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Abstract

Background: In recent years it has been found that the combination of evolutionary game theory
with population structures modelled in terms of dynamical graphs, in which individuals are allowed
to sever unwanted social ties while keeping the good ones, provides a viable solution to the
conundrum of cooperation. It is well known that in reality individuals respond differently to
disadvantageous interactions. Yet, the evolutionary mechanism determining the individuals'
willingness to sever unfavourable ties remains unclear.

Results: We introduce a novel way of thinking about the joint evolution of cooperation and social
contacts. The struggle for survival between cooperators and defectors leads to an arms race for
swiftness in adjusting social ties, based purely on a self-regarding, individual judgement. Since
defectors are never able to establish social ties under mutual agreement, they break adverse ties
more rapidly than cooperators, who tend to evolve stable and long-term relations. Ironically,
defectors' constant search for partners to exploit leads to heterogeneous networks that improve
the survivability of cooperators, compared to the traditional homogenous population assumption.

Conclusion: When communities face the prisoner's dilemma, swift reaction to adverse ties
evolves when competition is fierce between cooperators and defectors, providing an evolutionary
basis for the necessity of individuals to adjust their social ties. Our results show how our innate
resilience to change relates to mutual agreement between cooperators and how "loyalty" or
persistent social ties bring along an evolutionary disadvantage, both from an individual and group
perspective.

Background oner's dilemma (PD) game [4]. In its popular version a
Understanding the evolution of cooperative behaviour  cooperator is modelled as an individual that is ready to
remains one of the most exciting and fundamental chal-  pay a cost (c) in order that another individual receives a

lenges to date [1]. In the framework of evolutionary game  benefit (b). A defector, on the other hand, is one who
theory [2,3], this problem is often analyzed using the pris-  refuses to offer such help but gladly accepts b when a
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cooperator offers it. The accumulation of the received
benefits and expended costs by all individuals, playing
simultaneously as donor and receptor, is associated with
the individuals' fitness and this with the individuals'
social or reproductive success. Different mechanisms to
promote cooperative actions in this scenario have been
proposed over the years [5]. It has for instance been recog-
nized that the population structure (who interacts with
whom) plays a decisive role [6-22] (for a recent review, see
also [23] and references therein). In particular, it has been
shown that introducing a heterogeneous network of con-
tacts between individuals results in an overall increase of
cooperative behaviour in the most popular social dilem-
mas of cooperation [15,19,22]. Compared to the levels of
cooperation traditionally observed in well-mixed popula-
tions [2,3], the role of heterogeneous population struc-
tures in which some individuals interact more and more
often than others is impressive.

Furthermore, real life social networks share another fea-
ture that turns out to tremendously affect the viability of
cooperative acts: They are examples of adaptive networks
[24,25]. Our network of contacts does not remain
unchanged at all times. Instead, we continuously engage
in new interactions while abandoning old ones, depend-
ing on their kind. As such, individuals should not only be
able to alter their behaviour, but also their social ties. The
influence of this specific aspect of social networks on the
evolution of cooperation has been studied by several
authors [26-35].

