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Abstract

Background: In plants the hormone cytokinin is perceived by members of a small cytokinin
receptor family, which are hybrid sensor histidine kinases. While the immediate downstream
signaling pathway is well characterized, the domain of the receptor responsible for ligand binding
and which residues are involved in this process has not been determined experimentally.

Results: Using a live cell hormone-binding assay, we show that cytokinin is bound by a receptor
domain predicted to be extracellular, the so called CHASE (cyclases, histidine kinase associated
sensory extracellular) domain. The CHASE domain occurs not only in plant cytokinin receptors but
also in numerous orphan receptors in lower eukaryotes and bacteria. Taking advantage of this fact,
we used an evolutionary proteomics approach to identify amino acids important for cytokinin
binding by looking for residues conserved in cytokinin receptors, but not in other receptors. By
comparing differences in evolutionary rates, we predicted five amino acids within the plant CHASE
domains to be crucial for cytokinin binding. Mutagenesis of the predicted sites and subsequent
binding assays confirmed the relevance of four of the selected amino acids, showing the biological
significance of site-specific evolutionary rate differences.

Conclusion: This work demonstrates the use of a bioinformatic analysis to mine the huge set of
genomic data from different taxa in order to generate a testable hypothesis. We verified the
hypothesis experimentally and identified four amino acids which are to a different degree required
for ligand-binding of a plant hormone receptor.

Background

The plant hormone cytokinin is required for many funda-
mental processes and developmental programmes such as
cell division, shoot branching, root development and
senescence [1]. For the model plant Arabidopsis thaliana it
has been shown that the cytokinin signal is perceived by

members of the cytokinin receptor family, which are sen-
sor histidine kinases [2-4]. Mutational analysis of the
three cytokinin receptors (AHK2, AHK3, CRE1/AHK4)
revealed that they act redundantly, but are absolutely
required for normal cytokinin perception and plant
growth [5-8]. In the current model, it is predicted that the
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hormone binds to the Arabidopsis histidine kinase recep-
tors (AHKs) via an extracellular ligand binding domain,
the so-called CHASE (cyclases/histidine kinases associ-
ated sensory extracellular) domain [9,10]. The CHASE
domain, about 250 amino acids long, is exclusively found
between two transmembrane regions as the N-terminal
part of adenylyl cyclases, diguanylate cyclases or histidine
kinases in a number of eukaryotes and numerous bacteria.
It includes, for example, the spore differentiation factor,
DhkA, and the osmosensing receptor-adenylyl cyclase
ACG, which regulates spore dormancy, from the slime
mold Dictyostelium discoideum. DhKA recognizes a small
peptide, SDF-2 [11], and it was proposed that ACG binds
discadenine [12]. Thus the CHASE domain is believed to
bind diverse low molecular weight ligands. However, the
ligand and its cognate receptor are only known in a few
cases. Among higher eukaryotes the domain is found only
in plants as part of specific sensor histidine kinases, the
cytokinin receptors. It was proposed that plants acquired
the CHASE domain through their chloroplasts, which
have a cyanobacterial ancestry [9,10].

The binding of cytokinin to the receptor is thought to
cause a conformational change leading to the autophos-
phorylation of a conserved histidine residue in the
cytosolic part of the receptor. Subsequently, the signal is
transferred to a canonical aspartate within the C-terminal
part of the protein and transduced further by a multi-step
two-component signaling system (for recent reviews see
[13-15]).

The cytokinin binding activity of full-length CRE1/AHK4
was shown before by several different types of assays
[3,4,16,17]. Although the CHASE domain is suspected of
being the ligand binding domain, no systematic approach
has been made with any cytokinin receptor to identify the
binding domain unequivocally. Once a binding domain
has been determined, the next step of the characterization
is to identify functional amino acid residues. In this report
we describe a novel knowledge-based approach that uses
sequence information from distantly related organisms to
predict putative functionally relevant sites in the ligand
binding domain. The bioinformatics method was based
on detecting differences in the evolution of individual
amino acid sites between the CHASE domains of the dif-
ferent protein subclasses. The underlying premise was that
a slower evolutionary rate of a given amino acid position,
e.g. the conservation of a different amino acid in plants
versus other organisms, would identify important posi-
tions for receptor function. These positions are putatively
important in binding the plant-specific ligand, which is
thought to be different from the other subgroups.

