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Abstract
Background: Transposons, i.e. transposable elements (TEs), are the major internal spontaneous
mutation agents for the variability of eukaryotic genomes. To address the general issue of whether
transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles
per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including
CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon
insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila
melanogaster P450s genes for TE insertions by in silico mapping and literature search.

Results: Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs
(short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements),
one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified
from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the
5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes.
In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9,
CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a
variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1,
CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free
of TE insertions.

Conclusion: These results indicate that TEs are selectively retained within or in close proximity
to xenobiotic-metabolizing P450 genes.

Background
All organisms must adapt to their environments com-
posed of biotic and abiotic factors to survive and repro-
duce. This requires organisms to allocate a substantial
portion of their genomes to encode environment
response genes that can be defined as those involved in
interactions external to the organisms [1]. Examples of
environmental response genes are those involved in
pathogenesis or virulence (in pathogens), biosynthesis of

toxic compounds (in plants), and detoxification (in ani-
mals). To cope with the ever-changing environment,
organisms are also required to have greater genomic plas-
ticity in the environmental response genes so that novel
adaptive genomic changes (mutations) are available for
natural selection.

Although there may be a few environmental stress factors
such as UV radiation and mutagenic xenobiotics that can
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directly cause genomic changes, the majority of environ-
mental factors act as pure selection agents rather than
mutagens. Therefore, the genomic plasticity necessary for
coping with the ever-changing environment in these loci
should arise primarily from internal spontaneous altera-
tion events [2].

There are two possible internal mutators that can cause
mutational genomic changes: error-prone DNA polymer-
ase and transposable element (TE). In normal conditions,
the error rate of DNA polymerase and the transpositional
activity of TE are relatively low. Under environmental
stress, both the error rate of DNA polymerase and the
transpositional activity of TE transposition can be
increased [3-8]. For example, the transpositional activity
of TEs in plants is relatively silent during normal develop-
ment but is activated by stresses, such as wounding, path-
ogen attack, and cell culture [4].

Enhanced TE transpositional activity may insert TEs into
any loci as long as they have the corresponding target site
sequence for a given TE. The retention and accumulation
of TE insertions, however, will likely be loci specific. In
theory, nature would likely retain TEs inserted into the
environmental response loci and/or their flanking regions
but remove TEs inserted into the critical housekeeping
gene loci and/or their nearby regions. Environmental
response genes need a greater mutation rate and genomic
plasticity to cope with the ever-changing environment,
whereas essential housekeeping genes require a high fidel-
ity because of functional constrains. Moreover, deleteri-
ous mutations within or around the essential genes,
which are much more common than advantageous muta-
tions, often result in catastrophic lethality. By contrast,
deleterious mutations within or around the environmen-
tal response genes usually lead to reduction in fitness.
Such differential consequences resulting from deleterious
mutations are determined by the nature of the two groups
of genes as well as the presence of duplicated redundant
copies of the environmental response genes in the
genome [1]. By retention and accumulation of TEs, the
environmental response genes can gain TE-introduced
selectively advantageous variations otherwise not easily
available to respond successfully to changes in environ-
ment.

Several recent reports appear to support this hypothesis.
Wagner et al. (2003) found that TEs are often excluded
from the HOX genes, a family of linked transcription fac-
tors sharing a DNA-binding domain and playing impor-
tant roles in animal body plan development in vertebrates
[9]. Simons et al. (2006) identified 860 conserved TE-free
regions (TFR) over 10 kb in length in the human and
mouse genomes [10]. These TFR are significantly associ-
ated with genes encoding transcription factors and devel-

opmental regulators [10], consistent with the notion that
TE insertions into essential housekeeping loci are strongly
selected against. By the same token, Grover et al. (2003)
showed that Alu elements are more clustered in genes
involved in metabolism, transport, and signalling proc-
esses (facilitating the adaptation of signal transduction
pathways to environmental changes) than in genes encod-
ing information pathway components and structural pro-
teins [11]. Analyses of human and mouse genomes
indicated that TEs are significantly enriched in rapidly-
evolving gene classes, such as those involved in immunity
and response to external stimuli but are excluded from
mRNAs of highly conserved genes with basic housekeep-
ing functions in development, transcription, replication,
cell structure and metabolism [12,13]. Along the same
line, at least seventeen TEs are associated with the rice
Xa21 gene cluster, which confers disease resistance against
Xanthomonas oryzae [14]. In the common morning glory
(Ipomoea purpurea), a remarkable variety of mobile ele-
ments reside in the chalcone synthase D locus (CHS-D),
which encodes a key enzyme controlling the first commit-
ted step in the flavonoid biosynthetic pathway producing
a wide range of compounds important in UV protection
and defense against plant disease and herbivores [15].
Other than the above-mentioned differential retention of
TEs between essential housekeeping genes and environ-
mental response genes, Tos17 retrotransposon prefers to
insert into disease/defense-related and signal transduc-
tion (kinase) genes in the rice genome [16].

