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Abstract

Background: The water-bloom-forming cyanobacterium Microcystis aeruginosa is a known producer of various
kinds of toxic and bioactive chemicals. Of these, hepatotoxic cyclic heptapeptides microcystins have been studied
most intensively due to increasing concerns for human health risks and environmental damage. More than 70
variants of microcystins are known, and a single microcystin synthetase (mcy) gene cluster consisting of 10 genes
(mcyA to mcy]) has been identified to be responsible for the production of all known variants of microcystins. Our
previous multilocus sequence typing (MLST) analysis of the seven housekeeping genes indicated that microcystin-
producing strains of M. aeruginosa are classified into two phylogenetic groups.

Results: To investigate whether the mcy genes are genetically structured similarly as in MLST analysis of the
housekeeping genes and to identify the evolutionary forces responsible for the genetic divergence of these genes,
we used | |8 mcy-positive isolates to perform phylogenetic and population genetic analyses of mcy genes based on
three mcy loci within the mcy gene cluster (mcyD, mcyG, and mcyJ), none of which is involved in the production of
different microcystin variants. Both individual phylogenetic analysis and multilocus genealogical analysis of the mcy
genes divided our isolates into two clades, consistent with the MLST phylogeny based on seven housekeeping loci.
No shared characteristics within each clade are known, and microcystin analyses did not identify any
compositional trend specific to each clade. Statistical analyses for recombination indicated that recombination
among the mcy genes is much more frequent within clades than between, suggesting that recombination has been
an important force maintaining the cryptic divergence of mcy genes. On the other hand, a series of statistical tests
provided no strong evidence for selection to explain the deep divergence of the mcy genes. Furthermore, analysis
of molecular variance (AMOVA) indicated a low level of geographic structuring in the genetic diversity of mcy.

Conclusion: Our phylogenetic analyses suggest that the mcy genes of M. aeruginosa are subdivided into two
cryptic clades, consistent with the phylogeny determined by MLST. Population genetic analyses suggest that these
two clades have primarily been maintained as a result of homology-dependent recombination and neutral genetic
drift.
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Background

Microcystins are a family of cyclic heptapeptides consist-
ing of seven characteristic amino acids (Fig. 1). Exposure
to microcystins poses a severe health risk for both humans
and animals, primarily because of hepatotoxicity. Acci-
dental ingestion of water contaminated with microcystins
causes acute hepatitis due to the inhibition of protein
phosphatase 1 (PP1) and PP2A in hepatocytes, and the
possible involvement of microcystins in tumor promo-
tion has also been suggested [1]. Although a number of
cyanobacterial genera (e.g., Anabaena, Planktothrix, Nos-
toc) are known to produce microcystins, the primary pro-
ducer of microcystins is the water-bloom-forming
cyanobacterium Microcystis aeruginosa that is often found
in eutrophic freshwater environments such as ponds,
lakes, and reservoirs worldwide.

More than 70 structural variants of microcystin with vary-
ing levels of toxicity have been reported [2]. Most of these
variants differ from each other at the second (X) and/or
fourth (Z) amino acid position in the cyclic heptapeptide.
Another form of variant in which one or two amino acids

p-Glu
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are demethylated is also often encountered (Fig. 1). Many
strains of M. aeruginosa are known to produce more than
two variants of microcystins [3]. A single microcystin syn-
thetase (mcy) gene cluster (Fig. 1) has been shown to be
responsible for all structural variants of microcystins [4,5].
The product of the mcy gene cluster is a large multienzyme
complex of mixed polyketide synthase (PKS) and non-
ribosomal peptide synthetase (NRPS) modules.