Thus the aims of this study were twofold: (i) mapping of
the ligand binding domain of CRE1/AHK4 and (ii) iden-
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tifying amino acids crucial for the binding of cytokinin to
the receptor. Using a binding assay we provide direct
experimental evidence that cytokinin is bound via the
CHASE domain of CRE1/AHK4. The substitution of four
of the five amino acids, which were predicted by evolu-
tionary analysis to be important for a functional ligand-
binding domain, caused a clear change in the ligand bind-
ing, in this case a complete loss of, or strongly reduced,
cytokinin binding. This demonstrates the power of com-
bining bioinformatic predictions with experimental vali-
dation, which have been proven to be a very useful tool in
other subjects in the past [18,19]. Thus the data further
underpin the general potential of evolutionary proteom-
ics to identify functionally relevant sites in proteins of
known or even of unknown function.

Results

CREI/AHK4 binds cytokinin via the CHASE domain

The cytokinin binding domain of CRE1/AHK4 was
mapped by expressing the cytoplasmic part or the CHASE
domain with the adjacent transmembrane domains as
GST-fusion proteins in E. coli (Fig. 1A). The cytokinin
binding capacity was tested in an in vivo binding assay
[17] and compared to the binding capacity of the full-
length protein in the same experimental setup. The full-
length protein showed the highest relative trans-zeatin
binding (Fig. 2). The binding capacity was slightly lower
in the truncated version of CRE1/AHK4 consisting of the
CHASE domain and the flanking transmembrane
domains. The cytoplasmic domain and the empty vector
control showed very weak or no binding (Fig. 2). The
results of the binding assay indicate that the CHASE
domain is the cytokinin binding domain of CRE1/AHK4.

Evolutionary analysis of CHASE-subclasses reveals
putative cytokinin-binding residues

Sequences containing the CHASE domain were identified
in plants, slime-molds, cyanobacteria and proteobacteria
and a multiple sequence alignment was generated for the
region spanning the domain (Figure 3B and Additional
file 1; for details see Material and Methods). The phyloge-
netic tree reveals several distinct subgroups, one of which
includes all plant sequences (Figure 3A). Our computa-
tional approach to identify functional important posi-
tions is based on the assumption that CHASE domains
found in plants recognize a different class of ligands (cyto-
kinin) than bacterial domains and that these functional
differences can be detected by a change in evolutionary
rates of amino acid substitutions. A candidate position
should have a slow evolutionary rate in plants and a fast
evolutionary rate in other subgroups or a slow evolution-
ary rate in all subgroups, but then the subgroups should
be conserved in a different amino acid to distinguish the
plant sequences from bacterial sequences. The slime-mold
sequences were not included in this analysis because their
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Domain structure of CREI/AHK4 and secondary structure prediction of the CHASE domain. (A) The domain structure of the
full-length protein and different truncated versions of CREI/AHK4 used in this study. (B) The predicted secondary structure of
the CHASE domain with the amino acid substitutions tested in the cytokinin binding assay marked in red. White tubes repre-
sent o-helices and grey areas [3-sheets. Secondary structure prediction was done by PSIPred v2.4 [43]. Abbreviations: CHASE,
cyclases, histidine kinase associated sensory extracellular; HisKA, histidine kinase A domain; HATPase, histidine kinase-like

ATPase; Rec, receiver domain; Tmds, transmembrane domains.