Cytochrome P450 monooxygenases (P450s) are ubiqui-
tous in virtually all living organisms and constitute a mul-
tigene family replete with gene duplication and
conversion events [17]. Multiple P450 genes exist in a
given genome, some of which may function as essential
housekeeping genes involved in the biosynthesis of hor-
mones [18,19]; others may act as environmental response
genes involved in the biosynthesis of toxic compounds for
plant defense or pathogens attack or in the detoxification
of naturally-occurring and synthetic xenobiotics
[2,17,20]. To address the issue of whether TEs mediate
genomic changes in the environmental response P450
genes, we scanned two alleles (one from a laboratory col-
ony, another from a cell line) per each of the six xenobi-
otic-metabolizing Helicoverpa zea P450 genes, CYP6B8,
CYP6B27, CYP9A12v3, CYP9A14, CYP321A1 and
CYP321A2 [21-25], for the presence of TE insertions by
genome walking and sequence analysis. Twelve novel TEs,
including LINEs (long interspersed nuclear elements),
SINEs (short interspersed nuclear elements), MITEs (min-
iature inverted-repeat transposable elements), one full-
length transib-like transposon, and one full-length Tcl-
like DNA transpson, are identified from their introns,
exons or flanking regions. We further surveyed TE inser-
tions among the xenobiotic-metabolizing and ecdysone-
Page 2 of 13
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:46 http://www.biomedcentral.com/1471-2148/7/46
synthesizing P450 genes in Drosophila melanogaster
genome by in silico mapping at the flybase [26] and litera-
ture search. Seven out of the eight insecticide resistance
responsible P450s, including CYP4E2 [27], CYP6A2 [28-
30], CYP6A8 [28], CYP6A9 [29], CYP6G1 [31-33],
CYP6W1 [30], CYP12A4 [34], CYP12D1 [35,36], are asso-
ciated with a variety of TEs. In contrast, TEs are excluded
from all of the five essential Drosophila P450 genes
(CYP302A1, CYP306A1, CYP307A1, CYP314A1 and
CYP315A1) that are involved in ecdysone biosynthesis
and developmental regulation [18,37-40]. These results
indicate that TEs are selectively enriched within or in close
proximity to xenobiotic-metabolizing cytochrome P450
genes.

Results
Transposons within the CYP6B gene cluster
Seven P450 genes distributed in the CYP6B, CYP4M, and
CYP321A subfamilies have been cloned from H. zea [21-
23]. Previous studies have demonstrated that CYP321A1
is highly inducible by xanthotoxin [23] and the four
CYP6B transcripts accumulate to varying degrees in
response to a range of allelochemicals naturally encoun-
tered in hostplants (xanthotoxin, indole-3-carbinol, chlo-
rogenic acid, flavone) as well as in response to synthetic
chemicals not naturally encountered (cypermethrin, phe-
nobarbital) [21,22]. The CYP6B transcripts are also induc-
ible by plant defense signalling molecules jasmonate and
salicylate, allowing this species to "eavesdrop" on plant
defense signals for activating detoxification systems in
advance of induced biosynthesis of host plant toxins [41].
Baculovirus-mediated expression of the CYP6B8 and
CYP321A1 proteins has directly demonstrated that they
are capable of metabolizing a range of allelochemicals
(xanthotoxin, chlorogenic acid, quercetin, flavone) and
insecticides (diazinon, cypermethrin, and aldrin) [23,24].

Here we cloned the 5'-flanking sequences of the four
xenobiotic-metabolizing H. zea CYP6B genes by genome
walking approach [see Additional file 1] and then
searched for the presence of transposon insertions by
sequence analysis. We successfully recovered the genomic
sequences and the 5'-flanking sequences of CYP6B8 and
CYP6B27 but failed to recover the 5'-flanking sequences of
CYP6B9 and CYP6B28 from our current laboratory popu-
lation and from the H. zea midgut cell line RP-HzGUT-
AW1 [42]. It is possible that CYP6B28 is just an allele of
CYP6B8 since it is essentially identical to CYP6B8 except
for a 227-bp insertion in its intron (Figure 3a) [43]. Re-
examination of this 227-bp insertion sequence reveals
that it has a 60-bp perfect terminal inverted repeats (TIRs)
flanked by 2-bp target site duplications (TSDs), lacks cod-
ing potential and is AT rich (59%). These are the common
structural characteristics of MITEs [44], thus we designate
it as HzMITE1 (Figure 1a; Figure 2c; Table 1).