The mcy gene cluster of M. aeruginosa comprises 10 genes,
mcyA to mcyJ, nine of which encode catalytic domains for
microcystin synthesis [4,5]. By contrast, the product of
mcyH is hypothesized to be involved in intra- (or extra-)
cellular transportation of microcystins [6]. As in other
NRPSs, the products of the mcy gene cluster possess the
same number of basic "modules" as the number of amino
acids incorporated into the non-ribosomal peptide, syn-
thesizing microcystins by a thiotemplate mechanism [7].
Each NRPS module contains an adenylation domain (A
domain), a domain for specific amino acid activation, a
condensation domain (C domain), a domain for specific
amino acid recognition and peptide bond elongation, and
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Structure of the microcystin synthetase (mcy) gene and microcystins. Structural representation of microcystin vari-
ants and the microcystin synthetase (mcy) gene cluster [5]. General numbering of amino acids is indicated in gray. Arrows indi-
cate the proposed involvement of the product of each mcy marker locus in the incorporation and/or modification of each
amino acid into the microcystin. Note that the amino acids (X and Z) and groups (R,) highlighted in gray are variable. Microcys-
tin is abbreviated as "MCY" in the right-hand table. Abbreviations for three uncommon amino acids in microcystins are as fol-
lows: p-MeAsp, p-erythro-f-methylaspartic acid; Adda, (28, 38, 8S, 95)-3-amino-9-methoxy-2,6,8-trimethyl- | 0-phenyldeca-4,6-
dienoic acid; MdhA, N-methyldehydroalanine. The positions of PCR primers in the mcy genes are indicated by a gray box.
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a peptidyl carrier protein (PCP). Similarly, the PKS-coding
components of the mcy gene cluster contain genes encod-
ing type I PKS modules consisting of a f-ketoacyl synthase
(KS domain), an acyltransferase (AT domain), -ketoacyl
reductase (KR domain), a dehydratase (DH domain), and
an acyl carrier protein (ACP). Other optional domains for
tailoring enzymes are also present in the mcy gene cluster.

Given that only a single mcy gene cluster is present in the
genome of strains producing two or more variants of
microcystins [4,5,8], it has been suggested that the struc-
tural variation of microcystins differing in amino acid
composition is due to nonspecific amino acid recognition
by A domains encoded by the mcy genes rather than differ-
ences in the primary structures of mcy [3]. Because the two
NRPS modules encoded by the first part of mcyB (mcyB1)
and mcyC are responsible for the variable amino acids in
microcystins (X and Z, respectively), most previous work
investigating the genetic diversity of mcy has focused on
these two genes [3,9-11]. Interestingly, it has been dem-
onstrated that gene conversion between A domains, but
not C domains, encoded by mcyB1 and mcyC, can explain
the difference in the production of specific microcystin
variants in a number of strains [9,10]. Positive selection at
the codon near the binding pocket of the A domain might
have an impact on the genetic diversity of mcyC [11].
These results suggest that variation of microcystin compo-
sition might be genetically structured to some extent. An
important finding has been the recombinational replace-
ment of A domains encoded by mcyB1 with domains from
phylogenetically distant origins, probably occurring as a
result of horizontal transmission [10]. This finding ques-
tions the validity of using A domains, or other redundant
domains of PKS and NRPS, to investigate the overall phy-
logenetic relationships of the mcy gene cluster. Moreover,
it has also been demonstrated that both intra- and inter-
genic recombination significantly contributes to the over-
all genetic diversity of the mcy genes [12]. Recent
occurrences of recombination can significantly bias the
result of phylogenetic analysis because they decouple
genetic similarity from evolutionary history. Therefore,
multiple and conservative regions of the mcy locus should
be used as genetic markers to understand better the evolu-
tionary relationships and genetic diversity of the mcy
genes as a whole.

Previously we demonstrated that toxic strains are divided
into two lineages, group A and group B, based on multilo-
cus phylogenetic analysis of the seven housekeeping genes
(MLST) [13]. This finding raises the following two ques-
tions: 1) Are mcy genes structured similarly to the house-
keeping genes? Or did they evolve independently from the
other genes in the genome of M. aeruginosa? 2) Which evo-
lutionary forces are responsible for the observed genetic
divergence of the mcy genes? (e.g., are the mcy genes struc-
tured as a result of selective sweep or neutral genetic drift
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following geographic isolation?) To address these issues,
we have analyzed the mcy genes from 118 toxic and non-
toxic strains of M. aeruginosa.