subgroup contained only two sequences and was not sup-
ported by a high bootstrap value. Among the positions
that were derived from the analysis of bacterial and plant
sequences and fulfilled the above criteria we selected five
positions, which show the strongest evidence for func-
tional divergence and thus, are likely to be important in
cytokinin binding: Position T317 of CRE1/AHK4 is not
only slowly evolving among plant sequences but also
among all investigated bacterial subgroups (evolutionary
site rate category 1; Fig. 3B). However, in each subgroup,
this site is occupied by a different amino acid with varying
biochemical properties. Only in the plant subgroup, this
position is occupied by an amino acid with a hydroxyl
containing side chain (threonine). The evolutionary rate
of CRE1/AHK4 positions W244 and K297 is very low in
the plant CHASE sequences compared to that of the
CHASE domains of the other subgroups, indicating that
these positions might be important in plants. The amino
acids at positions 304 and 305 have different biochemical
properties and evolutionary rates in the different sub-
groups (Fig. 3B). Position 304 is occupied by phenyla-
lanine only in the plant sequences while the bacterial
subgroups have mostly aliphatic amino acids as a residue
in this position. At position 305, the plant subgroup has
either a basic amino acid or a proline, while in the other
subgroups the class of amino acids is not conserved. It

should be noted that position 301, a functional important
residue of the CRE1/AHK4 CHASE domain, did not fulfil
our criteria, because some bacterial sequences are con-
served in the same or a similar amino acid. In fact, an
allele mutated in this position, which leads to an amino
acid change to isoleucine, is known as wooden leg (wol)
and was discovered in a screen for altered root morphol-
ogy [20]. Subsequent analysis of this only known muta-
tion of the CHASE domain in plants revealed the
complete loss of cytokinin binding of the mutant protein
[4]. We included this mutation as a positive control in our
analysis.

Specific amino acid substitutions lead to significant
changes in cytokinin binding

The selected amino acids were substituted by alanine.
Subsequently the ability of the mutated CHASE domains
as part of the full length protein was tested for cytokinin
binding activity. As controls, the wild-type CRE1/AHK4
protein showed strong cytokinin binding, while the
empty vector did not show any cytokinin binding in the
assay (Fig. 4A). We also confirmed that the known muta-
tion (T301I) in the CHASE domain causes loss of cytoki-
nin-binding activity [4] (Fig. 4A). In contrast and as
expected, the substitution of the canonical histidine of the
cytoplasmic histidine kinase domain by glutamine
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Figure 2

The CHASE domain of CREI/AHK4 is necessary and sufficient for cytokinin binding. In vitro binding of trans-[2-3H]zeatin to full
length CREI/AHK4 protein or different domains of the receptor overexpressed in E. coli BL2 . Bacterial cells were assayed for

specific trans-[2-3H]zeatin binding. Data are mean * s.d;; n = 4.

(H482Q), which abolishes the receptor's signaling capac-
ity [21], does not alter the cytokinin binding capacity of
the receptor (Fig. 4A).

Two of the candidate residues, namely F304A and T317A
led to a complete abolishment of ligand binding (Fig. 4A).
Two other amino acid substitutions - W244A and R305A
- resulted in strongly reduced binding capacity, approxi-
mately 60% and 40% of the CRE1/AHK4 wild-type con-
trol, respectively (Fig. 4A). In contrast, the substitution of
K297A caused only a slight decrease of the cytokinin bind-
ing of the mutant protein compared to the wild-type
CRE1/AHK4. The protein level of all GST-fusion proteins
was checked by Western blot and did not show significant
differences (Fig. 4B).