In the laboratory population and the cell line, CYP6B8
and CYP6B27 are adjacent to each other in a head-to-tail
arrangement, with CYP6B8 located 2030-bp upstream of
CYP6B27 (Figure 1a). By comparing the sequence of the
CYP6B8-CYP6B27 cluster in the laboratory colony and
that in the cell line, three transposon insertions are char-
acterized. One transposon insertion is found in the 5'-
flanking promoter region of CYP6B8 in the midgut cell
line CYP6B8-CYP6B27 cluster (Figure 1a; Table 1). This
3518-bp DNA transposon insertion has long TIRs and is
flanked by 5-bp (GCTCG) TSDs (Figure 2a). The deduced
489 amino acids sequence has 34% identity with transib5
from Drosophila melanogaster [45]. Based on these fea-
tures, it is designated as Hztransib. Another transposon is
found in the exon1 of CYP6B8 in the midgut cell line (Fig-
ure 1a; Table 1). This 1558-bp transposon has typical fea-
tures of Tc1 family transposon, such as 27-bp perfect TIRs
flanked by 2-bp (TA) TSDs (Figure 2b). Its putative open
reading frame (ORF) encodes 375 amino acids and share
23% identity with Tc1 transposon from Caenorhabditis
elegans [46]. Thus it is designated as HzTc1.

The third one is inserted in the intergenic region of the
CYP6B8-CYP6B27 cluster, i.e. the 5' flanking region of
CYP6B27 or the 3'-flanking sequence of CYP6B8 (Figure
1a). This insertion is present in the CYP6B8-CYP6B27
cluster of the laboratory population but not in the midgut
cell line (Table 1). This transposon is flanked by 6-bp
TSDs (Figure 2d) and has an ORF sharing 29.1% amino
acids identity with Maui transposon, a member of CR-1
(chicken repeat 1) family of non-LTR retrotransposons,
from the pufferfish Fugu rubripes [47]. This retrotranspo-
son insertion also contains microsatellite (TA dinucle-
otides) repeats at the 3' end but lacks a poly-A tail, which
usually happened in the CR1 family of non-LTR retro-
transposons [47]. Thus, we designate it as HzCR-1. Amino
acids sequence alignment with other CR1 clade retrotrans-
posons demonstrates that HzCR1 is truncated at the 5'
end, losing apurinic-apyrimidic endonuclease (AP
ENDO) domains and most of reverse transcriptase (RT)
subdomains. Among the seven RT subdomains defined by
Xiong and Eickbush [48], only the seventh subdomain
and part of the sixth subdomain are retained in the
HzCR1 (see Additional file 2).

Transposons within the introns of CYP9A12v3 and 
CYP9A14
Two cDNA sequences representing CYP9A12 and
CYP9A14 were isolated from a pyrethroid-resistant strain
of Helicoverpa armigera [25], the old world sibling species
of H. zea. The fact that the CYP9A12 and CYP9A14 tran-
scripts in the pyrethroid-selected resistant strain are over-
expressed 433- and 59-fold in the fatbody and 19- and
4.3-fold in the midgut, respectively, in comparison with
the unselected parental strain, indicates that these two
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P450s are associated with pyrethroid resistance [25]. To
examine if any transposon is inserted in the homologs of
these two insecticide-metabolizing H. armigera CYP9A
genes in H. zea, gene-specific primers (see Additional file
1) are designed to PCR-amply the genomic sequences of
the H. zea homologs from the laboratory strain and the

midgut cell line. The orthologous CYP9A genes obtained
from the H. zea laboratory strain are designated as
CYP9A12v3 (5.7 kb) and CYP9A14 (8.4 kb) (Nelson, per-
sonal communication). Sequence comparison with the
cDNA sequences of the H. armigera CYP9A12 and
CYP9A14 reveals that the two paralogous H. zea CYP9A

Schematic representation of the six P450 genes and the inserted twelve transposonsFigure 1
Schematic representation of the six P450 genes and the inserted twelve transposons. The P450 genes are shown 
to scale with exons depicted as filled pink boxes, introns as pink lines, and 5'/3'-flanking sequences as blue lines. The trans-
posons are represented as colored inverted triangles with their names, orientations (horizontal arrows above triangles) and 
insertion positions (vertical arrows below triangles). Triangles with an identical color are different copies of one transposon. 
The red vertical arrow below the CYP321A2 indicates its heme-binding site in protein.

Schematic structures of the 12 transposonsFigure 2
Schematic structures of the 12 transposons. The structure of the 12 transposons are drawn to scale (except for 
Hztransib1) with horizontal arrows representing putative TSDs (sequence shown underneath). Arrowheads represent TIR 
(length shown above), filled black boxes represent putative ORF and black lines represent non-coding sequences. Microsatellite 
sequences within some transposons are shown in parentheses, followed by the corresponding repeat number.
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genes share an identical genomic structure, each having
10 exons and 9 introns of variable sizes (Figure 1b, 1c).
Their intron/exon locations and boundary sequences (all
of the 9 introns follow the GT-AG rule in both CYP9A12v3
and CYP9A14) are identical.