In a minimal setting [32], individuals located at the verti-
ces of a graph selfishly decide which social ties they want
to maintain. If the individual is dissatisfied with the inter-
action, then she competes with her partner to rewire the
link. This rewiring is done to a random neighbour of the
previous partner, adding realistic spatial, social and cogni-
tive restraints [36]. It was shown that cooperation blooms
(both for strong and weak selection, see Methods) even
when, on average, each individual has many social inter-
actions, provided individuals react swiftly to adverse ties
[32]. In other words, the result depends on how fast the
topology is allowed to evolve. Having two processes
evolving simultaneously (strategy and network structure),
one parameter emerges as determinant in assessing the
viability of cooperation: the ratio W = 7,/z, of two time
scales, the first associated with strategy evolution (z,) and
the second associated with evolution of population struc-
ture (7,). High values of W reflect populations in which all
their members are more apt to adapt their ties. As such,
network heterogeneity and social plasticity provide a cou-
pled mechanism that leads to both the survival of cooper-
ation in social systems and evolved network structures
that agree qualitatively with empirical analysis of real net-
works [37].
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It is commonly observed, however, that different individ-
uals react differently to the same situation [38,39] - some
individuals have the propensity to swiftly change partner,
whereas others remain connected even though they are
dissatisfied with the behaviour of their partners. As such,
each individual has its own innate behaviour for dealing
with adverse ties and generally this innate behaviour
resists change, as change brings along uncertainties. Fur-
thermore, social networks form and evolve through indi-
viduals' decisions based on the social context wherein
they find themselves: individuals, for instance, may be
socially constrained not to change even when they want
to. Consequently, one expects W to be an individual's
characteristic and not a population attribute. As such, this
strategic rewiring behaviour must co-evolve with the other
features inherent to the entangled PD game. Making the
propensity to change partners an evolutionary trait allows
one to investigate how individuals should respond to
adverse ties given certain social conditions defined by the
underlying game. This approach opens the possibility of
diversity in individual behaviours, which is ubiquitous in
nature. Despite its omnipresence, it has not received
much attention yet in relation to the evolution of cooper-
ation. Only recently its role has been investigated, either
as diversity in the role and position of individuals in their
social network [22], diversity in individuals' game strategy
[40] or in the way in which individuals change their strat-
egy [41,42]. In the following, we combine diversity of
individual context in the social network with diversity in
the way individuals react to adverse social ties.

A Minimal Model

Using the minimal model defined in Fig. 1, we analyze
here the effect of the individual willingness to change on
the evolution of cooperation in the PD game (see Meth-
ods). Individuals have information on their direct part-
ners only and, using this information, they may decide to
alter a link or not, based purely on their self-interest. Let
us consider a link connecting individuals A and B. Two
scenarios are possible: A is satisfied with the link if B is a
cooperator, and dissatisfied if B is a defector. If satisfied, A
will try to maintain the link. If dissatisfied, A will try to
change partner (to rewire the link, Fig. 1 top panel). Deci-
sion on whether or not to rewire is contingent on both
individuals' payoffs, and here determined by the Fermi
function (see Methods) associated with the so-called pair-
wise comparison rule. In this way the model entangles the
evolution of individual's strategy and social structure.

The individual rewiring rate is defined over an interval [0,
W], where W reflects the common (maximum) rate of top-
ological change that each individual can reach. Taking a
particular W as a limit ensures that we know a priori the
outcome of evolution [32]. Given this context, we intro-
duce an individual characteristic 7€[0,1], which provides
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Evolving the neighbourhood. The upper panel illustrates the rewiring mechanism being used. A detail of a hypothetical
graph is illustrated in the region surrounding the edge selected for evaluation (dashed line), connecting individuals A and B,
each with a characteristic willingness to change given by 77, and 7. Since A is dissatisfied, A wants to rewire whereas satisfied
B will compete to keep the link. Whenever 77, and 77 are both equal to | (upper panel) rewiring takes (does not take) place
with probability p, (pg = 1-pa), Which is defined by the payoff-dependent Fermi function (see Methods) [32]. The lower panel
illustrates the rewiring decisions for 77, and 77z in [0, 1], assuming the complex situation when both individuals are dissatisfied (A
and B are defectors). With probability g, (see below) A rewires whereas with probability gg it is B who rewires. With proba-
bility 77, (778) A (B) will compete to rewire the link; hence A and B compete with probability 77,775, and decision is contingent
on fitness, as before (green zones); with probability (1-77,)(1-775) no change will happen (red zone); when only one competes,
decision becomes unilateral (yellow zones). Hence, A's decision prevails with probability qu = 775 77gpa + 77a(1-77g), B's decision

with probability qg = 774 77gPg + 77g(1-77a)-
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a measure of how eager each individual is to change part-
ners, making #W the individuals' willingness to rewire
unwanted social interactions. Thus, on the one hand,
when all individuals have 7 = 0 no links are rewired,
reducing the model to a static society. On the other hand,
when the rate is maximal for all individuals (7 = 1) the
limits investigated in [32] are recovered. When different
individuals have different values of 7, those with lower 7
< 1 will be more resilient to change, and hence can also be
viewed as more loyal towards their interacting partners.
Given this particular definition of how each individual
decides upon adverse ties, we can now define each indi-
vidual type uniquely by two parameters: her game strategy
(s) and her "topological" strategy (7). Note that both
behavioural strategy s as well as the topological strategy 7
are transferred during a strategy update.