We performed a suite of phylogenetic and population
genetic analyses of the mcy genes using three "conserva-
tive" loci within the mcy gene cluster as markers (desig-
nated "mcyMLST" by analogy with MLST). MLST is a
multilocus sequence-based genotyping protocol that has
been widely used to investigate the population structures
of a broad spectrum of microbial species ranging from
bacteria and archaea to eukaryotic microbes [14,15]. A
conventional MLST analysis based on the seven house-
keeping loci [13] was also performed to compare it with
the results of the mcyMLST analysis. We measured the
microcystin composition of each strain to investigate the
possible correlation between mcy genetic divergence and
microcystin composition. Our results show how evolu-
tionary forces, particularly recombination and genetic
drift, have contributed to the genetic divergence of mcy
genes.

Methods

Strains, culture, isolation and DNA extraction

The 196 strains of M. aeruginosa used in this study are
listed in Additional file 1. They include 11 toxic strains
that we previously characterized using mcyA, mcyD, mcyG,
and mcy] [12], 75 mcyG-positive and 78 mcyG-negative
strains used in our previous report [13], and 32 toxic
strains recently isolated in 2004-2006. The novel 32
strains were isolated by the following protocol. Colonies
of M. aeruginosa were picked from field water samples by
using a glass micropipette under a microscope, and cul-
tured in a 1:1 mixture of liquid MA medium [16] and
autoclaved field water filtrated using a nylon net filter
with 0.22 pm pore size (Millipore). From these "crude"
cultures, a single cell was picked to establish a clonal
strain by the same micromanipulation procedure used in
crude isolation except that MA medium was used for
clonal cultures. Of the 196 strains, 164 are currently avail-
able at MCC-NIES (Tsukuba, Japan) and the 32 newly iso-
lated strains will be available at MCC-NIES in the future.
Cultures were grown in 10 ml of MA medium at 25°C for
1-3 weeks under a 12:12 L/D cycle with a photon density
of 15 umol m-2s-1. Genomic DNA was extracted and puri-
fied by a FastDNA®kit (Q-BIOgene).

Multilocus sequencing typing (MLST) of seven
housekeeping genes

The published MLST protocol for M. aeruginosa [13] was
employed to genetically characterize the newly isolated
strains. Amplified PCR fragments were purified by
EXOSAP-IT (USB) and were sequenced in both directions
by a DTCS Quick start Kit and a CEQ8000 autosequencer
(Beckman Coulter). Following the standard procedure of
MLST, each different allele for each locus is assigned a dif-
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ferent arbitrary number, and the unique combination of
seven allele numbers ("allelic profile") unambiguously
defines a strain's sequence type ("ST"). The MLST
sequence data of the 164 strains that we previously char-
acterized [13] are available at the DDBJ database
[DDBJ:AB324850-325402]. Newly determined MLST
sequence data have been deposited in the DDBJ database
[DDBJ: AB465739-465899].

mcy multilocus sequencing typing (mcyMLST)

Three loci, mcyD, mcyG, and mcy], encoding parts of the
DH domain (involved in trans double-bond formation
during the polyketide chain elongation of Adda), the A
domain (involved in activation of phenylacetate, the pre-
cursor of Adda), and o-methyltransferase (involved in o-
methylation of the C, of Adda), respectively, were selected
for the multilocus mcy gene sequence typing
("mcyMLST"). Each locus is expected to be ca. 550 bps in
length. Note that these three loci were selected on the
basis of three criteria: 1) the domains encoded by these
loci are not directly involved in the structural variation of
microcystins (at least those identified in this study); 2) the
sequences of these loci have diverged sufficiently from
other regions of the mcy gene cluster to exclude the possi-
ble misamplification of similar but different domains by
PCR; 3) there is no evidence that these loci have been
replaced with the genes of phylogenetically distant organ-
isms through horizontal transmission (as encountered in
the A domain of mcyB1 [10]). Each locus was PCR-ampli-
fied using published primers (DF/DR, GF/GR, and JF/JR)
and optimal reaction conditions [12]. Purification and
sequencing reactions of the amplified PCR fragments were
performed according to the protocol described above for
MLST. As in MLST, each different allele for each mcyMLST
locus was assigned a different arbitrary number, thereby
creating an "allelic profile" that unambiguously defined a
strain's "mcyST" (Additional file 1). Sequence data of 11
strains that we previously characterized are available at
the DDBJ database [DDBJ:AB110114-110146]. Newly
determined sequence data have been deposited in the
DDB]J database [DDBJ:AB444730-444852].