One transposon is characterized from the H. zea
CYP9A12v3 by using blastx against a nonredundant data-
base. This transposon insertion, present in both the labo-
ratory strain and the midgut cell line, is 1764-bp long,
flanked by 10-bp target site duplications (TSDs), and
inserted in the third intron of CYP9A12v3 (Figure 1b; Fig-

ure 2e; Table 1). It has one ORF that is orientated in an
opposite direction with CYP9A12v3 (Figure 1b; Figure 2e)
and encodes a reverse transcriptase with 40% amino acids
sequence identity with the RTE-1 retrotransposon in
Caenorhabditis elegans [49]. Its 3' untranslated region is
unusually short and is predominantly composed of TGA
trinucleotide repeats, the typical feature found in the
members of the RTE clade [50] (Figure 2e). The typical
feature and high amino acids sequence identity it shares
with the members of the RTE-1 clade indicates that it is a
RTE-1 like non-LTR retrotransposon element and thus is
designated as HzRTE-1. Amino acids sequence alignment

Nucleotide alignments of CYP6B8 and CYP6B28 introns (a) and of two HzMITE2 copies (b)Figure 3
Nucleotide alignments of CYP6B8 and CYP6B28 introns (a) and of two HzMITE2 copies (b). Sequence alignments 
were generated using the Genedoc software. HzMITE1 and HzMITE3 are indicated by inverted triangles. TSDs flanking each 
element are underlined and in bold. TIRs for HzMITE2-1and HzMITE2-2 are shown in italic. While HzMITE2-1 is inserted in the 
8th intron of CYP9A14, HzMITE2-2 is inserted in the 1st intron of the H. zea delta-9 like acyl-CoA desaturase (HzPGDs3) in an 
opposite orientation. Accession numbers of CYP6B8 and HzPGDs3 are [GenBank: AF285186] and [GenBank: AF297109], 
respectively.
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with several RTE-1 retrotransposons demonstrates that
HzRTE-1 is a 5'-truncated non-LTR retrotransposon that
retains most of RT domain but loses AP ENDO domains.
Among the seven RT subdomains, only subdomains 3rd-
7th are retained in the HzRTE-1 (see Additional file 3).

Surprisingly, four transposons are characterized from the
CYP9A14 locus (Figure 1c; Table 1). They are inserted into
intron1, 7, and 8 of CYP9A14, respectively. The two ele-
ments inserted into intron 1 and 7 are 99% identical to
each other, suggesting they are two copies of the same
transposon. These two copies, however, have different
TSDs and are oriented opposite to each other (Figure 1c;
Figure 4a). Interestingly, this element is also inserted into
the CYP321A2-CYP321A1 gene cluster (see below),
namely, the 3'-flanking sequence of CYP321A2 and the 5'-
flanking sequence of CYP321A1 (Figure 1d; Table 1). This
copy also has different TSDs and is shorter in the 3' end
than the two copies in the intron 1 and 7 of CYP9A14A1
(Figure 2f, 2g and 2l; Figure 4a). Because this element has
no sequence similarity to any previously published inser-
tion sequence and has no features that belong to Class II
or Class I transposon, it is thus referred to as a TE-like ele-
ment. We designate this element as HzIS1 (H. zea Inser-
tion Sequence 1), with HzIS1-1, HzIS1-2 and HzIS1-3

representing its insertions in the first and seventh introns
of CYP9A14 and the CYP321A2-CYP321A1 cluster, respec-
tively. The laboratory strain has all three copies, whereas
the midgut cell line has HzIS1-1 and HzIS1-3 only (Table
1).

In the eighth intron of CYP9A14 from the laboratory
strain, two transposons are characterized, with one nested
into another (Figure 1c; Table 1). BLAST search shows that
the flanking transposon shares 96% sequence identity
with the middle sequence (in an opposite orientation) of
the 1st intron of the H. zea acyl-CoA desaturase gene
(HzPGDs3) (Figure 3b) [51]. In addition, these two
sequences also share identical 12-bp TIRs and identical
TSDs, indicating they are two copies of the same transpo-
son (Figure 2h; Figure 3b). Because they have the com-
mon structural characteristics of MITEs [44], including
small size, AT rich (67.5–67.7%), TIRs and lack of coding
potential, we designate them as HzMITE2-1 (the flanking
transposon in the 8th intron of CYP9A14) and HzMITE2-2
(the copy in the intron of the HzPGDs3), respectively. The
nested transposon within HzMITE2-1 (Figure 1c; Figure
3b) is 946-bp long, AT rich (67.8%), lacks coding poten-
tial, and is flanked by 9-bp TSDs (Figure 2i). These fea-
tures suggest that it is also a MITE-like element although

Table 1: The structural characteristics of twelve transposons characterized from six xenobiotic-metabolizing P450 genes in H. zea

element name class size, bp characteristics Location laboratory strain midgut cell line