In this minimal model, the individual willingness 7, and
g of two interacting individuals A and B, define three
possible outcomes for the rewiring competition as a result
of mutual dissatisfaction, as shown in Fig. 1 - bottom
panel. Given each individual's willingness parameter 7, A
and B compete to rewire the link with probability 7,7;.
Individual fitness ultimately dictates the winner of this
conflict, associated with the probability pg (p,) that B (A)
replaces A (B), where the probabilities are defined by the
payoff-dependent Fermi function (See Methods) [9,43].
When only A is dissatisfied, A and B compete with proba-
bility 7,7 and with probability p, the A individual can
change partner. Yet, with probability 1-p, (= ps) A and B
remain connected since B is satisfied. Second, individual
A (B) decides unilaterally to change partner with probabil-
ity 77, [1-775] ([1-774]775). Hence, both A and B have the
opportunity to wunilaterally change partner. Taken
together, A changes with probability q, = 7,75Pa + 774[1-
7n7z] and B changes with probability qg = 7, 73Pg + 75[1-774]
(Fig. 1, bottom panel). Finally, nothing happens to the
link with probability (1-77,)(1-7;). This last possibility
encompasses the situation in which the social tie is main-
tained despite, e.g., mutual dissatisfaction. Overall, 7
introduces a simple means to study the evolution of each
individual's willingness to react to adverse ties.

Results and discussion

As a first step to investigate the effect of differences in
eagerness to change on the evolution of cooperation (see
Methods), we assume that either cooperators or defectors
have a fixed and pre-defined 7 (see Fig. 2). The chances of
cooperators are measured by calculating the fraction of
runs in which the population ends in full cooperation.
Note that the adopted strategy update rule ensures that
full cooperation and full defection are the only two
absorbing states of the strategy evolutionary dynamics
(see Methods). Fig. 2 shows that when defectors are less
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Figure 2

Role of strategy-dependent willingness on coopera-
tion. Fraction of cooperators as a function of T for different
values of 7 (the willingness to change of cooperators) and
71p (the corresponding quantity for defectors). The remaining
parameters are W = 2.5, #=0.005, N = 103and z = 30. The
situation in which 7= 775 = 1.0 is here used as baseline.
Reducing 775 makes it easier for cooperators to wipe out
defectors. Reducing 7, on the other hand, has the opposite
effect.

eager to change partners (7, = 0.5 and 7, = 0) relative to
cooperators (77 = 1.0), cooperators ensure the stability of
favourable interactions while avoiding adverse ones more
swiftly; hence, assortment of cooperators becomes more
effective, enhancing the feasibility of cooperation [44].
When cooperators' willingness to change is low (7;=0.5)
or absent (7o = 0.0) compared to defectors (77 = 1.0), the
level of cooperation decreases with respect to the situation
where cooperators and defectors react equally swift to
adverse ties (7o = 17p = 1.0). Decreasing the level of adapt-
ability of cooperators leads to their own demise. On the
other hand, if we compare these results with those in
which all social ties remain immutable (leading to a static
network, 7= 77, = 0, shown also in Fig. 2), the feasibility
of cooperation actually increases. Why does rewiring of
defector-links already improve the survival of coopera-
tors? This latter result is a consequence of heterogeneity
created by rewiring defectors. As we start from well-mixed
communities of limited connectivity (see Methods),
rewiring of links creates a heterogeneous environment,
which always favours cooperators. Thus even when coop-
erators are slow adapters, they prosper at the expense of
the defectors greed. Overall, our results clearly show that
swift decisions concerning partner choice provide a proac-
tive force toward the evolution of cooperation, independ-
ent of the strategy.
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Given this effect of topological strategy on the outcome of
the PD game, we analyze the effects of evolving this fea-
ture as well. To this end, every time an individual changes
her strategy by adopting that of a neighbour, she also
changes her topological strategy to that of her neighbour.
In Fig. 3, we show the evolution of the willingness to
change ties of both cooperators and defectors. In both sce-
narios all values of 7 are selected from a uniform distribu-
tion and assigned to individuals in the population.

