and (iii) the relative conserva-
tism of forest seed transfer guidelines in the Balkan region
[66]. A third explanation could relate to ancient mtDNA
capture from hybridizing species in the region [67,68].
Accordingly, phylogeographical studies of other pine spe-
cies in the region using the same gene locus might help
clarify the issue.

The detection and high prevalence of haplotype C of nad7
intron 1 in Asia Minor populations only is a strong signal
for the presence of a genetically distinct glacial popula-
tion. This relictual population would have experienced
severe bottlenecks, because populations were all fixed for
this haplotype except for one tree harbouring the cosmo-
politan haplotype A. After glaciation, it would have
remained isolated, eastward by the Caucasus Mountains,
northward by the Black Sea, and westward by the Bospho-
rus passage. The cold and arid climate in this region dur-
ing the Holocene might have also impeded the expansion
of this population [69], but not its survival as Scots pine
can survive under very harsh conditions [70].

The high prevalence of haplotype B of nad7 intron 1 in
northeastern Europe suggests the presence of a genetically
distinct glacial population at more northern latitudes
than previously thought, an idea that had already been
suggested for Scots pine [5]. A recent mutation during the
Holocene giving rise to haplotype B of nad7 intron 1 is
unlikely, given the widespread distribution of this haplo-
type. As well, homoplasy is unlikely, given the low rate of
variation of angiosperm and conifer mitochondrial
introns [47,49]. A large number of populations had mixed
composition of both haplotypes A and B of nad7 intron 1
in central and northeastern Europe. Their diversity index
was highest among all populations surveyed, which could
result for the meeting of two genetically distinct glacial
lineages (A and B), or indicates that the glacial population
harboring haplotype B had mixed genetic composition.
The uneven distribution of haplotype B of nad7 intron 1
among these populations, with a higher prevalence of
haplotype B as one moves northward, could result from
successive founder events during colonization [71], as
recently proposed for European hedgehogs [72]. This is
likely, given than that migration from more southern lat-
itudes was necessary to colonize these previously glaciated
areas.

Implications for glacial and postglacial history of
European vegetation

There is some evidence from fossil and palynological data
that cold adapted tree species occupied mid-altitude sites
in the mountains of southern Europe during the last gla-
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cial stage [13]. Moreover, the southern peninsulas of Ibe-
ria, Italy, the Balkans, and Greece, which are separated
from the rest of Europe by major mountain ranges such as
the Pyrenees, Alps and Caucasus, were identified as major
glacial refugia for many species [[14,30] and [65]]. Our
genetic data indicates that a genetically distinct glacial ref-
uge existed in Asia Minor as well. Tree pollen, including
that of the genus Pinus, was recorded in the Balkans about
14 000 years BP [13] while it was barely present as late as
10 500 years BP in southwestern Turkey where the climate
was cold and dry with steppe vegetation [69]. Pine pollen
attained its maximum only in early Holocene in western
Anatolia and in mid-Holocene in more eastern areas,
likely because of similar climatic limitations [73,74].
Thus, it is apparent that tree populations would have been
scarce in the region at LGM, 21 Kyr ago. The refuge is also
unlikely to have contributed much to the postglacial col-
onization of Europe, given the genetic discontinuity
detected in Scots pine. The peculiar location of Turkey
between the Black and Mediterranean seas would have
promoted isolation from more northern areas. It is likely
that other elements of the steppe vegetation in the region
also represent relicts from the pre-Holocene era and suf-
fered similar effects during glacial periods, as shown
recently for field mouse [75]. As such, it is expected that
they would show a distinct genetic background, as that
detected in Scots pine.

The exact location and size of the Scots pine glacial popu-
lation giving rise to the large spread of haplotype B of
nad7 intron 1 in eastern or northeastern Europe remain
unknown. Based on fossil data, Scots pine glacial popula-
tions existed in the Balkans and possibly even in central
Europe [Litynska-Zajac M. cited by Stewart and Lister
[22,23]]. The large spread of haplotype A of nad7 intron 1
throughout Europe is likely the consequence of an expan-
sion from glacial populations from that region [30]. Such
spread northwestwards towards Germany and France and
northeastwards throughout Eastern Europe and Siberia
correlates geographic dispersion patterns and coloniza-
tion routes inferred for a grasshopper [76], for European
beech [77], for the oaks [4], and for Norway spruce
[52,78]. However, some of these colonization routes are
still open to alternative interpretation. Furthermore, such
observations do not correlate well with the exceptionally
northern location of haplotype B of nad7 intron 1.