Hztransib transib 3518 TIRs,5bp-TSD CYP6B8 promoter region

HzTc1 Tc1 1558 TIRs,2bp-TSD CYP6B8 exon1

HzMITE1 MITEs 227 TIRs,2bp-TSD CYP6B8 intron

HzCR1 non-LTR 1099 6-bpTSD CYP6B cluster intergenic region

HzRTE-1-1 non-LTR 1754 10-bpTSD CYP9A12v3 3rd intron

HzIS1-1 - 264 13-bpTSD CYP9A14 1st intron

HzIS1-2 - 393 16-bpTSD CYP9A14 7th intron

HzMITE2-1 MITEs 967 TIRs,2bp-TSD CYP9A14 8th intron

HzMITE3 MITEs 945 9-bpTSD CYP9A14 8th intron

HzRTE-1-2 non-LTR 62 7-bpTSD CYP321A2 promoter region ND

HzSINE1 SINEs 556 5-bpTSD CYP321A2 exon

HzIS1-3 - 190 5-bpTSD CYP321A cluster intergenic region

* ND: Not detected; : present; : absent
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without flanking TIRs [44]. This nested transposon is des-
ignated as HzMITE3. The CYP9A14 allele from the midgut
cell line has the flanking HzMITE2-1 only (Table 1).

Transposons within the CYP321A2-CYP321A1 gene 
cluster
To examine if there are transposons around the CYP321A1
locus, another well-defined xenobiotic-metabolizing
P450 in H. zea [23], we cloned the 5'-flanking sequence of
CYP321A1 from both the laboratory strain and the mid-
gut cell line. A 5.4-kb fragment upstream of CYP321A1
was obtained from the laboratory population by genome
walking. From this fragment, we identified another P450
gene, a paralog of CYP321A1, is designated as CYP321A2
(Nelson, personal communication). Like the CYP6B8-
CYP6B27 cluster, the CYP321A2-CYP321A1 paralogs are
oriented in a head-to-tail arrangement, with CYP321A2
located 1467-bp upstream of CYP321A1 (Figure 1d).
Compared with CYP321A1 and CYP321A2 alleles isolated
from the midgut cells, the CYP321A2 allele from the lab-
oratory population contains a 556-bp TE insertion located
126-bp upstream of its heme-binding signature motif in
its ORF (Figure 1d; Table 1), resulting in a 3'-truncated

transcript (Chen & Li, unpublished data). The insertion
sequence is flanked by 5-bp (AAAAA) TSDs and ends with
tetramer repeats (GACR) at its 3'end (Figure 2k), which is
a feature found in some SINEs such as Artw and Pst ele-
ments in cows [52] and CR1 element in chickens [53]. The
fact that it has no sequence similarity to any previously
published transposable element suggests that it is a novel
SINE element. We therefore named it as HzSINE1.

In addition, there are two other transposable elements in
the CYP321A2-CYP321A1 cluster, one located in the inter-
genic region, another inserted in the 5'-flanking region of
CYP321A2 (Figure 1d; Table 1). The transposon in the
intergenic region is 99% identical to HzIS1-1 and HzIS1-
2 found in the intron 1 and 7 of CYP9A14 (Figure 4a) and
thus is designated as HzIS1-3 (see above). The transposon
inserted in the 5'-flanking region of CYP321A2 is an
extremely 5'-truncated copy of the HzRTE-1 element
found in the 3rd intron of CYP9A12v3 (see above). This
HzRTE-1 copy completely loses its ORF and retains only
the 62-bp 3'UTR and the flanking 7-bp TSD (Figure 2j;
Figure 4b). To differentiate the two HzRTE-1 copies, we
name them as HzRTE-1-1 (the one found in the 3rd intron

Nucleotide alignments of three Hz IS1 copies (a) and of two HzRTE-1 copies (b)Figure 4
Nucleotide alignments of three Hz IS1 copies (a) and of two HzRTE-1 copies (b). Sequence alignments were gener-
ated using the Genedoc software. TSDs flanking each TE are underlined and in bold.
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of CYP9A12v3) and HzRTE-1-2 (the extremely-truncated
copy in the 5'-flanked promoter of CYP321A2).

Differential TE insertions around Drosophila 
melanogaster P450 genes
An extensive literature search shows that thirteen out of
the 90 P450 genes in the D. melanogaster genome have
been functionally defined (Table 2) [54]. Eight of them,
including CYP4E2 [27], CYP6A2 [28-30], CYP6A8 [28],
CYP6A9 [29], CYP6G1 [31-33], CYP6W1 [30], CYP12A4
[34], CYP12D1 [35,36], are implicated in insecticide
resistance and xenobiotic metabolism. The other five
P450 genes (CYP302A1, CYP306A1, CYP307A1,
CYP314A1 and CYP315A1) are involved in ecdysone bio-
synthesis and developmental regulation [18,37-40]. To
test if transposons are more enriched in the xenobiotic-
metabolizing Drosophila P450 genes as opposed to the
ecdysone-synthesizing Drosophila P450s, we surveyed the
insertions of TE within or in close proximity to the thir-
teen P450 loci and GSTD1, a DDT-metabolizing gene, by
in silico mapping at the flybase [26]. Seven out of the eight
insecticide resistance responsible P450 genes and the
DDT-metabolizing GSTD1 are associated with a variety of
TEs (Table 2). In contrast, TEs are excluded from all of the
five ecdysone-synthesizing P450 genes (Table 2).