We analyze the distribution of 7 at the end of the evolu-
tionary process when the population reaches fixation (all
individuals adopt the same strategy). From the results dis-
cussed previously one might expect that swift action is
always preferred to stubbornness. The lines in Fig. 3 corre-
spond to the cumulative rate distribution C(7) (C(7,) is
defined as the fraction of individuals who have 7> 7,) for
both cooperators (solid lines) and defectors (dashed
lines). The initial distributions lead to the black diagonal
lines in Fig. 3; the final distributions are shown with dif-
ferent colours for different values of the temptation to
defect T of the PD game (see Methods). For low values of
T (< 1.8) the distribution of 7 over all individuals hardly
changes. For this range of T (see also Fig. 2) cooperation
prevails, and hence individuals rapidly become satisfied
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Figure 3

Evolution of 7 for cooperators and defectors. The solid
(dashed) lines show the cumulative distribution C(7) of the
parameter 77 of cooperators (defectors) for different values
of T (W =5, #=0.005, N = 103, z = 30). The inset provides
the level of cooperation for values of T between | and 2.5.
The values of 7 of all individuals are uniformly distributed in
[0,1] at the start of each evolution, as indicated in black.
Cooperators that react swiftly to adverse ties are strongly
favoured by natural selection only when the tension of the
game is high (1.8 < T < 2.1). Swift defectors, on the other
hand, are always selected for any tension of the game, but
the strength of this selective pressure drops as T increases.
C(7,) is defined as the fraction of individuals who have 77 >

o

http://www.biomedcentral.com/1471-2148/8/287

with all their links. For higher values (1.8 <T<2.1) a tran-
sition occurs from cooperator dominance to defector
dominance (as shown in the inset of Fig. 3). Hence com-
petition is fierce, as cooperators need to struggle for sur-
vival.

Consequently, it pays to respond swiftly to adverse ties
and evolution leads to an arms race for swiftness between
cooperators and defectors, as evidenced by the increase of
C(7) in Fig. 3. For even larger values of T (> 2.1) defectors
dominate the results and evolutionary competition fades
away. As a result, the incentive to increase swiftness
reduces, a feature which is indeed reflected in the behav-
iour of C(7) in Fig. 3. Once all individuals ultimately
become defectors there are no fitness differences and
hence no selection pressure to further changes. Nonethe-
less, the fundamental differences between cooperators
and defectors still have an impact in the overall evolution-
ary dynamics. When cooperators dominate, many social
ties rely on mutual satisfaction, and hence there is no
incentive to change. On the contrary, even when domi-
nant, defectors are never able to find a partner with whom
mutual satisfaction occurs, as a defector with local infor-
mation only will always strive to find a cooperator to
exploit, whereas a cooperator will strive to escape exploi-
tation. Consequently, under cooperator dominance we
reach a stable and slowly changing network of ties. In the
opposite limit, a quasi-static network is never reached;
instead, a stationary one emerges, exhibiting an intrinsic
degree of heterogeneity that decreases with increasing
number of defectors [32]. Besides the results discussed
here, other features of the co-evolutionary dynamics are
also affected by introducing a co-evolutionary dynamics
in which individual swiftness in reacting to adverse ties
also evolves. In particular, the characteristic times
required to reach a stationary regime associated with
either full defection or full cooperation depend on indi-
vidual behavioural diversity. This, in turn, is intimately
related to the topology of the evolving graph, which itself
depends sensitively into which stationary state the system
evolves. A detailed account of the timing features and how
they depend on the amount of diversity as well as on the
relative time scales of co-evolution will be published else-
where.