The peculiar northern distribution of haplotype B of nad7
intron 1 indicates that Scots pine has likely survived in a
refuge distinct from those usually recognized in the south-
ern peninsulas of Europe, perhaps under the form of scat-
tered glacial populations spread over sizeable latitudinal
areas reaching European mid-latitudes not far from the ice
front. Scots pine is known to survive and grow reasonably
well upon permafrost [72]. Evidence is also accumulating
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regarding the existence of glacial populations located at
more northern latitudes [e.g. [25,28] and [29]] and their
significant contribution to Holocene colonization
[22,25]. In addition, if the mixed zone observed in north-
central and northeastern Europe between the cosmopoli-
tan AA mitotype and the northern BA mitotype represents
truly a zone of secondary contact, the northern location
and shape of this zone would not correspond well to the
meeting of two ancestral lineages both located in or near
southern European peninsulas. While the existence of
such zones with typically higher genetic diversity has been
reported for other tree species in Europe [[3,4] and [16]]
as well as in North America [19,20] where ancestral line-
ages from southern latitudes would converge at more
northern latitudes, this possible zone of contact would
more likely correspond to the junction between a lineage
moving northwards from the Balkans or from even more
east (the AA lineage), and a lineage of more northern or
northeastern origin (the BA lineage). In one rare occur-
rence of similar observation, Taberlet et al [3] recognized
a contact zone of migration fronts as far north as in Scan-
dinavia for Picea abies. They proposed that the area was
presumably colonized from the south and from the north-
east by populations originating from different refugia.

While the current areas of maximum abundance of haplo-
type B of nad7 intron1, Finland and northwestern Russia,
were completely glaciated at LGM [79], it is likely that
trees colonizing the region would have migrated north-
ward from a region anywhere west of the Ural Mountains.
There are indications from general circulation models that
the climate during the last glacial maximum was warm
enough to allow Scots pine to survive well as far north as
above 50°N in isolated regions of northern Ukraine and
southwestern Russia, for instance [30]. A location more
south is also possible if founder events after long-distance
dispersal are hypothetized, followed by drift and lineage
sorting to account for the high abundance of haplotype B
of nad7 intron 1 as one moves into Finland and north-
western Russia. However, this hypothesis becomes
unlikely for long-distance dispersal from refuges located
in the southern European peninsulas, given the absence of
haplotype B of nad7 intron 1 in southern populations of
Scots pine.

More mtDNA polymorphisms will need to be discovered
in order to distinguish Scots pine disjunct populations
from eastern Europe and Asia and investigate if significant
glacial vicariance factors existed in this vast region. Sibe-
rian populations where the cosmopolitan mitotype AA
was dominant might have been established from a glacial
population located in southwestern Siberia, in the upper
Irtysh River Valley [80-82], or from a more southern loca-
tion. As for Scots pine populations located in the far-east
in China where the cosmopolitan mitotype AA was found
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fixed, it is not clear if it is derived from a more western ref-
uge located in southwestern Siberia (see above) or if a ref-
uge existed in northeastern China. Palynological evidence
suggests that pine was present at several locations in the
region during the last glaciation, but it is unclear if the fos-
sil pollen was representative of Scots pine as many pine
species are endemic to the region [82].

Conclusion

The present study suggests a more complex biogeographi-
cal history than previously thought for Scots pine and pre-
sumably, for its associated plant congeners. The study is
congruent with others [[3,15,17] and [21]] about the
asymetry of glacial refugia in contributing to the postgla-
cial recolonization of Eurasia. This trend is best exempli-
fied by the prevalent nad7 intron 1 haplotype found
specific to the relictual population from Turkey and from
nowhere else in Eurasia. It indicates that Asia Minor is
likely to represent a prime area of endemism supporting
genetically distinct lineages unlikely to be found in the
rest of Eurasia. Such a trend highlights the geography of
the region as an important vicariance factor limiting
migration and gene flow. Similarly as for other areas of
endemism in Europe (e.g. Iberian and Italian Peninsulas),
seed source movements from the rest of Eurasia to Asia
Minor should be restricted. Reserves could be considered
to ensure in situ preservation of relictual genetic diversity
and structure, which need to be further documented at the
level of the chloroplast and nuclear genomes as well as for
other plant and animal species.

The discovery of a genetically distinct North-European lin-
eage suggests that some glacial populations may have sur-
vived isolated from refugia in South European peninsulas
at more mid- northern latitudes. Given the colonization
time lag for southern populations to reach northern lati-
tudes due to distance, topographic barriers [2,83] and
competition from a possible network of resident popula-
tions sparingly distributed, such genetically distinct gla-
cial populations have apparently played a major role in
the postglacial colonization of parts of northern Europe.
A likely consequence of such glacial vicariance is that
extant northern populations of nordic plant species might
not be as homogenous as assumed by simply considering
them as offsets of glacial populations located at southern
latitudes. This observation implies that they might have
evolved distinctive genetic adaptations during glacial
vicariance, worth evaluating and considering in conserva-
tion programs [84,85]. As well, the extensive mixing of
two ancestral lineages in central and northeastern Europe
provides the opportunity to perhaps identify and preserve
unique adaptive diversity.
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Methods

Population sampling and DNA isolation

Fifty-four natural populations were sampled and their
location was chosen in order to represent most of the nat-
ural range of the species in Europe and Asia. Twenty pop-
ulations were from the eastern part of the Ural Mountains
and Asia (Russia and China) as well as from Asia Minor
(Turkey), and the remaining 34 populations from 13
European countries (Figure 1 and Table 3). Each seed lot
represented a bulk of seeds from a minimum of 50 indi-
viduals with a minimum distance of 100 m between
them. Seed samples were collected from each population
and stored in darkness at 4°C until they were processed.