Discussion
All living organisms, from bacteria to fungi, plants, and
animals, have a remarkable degree of genetic plasticity to
coevolve with their highly variable and selective environ-

ments. Plant pathogens can readily adapt to pathogen-
resistant crop varieties by genomic changes at their patho-
genic loci and insect pests can rapidly develop resistance
to synthetic insecticides through gene amplification, over-
expression, and amino acids substitutions at their detoxi-
fication loci [2]. It remains speculative how the genomic
changes arise at the corresponding environmental
response gene loci, simply by random mutation and sex-
ual recombination, or by another internal spontaneous
mutator?

Overwhelming evidence suggest that TEs, rather than only
being "selfish junk DNA" or "DNA parasites", can act as
internal spontaneous mutators to produce neutral, delete-
rious or advantageous effects to the fitness of the host
organism [55,56]. We therefore hypothesize that TEs may
be selectively enriched in environmental response genes,
but relatively excluded from essential housekeeping
genes, resulting in greater genomic plasticity to the former
but higher conservation to the later. Indeed, data obtained
from scanning the H. zea (Table 1) and D. melanogaster
(Table 2) P450 genes for TE insertions as well as studies
on the drug-metabolizing human P450 CYP2D6 [57] and
the pyrethroid resistant housefly P450 CYP6D3-CYP6D1
paralogs [58,59] support this hypothesis. In D. mela-
nogaster, seven out of the eight insecticide resistant P450s
and the DDT-metabolizing GSTD1 are associated with a
variety of TEs (Table 2). CYP6A9, although not directly
associated with a transposon, is located in the center of
the Drosophila CYP6A cluster, which is flanked by TEs [26].

Table 2: Comparison of TE insertions between the xenobiotic-metabolizing and ecdysone-synthesizing P450 genes in Drosophila 
melanogaster

Gene or gene cluster Function TE insertion and location*

CYP6A2 DDT resistance [28-30] Isfun-1-Dfun-like, 721-bp upstream
CYP6A8 DDT resistance [28] Max, 255-bp upstream
CYP6A9 DDT resistance [29] No
CYP6G1 DDT, lufenuron and neonicotinoid resistance 

[31-33]
Accord, 300-bp upstream of the transcription start site.

CYP6W1 DDT resistance [30] Two INE-1 copies, one 1174-bp upstream, the other 1842 
downstream. Further downstream are two 1360, seven INE-1, one 
Tc1-2, one INE-1, and one mimi-me-Dpse-like.

CYP4E2 DDT resistance [27] Isfun-1-Dfun-like, 707-bp upstream, jockey2, 2274-bp downstream, 
and Isfun-1-Dfun-like, 2854-bp downstream.

CYP12A4 lufenuron resistance [34] Bari1, 15-bp within the 3' end.
CYP12D1 DDT resistance [35, 36] Two pogo copies, one 8551-bp upstream, the other 98716-bp 

downstream.
GSTD1 DDT dehydrochlorinase activity and DDT 

resistance [73].
INE-1, 2191-bp upstream

CYP302A1 Ecdysone biosynthesis [37, 38] No
CYP306A1 Ecdysone biosynthesis [39] No
CYP307A1 Ecdysone biosynthesis [40] No
CYP314A1 Ecdysone biosynthesis [18] No
CYP315A1 Ecdysone biosynthesis [38] No

*: Transposons without a reference are found by in silico mapping at the flybase [26].
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By contrast, all the five Drosophila P450s involved in
ecdysone biosynthesis and developmental regulation are
free of TE insertions (Table 2). In the housefly Musca
domestica, two Mariner-like elements are inserted within
the CYP6D3-CYP6D1 cluster, with one located about 500-
bp upstream of CYP6D3 and another located about 500-
bp upstream of CYP6D1 [60]. In human, CYP2D6, one of
the best-known polymorphic drug-metabolizing enzymes
[57], is flanked by a 2.8 kb repeat sequence (CYP-REP ele-
ment) containing an Alu element and a tandem 10-bp
direct repeat in the wild type allele [61]. The remarkable
degree of interindividual variability at the CYP2D6 locus
is largely due to gene deletion and amplification of
CYP2D6 generated through homologous unequal recom-
bination of no-allelic CYP-REP elements [61,62].