Discussion

CREI/AHK4 binds cytokinin via the CHASE domain

In this study we investigated how the plant hormone cyto-
kinin is recognized by its receptor. It has been hypothe-
sized that cytokinin is bound by the CHASE domain of
the receptors [2-4,9,10], but no experiment has been per-
formed to prove this hypothesis. Testing truncated ver-
sions of a protein for activity is a first step to delineate
those parts of the protein important for the investigated
function [22-24]. The binding assays using the full-length
and several truncated versions of CRE1/AHK4 (Fig. 2)
confirm the hypothesis that trans-zeatin is bound by
CRE1/AHK4 via the CHASE domain. This is relevant as
cytokinin occurs also inside the plant cell and it could be,
therefore, possible that cytokinin is bound also via the
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2i23471793176-296 Pseudomonas syringae EVRRVREDGRPD. . . AMRSGARTLSAPITLIQ. . . AFLFLLPVY
0i2 1885294\85-301 Vibrio cholerae FLDRMARER-PS. . .AAFNNCVRLTAPITINVG. . .GFLIIMPVY
2i22968449\79-295 Rhodospiritlum rubrum FLAEARADGWPD. . .ATDTGOVRLTGPITLVY. . . SELILLPTY
2i15599307\77-286 Pseudomonas aeruginosa FLRQARADGQPE. . .ALETGOVRLTGPITLVQ. . . SFLIIMPIY
2i21243225\83-298 Xanthomonas axonopodis FLOAAREDGAPD. . .ARRSGEPVMTSPISLSG. . . GFLVLLAVY
2i21231797\83-298 Xanthomonas campestris FLDAAREDGAPD. . . ARRSGOPIMI'SPVSLSG. . . GFLVLLPVY
2i22982057\71-291 Burkholderia fungorum HVARMREEGVEG. . .ARDSGVAALSGTVHLLI . . .GFIMYLPTY
2i23030255'93-313 Microbulbifer degradans HIEAMREQG———. . .ARDNAFRATSGIITIVG. . .GFLTYVPVY
2i23053590\87-308 Geobacter metallireducens HIESVRKEG---. . .ARDTGTVALSGKVRIVQ. . .GVLSYLPIY
1:2]32475880\90-306 Pirellula sp. EVESVRAEGEPE. . .AVASGFPI‘ISG\TT\IVQ. . .GFLLYLEFVFE
2i24372138\85-305 Shewanella oneidensis FTOOVQOEGESD. . .AITSGLPRVSGKVTLVQ. . .GVIMYVPLY
gi2_3055097\3 8-240 Geobacter metallireducens FDALAATMIRTY. . .ATESROMTLAGPFELRQ. . .GAVGRLAVE
2i27364428\14-215 Vibrio vulnificus FEEYRQRILSLS. . .AVESGKLTTAGPETTKD. . .GQMVARRPVE
£i23013402\61-262 Magnetospirillum m. FARAASIVIKDY. . .ATSSRKPVVAGPVNLIO. . .ALTGRVEVY