Conclusion

Our results clearly provide an evolutionary basis for the
necessity of individuals to adjust their social ties. The
struggle for survival between cooperators and defectors
leads to an arms race for swiftness in adjusting the ties,
based on a self-regarding judgment. Since defectors are
never able to establish social ties under mutual agree-
ment, they are overall swifter than cooperators, who tend
to evolve stable and long term relations when the risk of
exploitation is absent. Ironically, defectors' constant
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search for partners to exploit leads to heterogeneous net-
works that improve the survivability of cooperators com-
pared to homogeneous populations. At the same time,
swifter defectors prevent cooperators from wiping them
out.

The existence of stable communities such as families,
groups, political parties and other social agglomerates,
relies on the persistence of social ties, being usually
related to an idea of "loyalty" which is often associated
with some form of survival advantage [45]. However, in
modern networks of exchange and cooperation, where
partnership preferences have already surpassed the limita-
tions imposed by kin-like constraints, these social struc-
tures are evanescent. Populations of self-regarding
individuals engage in increasingly diverse, short-lived and
geographically uncorrelated social ties. In this context, our
results show that "loyalty" or persistent social ties bring
along an evolutionary disadvantage, both from an indi-
vidual and a group perspective. Once the individual abil-
ity to freely reshape partnerships arose — most probably
originating from the human organization into increas-
ingly larger communities (with associated increasing
return benefits [46]) - those individuals that acquired the
aptness to respond quickly to unwanted relationships
obtained an evolutionary edge over other individuals that
remained stuck to the same social ties whatever the cost.

Consequently our results may provide some important
hints on why "persistence of social ties" plays a smaller
role in humanity nowadays, as cooperation based on kin-
ship and geographical proximity becomes replaced by
increasingly global and volatile exchanges of social and
economical nature. Our results suggest that the rapid
emergence of online social communities - such as the
ones involved in wiki's or open source projects — that are
mostly based on cooperative efforts while devoid of norm
enforcement mechanisms, may be linked to this change of
paradigm, which may ultimately provide the escape hatch
from the global challenges of cooperation we also face
[47-49].

Methods

Graphs

We assign individuals to the vertices (a fixed total of N) of
a graph. The edges of the graph (a fixed total of N;) repre-
sent social ties between individuals. Each simulation
starts with a homogeneous random graph [50] (or regular
random graph), in which all vertices have the same
number of edges (z = 2Ny/N), randomly linked to arbi-
trary vertices. This configuration mimics a well-mixed
population in which connectivity is limited. The degree
distribution of the graph changes over time as individuals
change their ties. The average connectivity z is conserved
since we do not introduce or destroy any edges.

http://www.biomedcentral.com/1471-2148/8/287

Prisoner's dilemma

We study the well-known prisoner's dilemma (PD) game,
in which players can either cooperate or defect during an
interaction. Mutual cooperation leads to a reward R for
both players, mutual defection to a punishment P. When
one player cooperates while the other defects, the cooper-
ator (defector) receives the sucker's payoff S (temptation
to defect T). Depending on the relative ordering of these
payoff values, different social dilemmas arise [51]. We
enter the realm of the PD whenever T > R > P > S, the cost-
benefit dilemma described in the Background section
constituting the prototypical example. In that case,
mutual cooperation leads to R = b-c, whereas mutual
defection leads to P = 0. When a cooperator and a defector
interact, the cooperator gets S = -c, whereas the defector
gets T = b, automatically satisfying the inequality above.
We normalize the advantage of mutual cooperation over
mutual defection to 1 [19], making R = 1 and P = 0. This
leaves two parameters, T and S, to tune the intensity of the
social dilemma inherent to the PD. Together T and S
define a 2D parameter space, of which we consider the
diagonal defined by T (and S = 1-T). This diagonal corre-
sponds exactly to those games that can be associated with
a costbenefit parameterization of the prisoner's dilemma:
WithT=band S=-c, R=1leads to T+S = 1.