In the corn earworm H. zea, a polyphagous herbivore
capable of eating hundreds of allelochemical-containing
plants and rapidly acquiring insecticide resistance, scan-
ning two alleles per each of the six H. zea P450 loci
(CYP68-CYP6B27 cluster, CYP9A12v3, CYP9A14 and
CYP321A2-CYP321A1 cluster) (12 alleles in total) by
genome walking and sequence analyses found twelve
novel TEs within or in close proximity to these P450 genes
(Table 1). In other words, almost every allele of these
environmental response P450 genes contains a TE inser-
tion. The twelve TEs represent virtually almost all types of
transposons, including full-length DNA tansposons
(Hztransib, HzTc1), MITEs (HzMITE1, HzMITE2 and
HzMITE3), LINEs (HzRTE-1), and SINEs (HzSINE1),
indicating these xenobiotic-metabolizing P450s can toler-
ate and thus retain/accumulate all types of TEs rather than
one particular type of TEs. It is likely that each type of TEs
may induce different genomic changes upon transposi-
tion and ectopic recombination. Consequently, these
P450 loci should be genomically highly variable. This is
compatible with its polyphagy and rapid acquiring of
insecticide resistance, two of the most important traits
contributing to the tremendous success of this key agricul-
ture pest in a wide range of agroecosystems [63,64].

The insertion sites of the twelve TEs are also variable, two
in exons, six in introns, two in the 5'-flanking sequences,
and two in the intergenic region of the corresponding
P450 gene clusters (Figure 1). Regardless of their potential
effects on reshuffling genes and/or chromosomal
domains (e.g. amplification, deletion, inversion, etc.)
upon illegitimate recombination, these TE insertions per
se will likely alter the expression and function of the cor-
responding P450 in different ways. HzSINE1, which
inserts into the coding sequence of the CYP321A2 in the
laboratory strain of H. zea (Figure 1d), will probably trig-
ger the inactivation of CYP321A2 since no full-length
transcripts are produced (Chen & Li, unpublished data).
The four TEs that inserted into the 5'-flanking sequences

or the intergenic regions of the corresponding P450 clus-
ters may lead to overexpression of the corresponding
P450s and enhancements in xenobiotic metabolism and
resistance as in the case of the parallel insertions of Accord
LTR or Doc non-LTR retrotransposon in the 5' regulatory
region of CYP6G1 in D. melanogaster or D. simulans
[32,33]. This possibility is further strengthened by a recent
study demonstrating that insertions by various forms of a
truncated on-LTR retrotransposon in the 5'-flanking
sequence of CYP51 (encoding a 14α-demethylase) lead to
overexpression of CYP51 and sterol demethylation inhib-
itor fungicide resistance in the cherry leaf spot pathogen
Blumeriella jaapii [65]. In the case of the D. melanogaster
CYP12A4, the insertion of Bari1 in the 3' UTR results in
10-fold overexpression of CYP12A4 but no resistance to
DDT [66], indicating that DDT is not a substrate of
CYP12A4. Given that overexpression of CYP12A4 confers
resistance to lufenuron [34], it is possible the Bari1 inser-
tion in the 3' UTR of CYP12A4 will lead to resistance to
lufenuron even other insecticides or plant toxins. None-
theless, TE insertions in the 5' or 3' flanking regulatory
region of xenobiotic-metabolizing P450 loci may have lit-
tle or no effects on the expression of the corresponding
P450 gene and resistance to xenobiotics, depending on if
they introduce or disrupt any regulatory elements. The six
TEs inserted in introns could be successfully spliced out
during mRNA processing, and thus have no obvious
effects on the function of the corresponding P450 gene.

Alternatively, they could result in exon skipping, alterna-
tive splicing, or alternations in expression profiles if the
corresponding P450 introns contain regulatory sequences
as exemplified by the Mu insertion into an intron of the
Knotted locus in Maize [67]. Analyses of the transcript spe-
cies and expression levels of the six P450 genes as well as
toxicity bioassay will be necessary to determine the exact
effects of the twelve TEs insertions on the expressions and
functions of the six P450s, as well as on the fitness of this
species in the presence of plant defense allelochemicals
and synthetic insecticides.

Conclusion
In present study, we identified twelve novel TEs in six
xenobiotic-metabolizing cytochrome P450 loci in H.zea.
The twelve TEs represent virtually almost all types of trans-
posons and their insertion sites are also variable. In Dro-
sophila, TEs are enriched in xenobiotic-metabolizing
cytochrome P450 genes, but exclude from essential cyto-
chrome P450 genes that involved in the ecdysone biosyn-
thesis pathway. These results present for the first time
evidence that TEs are more enriched in P450 genes
responsible for xenobiotic metabolism as opposed to
P450 genes involved in ecdysone biosynthesis and devel-
opmental regulation.
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Methods
Insects
A laboratory strain of H. zea, generously provided by Dr.
May R. Berenbaum (Department of Entomology, Univer-
sity of Illinois at Urbana-Champaigen), was maintained
in an insectary kept at 28°C with a photoperiod of 16 h
light:8 h dark on a semi-synthetic control diet containing
wheat germ [68]. Several 5th instar larvae randomly picked
from the colony were individually flash-frozen in liquid
nitrogen and stored in -80°C for subsequent genomic
DNA isolation.