Phylogenetic analysis

For phylogenetic analysis, the most appropriate models of
the DNA sequence evolution of each mcyMLST locus were
selected by a hierarchical likelihood ratio test (hLRT)
using MODELTEST version 3.7 [17]. Using PAUP* version
4.0b10 [18], neighbor-joining (NJ) phylogenetic trees
were constructed on the basis of the maximum-likelihood
(ML) distance calculated from the inferred model and
parameters. NJ bootstrap (NJBP) analyses were also per-
formed to assess the statistical confidence of nodes on the
basis of alignments generated by 1,000 resamplings of the
data with the same DNA substitution models used for
phylogenetic reconstruction. Bayesian ML phylogenetic
reconstruction was performed with Mr. Bayes version
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3.1.2 [19]. Using the DNA evolution model chosen by
MODELTEST and the NJ tree as a starting tree, two inde-
pendent runs were performed, each with four chains for
5,000,000-7,500,000 generations (where the conver-
gence diagnostics for each gene hit a stop value of 0.01),
in which trees were sampled every 100 generations. Statis-
tical confidence for branch support was assessed by poste-
rior probability (PP) estimated from the 50% majority
consensus tree after discarding the burn-in phase of
1,250,000-1,875,000 generations (corresponding to one-
fourth of the generation of each run). Phylogenetic analy-
sis of the seven housekeeping genes was performed in the
same way as that for mcy genes, except that the seven genes
were concatenated prior to analysis, and each run was per-
formed for 3,000,000 generations in Bayesian phyloge-
netic inference (due to computational limitation).

Using ClonalFrame version 1.1 [20], multilocus genealo-
gies and a suite of population genetic parameters to
account for the given mcy data were inferred. The 50%
majority consensus genealogy was generated from the
posterior samples of the last 50,000 generations at a thin-
ning interval of 100 after discarding the burn-in phase of
first 50,000 generations.

Population genetic analysis

Estimates of the parameters for DNA sequence divergence,
gene diversity h = [n/(n-1)] (1-Zp?2) (where n is the
number of samples, and p; is the relative frequency of ith
allele), nucleotide diversity 7 [21], and a test for neutrality
by Tajima's D [22] were performed with DnaSP version
4.00 [23]. Coalescent-based estimates of the population
recombination rate (o = 2Ner, where Ne is the effective
population size, and r is the recombination rate per locus
per generation) and population mutation rate (€= 2Ne g,
where 4 is the mutation rate per locus per generation),
minimum numbers of recombination (R,,, [24]), and sta-
tistical probabilities of likelihood permutation test (LPT,
[25]) were calculated by LDhat version 2.1 [25]. Multilo-
cus linkage disequilibrium was assessed by the standard-
ized index of association (1,5, [26]) using the program
START version 2 [27]. I, is a standardized measure of I,
[28], ranging from O (panmixia) to 1 (absolute linkage
disequilibrium). The statistical significance of non-zero
values of I, was inferred on the basis of a comparison of
those values estimated from 1,000 randomized datasets
under a null hypothesis of panmixia. The phi (®)-test (a
robust statistical test for recombination [29]) was per-
formed with Splitstree version 4.8 [30]. Maximum likeli-
hood-based tests for phylogenetic congruence between
loci [31] were performed with PAUP*. Analysis of molec-
ular variance (AMOVA) was performed with ARLEQUIN
version 3.1 [32]. The McDonald-Kreitman test [33] was
performed with DNASP. PAML version 3.14 [34] was used
to search for sites under positive selection. Possible posi-
tively selected sites were also investigated on the basis of

Page 4 of 14

(page number not for citation purposes)


http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB324850
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?325402
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB465739
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?465899
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB110114
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?110146
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB444730
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?444852

BMC Evolutionary Biology 2009, 9:115

516 physicochemical criteria with TreeSAAP version 3.2
[35], following the standard protocol except that the sta-
tistical significance level was set to 0.001 (P < 0.001).