2123027857\50-253 Microbulbifer degradans ~ FASFEAPLENQN. . .AERTGOLVLAGPVNLKD. . .GFIGRIPVE
2i13471907'45-248 Mesorhizobium loti FASLAGNLFQOK. . . JDLEQ. . .GFIGRIPVE
2i15966662'49-253 Sinorhizobium meliloti FGELARSVFGAG. . . AVASGEMVLAGPVDLVY. . . GLIGRFPVT
2i23000375\48-254 Magnetococcus sp. FQIMAREIIAQS. . .ATSERRTVVAGPVKLVQ. . .AFISRTPIY
2il5601713'42-248 I'ibrio cholerae WEPLSAAVIRNS. . .ARETK(TFVSGPVDLVY. . .ALVIREPIF
£128900053\42-248 Vibrio parahaemolyticus LSIARDRIINKS. . .AKDIQEIFIAGPVSIVG. . .GLIVRVEVE
i27367985\42-248 Vibrio vulnificus LDOASEKTIRKG. . .AKTTEETFTAGPMEIVQ. . .ALVARVPIF
—— gil30677959\198-411 Arabidopsis thaliana AHK4 FERQENWVIKIM. . . ARETGKAVLTSPERLLE. . . GVWLTEFPVY
= 2i283019411110-321 Oryza sativa FERQOGWIIKTM. . . ARATGKAVLTRPERIMS. . .GVVLTEPVY
233217468 Triticum aestivum e . . - SRATGKAVLTRPFRIVMS . . .GVWWLTEFPVY
219415459 Triticum aestivum FERQHGWIMRTM. . . ARETGKPVLTNPFRLLG. . . GVWLTERVY
—|_|_: £i12060392\86-298 Zea mays FESQQGWVMNTM. . . ARTTGKAVLTNPFRLIG. . .GUWWLTFAVY
21|14823726 Sorghum bicolor == ————————— .+ ARTTGKAVLTNPFRLLG. . .GVWLTEAVY
2i20279446\50-274 Oryza sativa FEQKLGWKIKKM. . . SRATGKGALTAPFPIIK. . .GVWWLTETVY
2i18421494\302-526 Arabidopsis thaliana FEKEHGWATIKKM. . . ARASGKGVLTSPFKLIK. . . GUWLTEAVY
gl22353 121\154-378 Catharanthus roseus FEKQOGWIIRKM. . . ARASGKGVLTSPFKLILK. . . GVWLTEAVY
21183962921163-389 Arabidopsis thaliana FERQQGWTIRKM. . . ARSSGKGVLTAPFPLIK. . .GVILTEAVY
2i|7265090 Medicago truncatula FETOQGWSIKRM. . . ARESGKGVLTAPFRLIK. . . GVILTEAVY
gi[16247084 Lycopersicon esculentum == —————————— . . JARESGKGVLTAPFRLIK. . .GVIKTEAVY
2i20161916\151-377 Oryza sativa FERQOGWATKKM. . . ARKSGKGVLTAPFKLIN. . .GVILTYTVY
%i] 14513877 Sorghum bicolor FERQOGWSIKKM. . . ARESGKGVLTAPFKLIN. . .GVISTYAVY
2126988822\85-301 Pseudomonas putida FERTASIHTGPG. . .ALAPGSMAVSEPLALFD. . . GLIMVAPVE
2i23058768'88-299 Pseudomonasjﬁtorescens FEQRVRCEGLST. . . ADQLRSIAVSOPMHLVG. . . GVLLVAPVL
2i28869512\121-331 Pseudomonas syringae FEEQARKEGRAG. . .ARLIKRIVATFRISLIA. . .GILLVAPVE
2i23468834\87-298 Pseudomonas syringae FERQLRFEGSAA. . .ARLLKRTVATPRIRLLS. . . GILLVAPVEF