Cell Culture
H. zea midgut cell line RP-HzGUT-AW1[42], generously
provided by Dr. Cynthia L. Goodman (BCIRL, USDA,
ARS), was cultured in ExCell 401 serum-free medium (JR
BioSciences, Lenexa, KS) supplemented with 10% heat-
inactivated fetal bovine serum (FBS), 50 μg/ml streptomy-
cin, and 50 units/ml penicillin (Sigma). The cells were
harvested after 72 hour culture at 27°C by a brief centrif-
ugation at 1,000 g for 2 min. The cell pellets obtained
were flash-frozen in liquid nitrogen and stored in -80°C
until use for DNA isolation.

DNA Extraction and Genome Walking
Genomic DNA was isolated from the 5th instar larva and
cell pellets, using the procedure described in Li et al [43].
The 5'-flanking sequences of the four xenobiotic-metabo-
lizing P450 genes, CYP6B8, CYP6B27, CYP321A1, and
CYP321A2, were obtained by genome walking. In brief,
genomic DNA was digested by several restriction enzymes
supplied in the Universal GenomeWalker kit (Clontech,
CA, USA) and then ligated to the genome walking adapt-
ers according to the manufacturer's manual. The resulting
DNA fragments were used as templates to PCR-amply the
5'-flanking sequences of the four P450 genes using the
two general forward primers complementary to the
adapter sequences and the two corresponding gene-spe-
cific reverse primers (see Additional file 1) for each P450
gene. The nested PCR reactions began with the primary
PCR consisting of 25 cycles of 94°C denaturation for 2
min, 68°C annealing/extension for 4 min, followed by
the secondary PCR consisting of 35 cycles of 94°C dena-
turation for 2 min and 68°C annealing/extension for 4
min. PCR products were run on a 1% agarose gel in 1×TAE
buffer. The longest band for each gene was eluted from the
gel using the QIAquick Gel Extraction Kit (Qiagen), and
then directly cloned into the PGEM-T easy vector
(Promega, MI). One white clone for each band was
sequenced on Applied Biosystems 3730 DNA Analyzer
twice in both directions using M13 forward and M13
reverse primers as well as internal primers designed on the
basis of the determined sequences at the Genomic Analy-
sis & Technology Core Facility of the University of Ari-
zona.

Cloning of CYP9A12v3 and CYP9A14
For cloning the CYP9A12v3 and CYP9A14 genomic
sequences, two pairs of primers, CYP9A12F/CYP9A12R
and CYP9A14F/CYP9A14R (see Additional file 1), were
designed based on the cDNA sequences of their orthologs
CYP9A12 [GenBank: AY371318] and CYP9A14 [Gen-
Bank: AY487948] in H. armigera, the Old World sibling
species of H. zea. Their full length DNA sequences were
then PCR-amplified with 35 cycles of 94°C denaturation
for 2 min and 68°C annealing/extension for 4 min
(CYP9A12v3) or 6min (CYP9A14). As described above,
the PCR products obtained were cloned into the PGEM-T
easy vector and sequenced.

DNA sequence analysis
Sequences analyses were performed first by using blastn
and blastx against a nonredundant database [69] and by
using CENSOR against the Repbase [70] to scan the
obtained H. zea P450 genomic sequences for TE inser-
tions. The optimal global sequence alignment program
was then used to further identify the sites of TE insertions,
their TSDs, TIRs and other features by comparing a TE-free
sequence and a TE-containing sequence [71]. DNA and
protein sequence alignments were conducted using Gene-
doc software [72]. Sequences reported in this paper were
deposited in the GenBank under the following accession
numbers: Hztransib [GenBank: DQ788836], HzTc1 [Gen-
Bank: DQ788837], HzCR1 [GenBank: DQ788838],
genomic DNA of CYP9A12v3 containing HzRTE-1-1
[GenBank: DQ788839], genomic DNA of CYP9A14 con-
taining HzHzIS1-1, HzIS1-2, HzMITE2-1 and HzMITE3
[GenBank: DQ788840] and 5'-flanking sequence of
CYP321A1 containing HzRTE-1-2, HzSINE1 and HzIS1-3
[GenBank: DQ788841].

In silico mapping of TE insertions in the Drosophila 
melanogaster P450 genes
An extensive literature search was conducted to identify D.
melanogaster P450s whose functions have been relatively
defined. This led to characterization of eight insecticide
resistance associated P450 genes (a DDT-resistant GST
gene also included) and five ecdysone-synthesizing P450
genes (Table 2). A survey of TE insertions within or in
close proximity (until encounter other genes or beyond
10 kb in both the 5' and 3' directions) to the thirteen P450
genes and the one GST gene was then conducted by in sil-
ico mapping at the flybase [26].

Abbreviations
TE, transposable element; TIRs, terminal inverted repeats;
TSDs, target site duplications; LINEs (long interspersed
nuclear elements); SINEs (short interspersed nuclear ele-
ments); MITEs (miniature inverted-repeat transposable
elements); LTR, long terminal repeat; EN, endonuclease;
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