Microcystin analysis

To a 10-ml culture of each M. aeruginosa strain, 0.5 ml of
acetic acid was added and the mixture was ultrasonicated
for 15 minutes. After centrifugation (3,000 rpm, 15 min),
the supernatant was collected and the remnant pellet was
further extracted with 1.5 ml of methyl alcohol by the
same procedure as the initial extraction. To the combined
supernatant, distilled water was added to 20 ml. The
diluted extract was passed through a conditioned (1 ml of
100% methyl alcohol and 1 ml of distilled water) Inertsep
RP-1 cartridge (GL Science). The cartridge was washed
with 20% methanol aqueous solution, and then eluted
with 0.5 ml of 80% methanol aqueous solution. The elu-
ate was diluted with 0.5 ml of distilled water, and applied
to high-performance liquid chromatography (HPLC)
using an LC-10A system (Shimadzu; column: Agilent
Eclipse XDB RP-18, 2.1 x 150 mm; solvent: 60% metha-
nol in 50 mM phosphate buffer, pH 3.0; flow rate: 0.2 ml/
min; detection: photodiode array detector). Microcystin
variants were identified in comparison with authentic
samples in the case of microcystins -LR, -YR, and -RR.
Other microcystin variants were identified by liquid chro-
matography electrospray ionization mass spectrometry
(LC ESI-MS) using an LCMS-2010A system (Shimadzu).

Results

Phylogenetic analysis of the seven housekeeping genes
The results of the phylogenetic analysis of the seven
housekeeping (MLST) loci is shown in Fig. 2. Overall, the
results were consistent with those of our previous study
[13]. The most toxic strains fell into two lineages, termed
group A and group B. The statistical support for group A
was weak, whereas that for group B was moderate to
strong. In group A, all but one strain represented by ST55
were toxic (microcystin-producer), whereas toxic and
non-toxic strains coexisted in group B. Three toxic strains
represented by ST23, ST57 and ST95 belonged to neither
group A nor group B, forming a distinct monophyletic lin-
eage (designated group "X"). The location of ST40 was
ambiguous and varied according to the phylogenetic
method used, a feature that was also encountered in our
previous study [13]. Three distinct non-toxic clades
(groups C, D, and E) were again recovered in this phylo-
genetic analysis.

mcy multilocus sequence typing (mcyMLST)

The results of the mcyMLST analysis are shown in Addi-
tional file 1. All sets of primers successfully recovered the
three mcy loci from all toxic and mcyG-positive isolates
included in this study. By contrast, the primer sets for
mcyD and mcy] failed to amplify these genes from any of
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the mcyG-negative strains that we identified in our previ-
ous study [13]. The amplified loci of mcyD, mcyG, and
mcy] were 550, 449, and 552 bp, respectively, in length.
Neither insertions nor deletions were found within the
sequences of mcyG and mcy], whereas an insertion of 3 bp
was found within one mcyD genotype (allele number 18
of mcyD in mcyST25) representing five strains. All
sequences could be unambiguously aligned (note that the
3-bp insertion in allele 18 of mcyD is TIT, which might be
a slippage mutation of the prior TTT sequence). For the
118 mcy-positive isolates, 51 mcy sequence types (mcySTs)
were found. The number of alleles of mcyD, mcyG, and
mcy] was 27, 31, and 29, respectively.

Phylogenetic analysis of mcy

The results of the phylogenetic analysis of the individual
mcy loci is shown in Fig. 3. In all of the three mcy phyloge-
netic trees, M. aeruginosa strains could be separated into
two clades, group A and group B, consistent with the same
grouping as in the MLST phylogeny (Fig. 2). This dichot-
omy was most robustly supported in the phylogenetic tree
of mcyG (NJ BP100%, Bayesian PP 100%), whereas it was
moderately supported in the mcyD and mcyJ phylogenies.
Four mcySTs (mcyST10, mcyST11, mcyST24, and mcyST46)
showed discordant placements between the two groups
(A and B) depending on the loci used. For example,
mcyST10 was located within group A by mcyD and mcyG
analysis, but within group B by mcy] analysis. Such dis-
cordance is highly likely to be due to recombination
between loci. Therefore we next employed ClonalFrame, a
multilocus phylogenetic reconstruction method that takes
into account the effect of recombination between and
within loci. The results of ClonalFrame, which showed the
highest likelihood value of 10 independent MCMC runs,
are illustrated in Fig. 4a. Again, two highly supported
clades (Bayesian PP > 95%) were recovered. Four anoma-
lous mcySTs (mcyST10, mcyST11, mcyST24, and mcyST46)
identified in the individual mcy phylogenies branched at
the midpoint of groups A and B. Within-group relation-
ships were still poorly resolved, as in the analyses of indi-
vidual loci.