Seeds from each population were soaked on moistened
filter paper in Petri dishes at 26 °C under a photoperiod of
14 hours for 2 days until DNA extraction. DNA was
extracted from the haploid megagametophyte for each of
9 to 20 seeds per population using a genomic DNA mini
preparation kit (Sigma-Aldrich), for a total of 986 DNA
samples and an average of 18.3 samples per population
(Table 3). A screening for mtDNA polymorphism was
conducted by assembling an exploratory panel of 26 out
of the 986 DNA samples, each representative of a different
population and ensuring that geographically widespread
populations were represented.

Screening for mtDNA polymorphism and sequencing

A total of 15 mtDNA regions were screened for polymor-
phisms using various techniques (Table 1). Polymor-
phism was detected for only two regions, nadl intron B/C
(2 haplotypes), and nad7 intron 1 (3 haplotypes). DNA
samples bearing different haplotypes for each of the vari-
able mitochondrial regions were selected (3 DNA samples
per locus and per haplotype from different populations)
and sequenced in order to determine the exact nature of
every fragment length polymorphism and to detect the
presence of potential fragment length homoplasies. Direct
sequencing of the two DNA strands was carried out on an
automated 3730XL DNA analyser (Applied Biosystems)
with the dideoxynucleotide chain termination procedure
using the appropriate amplification primers and Big Dye
Terminator kit-V.3.1 (Applied Biosystems). The complete
sequences for nad7 intron 1 haplotypes have been depos-
ited in GenBank (GenBank: DQ665913 to DQG665915).
The complete sequence for nadl intron B/C was already
available in GenBank [6]. Multi-locus mtDNA haplotypes
(mitotypes) were then defined by considering single-locus
mtDNA genotypes simultaneously and their relationships
were determined by statistical parsimony analysis of the
aligned sequences using the program TCS [86].

mtDNA population survey and numerical analyses
Single-locus haplotypes were determined for each of 986
individuals with the internal primers pair nadlH and

Page 9 of 12

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ665913
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ665915

BMC Evolutionary Biology 2007, 7:233

nadl1l for nadl intron B/C, as described by Soranzo et al
[6], and the primers nad7 intronl forward and nad7
intron1 reverse for nad7 intron 1, as described by Jara-
millo-Correa et al [19]. Primers were synthetized by Invit-
rogen. DNA was amplified in a PTC225 thermal cycler (M]
Research) using Platinum Taq DNA Polymerase (Invitro-
gen) in a 12 pl reaction volume, following protocols pub-
lished by Soranzo et al [6] for nadl intron B/C and
Jaramillo-Correa et al [19] for nad7 intron 1. PCR products
of nad7 intron 1 were digested with the restriction enzyme
Sau3A I (Promega) and then separated through 8 % non
denaturating polyacrylamide gels (in TBE) in order to
detect putative cleaved amplified polymorphic sites
(CAPS). PCR products of nadl intron B/C were electro-
phoresed through 2 % agarose gel.

The number of observed mitotypes per population (nh)
and the total mtDNA diversity per population (H; equiva-
lent to the expected heterozygosity, Hy, for diploid data;
[87]) were estimated. Population differentiation was esti-
mated using two fixation indices, Ggrand Ny, using PER-
MUT [88]. The first statistics is calculated based solely on
mitotype frequencies, whereas the second one takes into
account the genetic relatedness among mitotypes. Thus, if
the estimated Ny value is higher than the Gg; value, it
indicates that closely related mitotypes tend to cluster in
the same area, supporting the presence of a formal phylo-
geographic structure.

Geographic population structure was assessed using a spa-
tial analysis of molecular variance SAMOVA 1.0 [89,90].
A matrix of pairwise distances between populations was
first constructed using mitotype frequencies, as well as a
matrix of pairwise geographic distances between popula-
tions. The method implemented in SAMOVA employs a
simulated annealing procedure and uses allele frequency
data along with geographic coordinates of the sampled
populations to identify population groups maximizing
genetic differentiation. We determined the most likely
number of K groups by repeatedly running SAMOVA with
variable numbers of groups and by choosing the number
resulting in a maximum Fvalue [90]. The configuration
with the largest F.; value among the 100 tested was
retained as the best grouping of populations.
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