0
o 128642222814...17832647213121142...311314221
244732821536...14332843611817123...152714143
2778718854868...16736651311117141...262617113
117464183651...41741153116116156...113514611
118884846878...18867382228568188...161311113
Figure 3

Phylogenetic tree and alignment of CHASE domains. (A) Phylogenetic tree of CHASE domains from five different subgroups
(see Additional file | for all subgroups). Sequences of CHASE domains used for tree building are labelled with gi numbers and
the start and end position of the respective CHASE domain. (B) Section of CHASE family alignment containing sequences used
for the evolutionary rate analysis of the individual amino acids. The evolutionary site rate categories for each subgroup are
given below the alignment, ranging from | (slow rate of evolution) to 8 (fast rate of evolution). Amino acid positions selected
for experimental analysis (W244, K297, F304, R305, T317) are highlighted in orange, positions that are conserved throughout
all CHASE sequences in grey. Interruptions of the alignment are indicated by two dots, gaps in the alignment by dashes. (See
Additional file | for full sequence alignment). The selected blocks relate to the CREI/AHK4 sequence 238-249, 292-308 and

313-321, respectively.

cytoplasmic part of the cytokinin receptors. However, our
data show that this possibility is not realized in CRE1/
AHKA4.

Bioinformatic analysis identifies residues that are crucial
for a functional ligand binding domain

Functional important amino acid positions are often pre-
dicted by combining evolutionary information of a pro-
tein family with 3D structures. The underlying
assumption is, if a position adopts a new beneficial func-

tion, it will be subject to stronger selective constraint,
which will be reflected in the evolutionary rates of amino
acid replacement [25]. Several methods have been
described in the past that search for spatial clusters of sub-
family conserved residues or that search for shifts in the
evolutionary rates of protein subfamilies [26-33]. The
accuracy of computer predictions has been confirmed in
several cases through mutagenesis experiments
[18,34,35]. In the lack of a 3D structure of the CHASE
domain, we focused on identifying sites that stand out by
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Identification of amino acid residues of the CREI/AHK4
CHASE domain important for ligand binding. (A) Effect of
point mutations in the CREI/AHK4 CHASE domain on the
specific binding of trans-[2-3H]zeatin. For the localization of
the mutated sites see Fig. |B. H482Q is a control carrying a
mutated histidine residue of the cytoplasmic domain. Data
are means * S.D. from measurements with two different E.
coli clones for each construct. (B) Western blot with whole
protein extracts of an aliquot of E. coli cells used for the bind-
ing assay shown in (A). For protein detection a mouse-anti-
GST antibody (GST B-14, Santa Cruz Biotechnology) was
used.

smaller evolutionary rates in the plant subfamily or, at
sites that evolve slowly in all subfamilies, by biochemical
different amino acids that are conserved in the different
subfamilies.

Experimental evaluation of the roles of the selected amino
acids in cytokinin binding underpinned the validity of the
approach. Substitutions to alanine of four of the five
selected amino acids in CRE1/AHK4 showed a dramatic
alteration of the cytokinin binding, in this case a strong
reduction to total abolishment of the trans-zeatin binding
(Fig. 4A), thus confirming their importance in cytokinin
binding.

http://www.biomedcentral.com/1471-2148/7/62

Interestingly, the three amino acids which show the
strongest effect and also the positive control T301 are
located in close vicinity in two predicted B-sheets in the
center part of the CHASE domain (Fig. 1B). The only
exception in this study, position K297, which, while com-
pletely conserved among plant sequences in contrast to
bacterial sequences, did not show any significant reduc-
tion in cytokinin binding (Fig. 3A), is located just outside
the first of these two central B-sheets. We hypothesize that
these B-sheets are part of a binding pocket for cytokinins.
It is understood that only the experimental determination
of the structure will provide conclusive evidence. The
identification of important amino acids presented here
will be an important contribution to understand the func-
tioning of the CHASE domain, once structural data
become available.

Future applications

Plant tissues typically contain a mixture of different bio-
logically active cytokinin metabolites. The specificity of
ligand recognition was investigated for Arabidopsis and
maize cytokinin receptors and it was shown that their rel-
ative affinities for different cytokinins varies [4,16,17,36].
Analysis of the mutant receptors generated in this study
has shown that the mutations do not affect the recogni-
tion of different cytokinins in a distinct way (Romanov et
al., unpublished result). Thus these amino acids appear to
be of general relevance. As they are conserved among all
plant CHASE domains they might present the key residues
for binding the hormonal core. Fine-tuning for specific
cytokinins could be achieved by additional, less conserved
positions. It will be interesting to see whether our bioin-
formatical design also enables the identification of amino
acid residues which are relevant to the detection of differ-
ent types of cytokinins by receptors of the same species.
However, such an analysis will require a greater number
of different cytokinin receptors to be studied with respect
to their cytokinin binding preference.

Conclusion

Using truncated versions of the cytokinin receptor CRE1/
AHK4 in a binding assay, we have experimentally defined
the CHASE domain as the ligand binding domain of this
class of receptor. Based on our bioinformatical approach,
combined with experimental validation, we successfully
identified functionally important amino acids in this
domain. The experimental confirmation of these residues
highlights the significance of evolutionary proteomics in
the post genomic era and demonstrates its potential for
the characterization of protein functioning. In addition to
the analysis of proteins with known functions, the
approach can be envisioned as an aid in the enormous
task of functionally annotating the vastly increasing
amount of sequence information provided by the numer-
ous genome sequencing projects.
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Methods