Genetic diversity and recombination

Because two distinct groups were identified in the mcy
phylogenetic and genealogical analyses, genetic diversity
indices were estimated from all of the mcy data and also
from subsets of data (groups A and B) (Table 1). The max-
imum sequence divergence of mcyD, mcyG, and mcy] in
the whole dataset was 3.6%, 5.1%, and 2.9%, that in
group A was 3.6%, 1.5%, and 2.0%, and that in group B
was 0.7%, 2.0%, and 2.0%, respectively. For mcyD, the
genetic diversity differed between groups, being much
higher in group A (S =37, 7= 0.0142) than in group B (S
=6, 7=0.0017). For mcyG and mcyJ, the genetic diversity
indices were similar between the groups.
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Figure 2
Phylogenetic analysis of the seven housekeeping genes (MLST). Neighbor-joining (N]) phylogenetic tree of 102 STs of
M. aeruginosa based on the concatenated sequences of the seven MLST loci. Branches supported by both NJ bootstrap proba-

bilities (NJBP > 75%) and Bayesian posterior probabilities (PP > 0.85) are highlighted by thick bars. Statistical values for these
branches are indicated (NJ BP, PPx100).
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Neighbor-joining tree of mcy genes. Phylogenetic relationships among the 51 mcySTs of M. aeruginosa based on the NJ
analysis of the individual mcy loci. Statistical values for the branch of the group A-B boundary (in bold) are indicated (N) boot-
strap [N)JBP]/[Bayesian PP] x 100). In general, within-group relationships were poorly resolved; branches with NJBP > 75% are

highlighted in bold and NJBP values are shown.

Two statistical tests, the likelihood permutation test (LPT)
and phi (@) test were performed to explore recombina-
tion within loci (Table 1). All tests for intragenic recombi-
nation within group A were significant except for one case
(@ test of mcyD), whereas recombination within group B
was not significant in any tests except for the LPT of mcyD.
Consistent with these results, the minimum number of
recombination (R,,) was larger in group A than in group
B, and mcyD and mcyG of group B showed no evidence of
recombination (R,, = 0). Coalescent-based parameter esti-
mates indicated that the population recombination rates
(p) were generally larger than population mutation rates
(). Once again, p values for mcyD and mcyG were higher

in group A than in group B, but similar between the
groups for mcy]. On the other hand, statistical tests using
the standardized index of association (I,5) for all samples,
group A, and group B gave significant positive values (P <
0.01) (Table 2). However, 1,5 using only unique STs gave
significant positive values for the whole dataset and group
A (P < 0.01), whereas the I,5 of group B was not signifi-
cantly different from zero (P = 0.167). Maximum likeli-
hood-based tests for phylogenetic congruence
demonstrated (Table 2) that significant congruence (P <
0.01) between the mcy ML trees and randomized trees was
present for the whole dataset and group A, but not for
group B, indicating that recombination is much more fre-
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ClonalFrame analysis of mcy genes. (a) A ClonalFrame genealogy of the 51 mcySTs inferred from the three mcy loci. (b)
Genetic representation of the recombination events at the branch of a (red) and b (blue) in the mcy genealogy. X-axis indicates
the nucleotide position in the respective mcy loci. Y-axis indicates the posterior probability of recombination.
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Table I: Statistical tests and parameter estimates for mutation and recombination

s! ? D3 Vo (2 plo Ry Py’ P8
mcyD All (n=118) 43 0.01529 0.133 12.6 8.047 1.56 10 0.075 0.6829
Group A? (n = 89) 37 0.01427 0.230 14.62 7.114 2.05 10 0.037%* 0.875
Group B? (n =29) 6 0.00171 -1.105 4.97 1.528 3.25 0 0.020% 1.00
mcyG All (n=118) 39 0.0193 1.402 1.7 6.176 0.275 5 0.298 0.5092
Group A? (n = 87) 14 0.00559 0.289 10.95 2.382 4.59 2 0.018%* 0.012%*
Group B? (n =31) 19 0.00635 -0.921 0 4.506 0 0 0.08 1.00
mcy| All (n=118) 27 0.0128 1.174 19.5 5.053 3.85 7 0.012% 0.001 27
Group A? (n = 84) 16 0.00895 1.559 17.6 3.199 5.5 5 0.034* 0.026%*
Group B? (n = 34) 18 0.00712 -0.359 18.4 4.402 4.17 4 0.362 0.428