Evolution of strategies

Individual strategy and network structure co-evolve under
asynchronous updating. The type of update event -
behaviour or partner - is chosen according to the ratio W
between the time scales associated with the evolution of
strategy (z.) and of structure (7,). Assuming 7. = 1 (with-
out loss of generality), a strategy (behavioural) update
event is chosen with probability (1+ W)!, a structure
(partner) update event being selected otherwise. A strategy
update event is defined by the pairwise comparison rule
[9,43]: An individual A is drawn randomly from the pop-
ulation and another individual B is chosen at random
from the immediate neighbours of A. The strategy of B
will replace that of A with a probability given by the Fermi
function py = [1 + eAB)I(A)]1, where I1(X) represents
the accumulated payoff of player X after interacting with
all her neighbours. The value of  (>0) controls the inten-
sity of selection (— 0 leads to neutral drift whereas g —
o leads to the so-called imitation dynamics, often used to
model cultural evolution).

Evolution of individual ties

At each structure update event, a random edge is selected
for evaluation, as illustrated in Fig. 1. The two individuals
at the extremes of that edge — A and B - decide unilaterally
what they wish to do. Whenever both A and B are cooper-
ators, both are satisfied with the edge and no rewiring
takes place. The two other possibilities occur when either
A and/or B are defectors, as at least one individual will
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necessarily be dissatisfied with the edge. These scenarios
are represented schematically in Fig. 1. If both A and B are
dissatisfied (or if one is satisfied while the other is not)
both have the chance to compete for whatever they wish
to do (keep the link if satisfied, rewire if dissatisfied). A
will compete with probability 7, whereas B will compete
with probability 7;. If both actually compete, B's decision
will prevail with the probability p; defined above in terms
of the Fermi function, whereas A's decision will prevail
with probability p, = 1-pg. If only one actually competes,
decision will be unilateral, whereas if no one competes
nothing will happen. When decision is to rewire, the new
destination is chosen randomly from the immediate
neighbours of the former opponent (as illustrated in the
upper panel of Fig. 1). We impose that individuals con-
nected by a single link cannot lose this link, hence pre-
venting the network from becoming disconnected,
allowing all nodes to undergo evolution of strategies.

Computer simulations

We use networks of size N = 103 with average connectivity
z = 30. The latter value reflects the average connectivity of
a plethora of empirically studied social networks [52,53],
with connectivity values ranging from 2 to 170, with an
associated heterogeneity intermediate between single-
scale and broad-scale [52]. We start with 50% coopera-
tors, randomly distributed in the population. The results
in Fig. 2 are obtained by running 100 independent simu-
lations for each set of parameters (T;7,77p) and comput-
ing the fraction of times that evolution stopped at 100%
cooperation. Each of the cumulative distributions of 7,
C(n), for cooperators (defectors) in Fig. 3 is obtained after
running 103 simulations that fixate in 100% cooperation
(defection) for a given value of T. At the end of each evo-
lution, we calculate the cumulative distribution of 7 for
either cooperators or defectors. C(#) in Fig. 3 is defined,
for a given 7,, as the fraction of individuals who have 7 >
7- The results are robust with respect to changes both in
the average connectivity and in the value of W.

Note that given the stochastic nature of the pairwise com-
parison rule [43] adopted, the strategy evolutionary
dynamics exhibits only two absorbing states, at 100% of
cooperation or at 100% of defection. Whenever the coop-
erator absorbing boundary is reached, the co-evolutionary
dynamics stops, as all social ties are established between
cooperators, entailing mutual satisfaction. Whenever the
full defection absorbing state is reached, only strategy
dynamics will stop, as mutual dissatisfaction will compel
myopic defectors to search uninterruptedly for other part-
ners, leading ultimately to a stationary regime in which
the average properties of the population structure remain
unchanged.

http://www.biomedcentral.com/1471-2148/8/287
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