Construction of the different CREI/AHK4 variants

The truncated variants of CRE1/AHK4 (At2g01830.2)
were generated by PCR using the respective primers (Addi-
tional file 2) and cloned into the entry vector pPDONR221
of the Gateway™ cloning system (Invitrogen, Carlsbad).
For the amino acid substitutions the HindIII fragment of
CRE1/AHK4 containing the entire CHASE domain was
cloned into pBluescript II KS (Stratagene, La Jolla). Site-
directed mutagenesis was carried out with the Quik-
Change® II Site-Directed Mutagenesis Kit (Stratagene, La
Jolla) using the respective primers (Additional file 2). The
mutated fragments were sequenced and recloned into a
CRE1/AHK4 clone in the pDONR221 vector missing the
HindlIll fragment in the cDNA. Subsequently all clones
were shuttled into the pDEST15 vector (Invitrogen,
Carlsbad) and transformed into the E. coli strain
BL21DE3pLys (Novagen, San Diego).

Cytokinin binding assay and immunoblotting

For in vivo cytokinin binding the assays were performed as
published [17]. Pellets of 1 ml of the respective E. coli cul-
ture (used in the binding assay) were resuspended in 50
uL reducing 1x Laemmli buffer [37] and heated to 95°C
for 5 min before separating 25 UL of the protein extract on
a 10% SDS-PAGE (Bio-Rad Laboratories, Miinchen, Ger-
many). Proteins were transferred to PVDF membrane
(Bio-Rad) using a tank transfer system (Bio-Rad) with
Towbin buffer without methanol [38]. After blocking for
2 h at room temperature with Tris buffered saline (TBS)
including 5% low fat dried milk powder, the membrane
was incubated with anti GST primary antibody (B-14)
(1:500 in blocking buffer; Santa Cruz Biotechnology, Hei-
delberg, Germany) 3 h at room temperature. Horseradish
peroxidase-conjugated goat anti mouse secondary anti-
body (1:4000 in blocking buffer; Santa Cruz Biotechnol-
ogy, Heidelberg, Germany) and enhanced
chemiluminescence reagent (Pierce SuperSignal West
Pico; Perbio Science, Bonn, Germany) were used for
detection. Blots were exposed to Pierce CL-Xposure films
(Perbio Science).

Sequence analysis

Sequences containing the CHASE domain were retrieved
from Genbank's non-redundant database using a Hidden
Markov Model, which was built from a representative
multiple sequence alignment [10] obtained from the
Pfam database (HMMER package)[39]. To identify addi-
tional plant sequences, Genbank's EST database was
searched with the CHASE domain of CRE1/AHK4. EST
sequences were translated into proteins. Protein regions
containing the CHASE domain were aligned with hmma-
lign (HMMER). The alignment (Additional file 1) was
manually optimized to minimise gaps in loop regions and
used to calculate a phylogenetic tree with CLUSTAL W

http://www.biomedcentral.com/1471-2148/7/62

[40]. Five stable subtrees with more than 90% bootstrap
support were chosen for the analysis of evolutionary rates,
of which one represents all plant sequences and four sub-
trees represent bacterial sequences. In order to identify
functionally diverged amino acid sites, we estimated evo-
lutionary rates for each position in the five alignments
and compared the rates between the plant and bacterial
groups. This allows the identification of positions that are
under selective pressure in the plant group, while they are
free of any constraint in bacterial groups. In contrast to
more simple amino acid conservation scores, evolution-
ary rates reflect the amino acid changes considering the
phylogenetic distance of the sequences. Evolutionary site
rates were estimated with the maximum likelihood
method implemented in the TREE-PUZZLE program v5.1
[41,42]. For the estimation of the evolutionary site rates
with TREE-PUZZLE, we have chosen a heterogeneity rate
model that was compared with the null model, which
assumes a uniform rate among sites. The two models were
compared in a log likelihood ratio test and in four out of
five cases the null model was rejected (p-value <0.01). We
used the Jones Taylor amino acid substitution model and
assumed an eight category discretized gamma model for
the variation of substitution rates among sites. We
searched for sites that are conserved in the plant group but
fast evolving in bacterial groups, or that are slow evolving
in all groups, but conserved in different amino acids.
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