*P<0.05*P<0.0l

' Number of segregating sites.
2 Nucleotide diversity [21].

3 Tajima's D [22].

4 Population recombination rate (= 2Ner) estimated from the sites with two alleles.
5 Population mutation rate (= 2Ney) estimated from the sites with two alleles.

6 Minimum number of recombination based on Hudson and Kaplan [24].
7P-value of likelihood permutation test [25].
8P-value of @ test [29].

9STs that show discordant group assignment between loci (ST10, |1, 24, and 46) are also included.

quent in group B. Overall, the results were consistent but
gave different effects of recombination between groups;
that is, intralocus recombination is frequent within group
A but rare within group B, whereas interlocus recombina-
tion is frequent within group B but not within group A.
Interestingly, the mutation-scaled recombination rate (o/
0) of mcyG was 20 times larger for group A than for the
whole dataset (Table 1). Recombination at a specific
branch in the phylogenetic tree can be detected by the pro-
gram ClonalFrame. For example, our analysis indicated
that small segments of mcyD and mcy/ are likely to have
undergone recombination at the branch of the group A-B
boundary (Fig. 4b).

Test for selection

The inferred parameter values indicative of selection and
the results of tests for selection are shown in Table 3. The
ratio of nonsynonymous changes per nonsynonymous
site (dy) to synonymous changes per synonymous site

Table 2: Analyses of interlocus recombination

(dg) may provide a good measure of adaptive evolution
on a given locus because an excess of dy over dg (i.e., dy/ds
>1) is expected under adaptive evolution. However, the
dy/dg values of mcyD, mcyG, and mcy] were 0.227, 0.243,
and 0.169, respectively, values that are all much smaller
than 1, indicating that purifying selection rather than pos-
itive selection is responsible for the genetic diversity of the
mcy genes.

Next, we performed several statistical tests to investigate
further the presence of selection acting on mcy genes. The
Tajima's D statistic indicates selection when it signifi-
cantly differs from the neutral expectation of D = 0. As
shown in Table 1, the Tajima's D value for each mcy locus
did not significantly differ from zero for the whole dataset
or group A or B (P > 0.10). To investigate whether selec-
tion was responsible for the deep divergence of mcy into
groups A and B, we performed the McDonald-Kreitman
(MK) test, which compares the ratio of synonymous to

n! 1,52 Portion of significant congruence’
Total All 118 0.656*
ST 51 0.188* 6/6
Group A All 84 0.680*
ST 30 0.193* 6/6
Group B All 29 0.359*
ST 17 0.064 0/6

'Number of strains.
2 Standardized index of association [26]. *, P < 0.01.

3 Maximum likelihood analysis of tree topology congruence based on Feil et al. [31]. The log-likelihoods of 200 random trees were calculated based
on the sequence data of each locus, and compared to those of the ML tree topologies of the other two loci. Log likelihood scores higher than those
of 99th percentile of 200 random tree topologies are "significantly congruent” (P < 0.01), suggesting the low rate or lack of recombination. Thus,
the lower value of the portion of significant congruence indicates the higher rate of recombination.
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Table 3: Test for selection

http://www.biomedcentral.com/1471-2148/9/115

dp/ds! Pui? Ppami® nyt ny (A-B)* nygé nys (A-B)’
mcyD 0.2270 > 0.50 > 0.50 0 0 24 |
mcyG 0.2437 > 0.50 <0.001 2 (M2a) 2 15 7
mcy| 0.1696 > 0.50 < 0.001 2 (M8) | 10 |

IRatio of nonsynonymous substitutions per nonsynonymous sites to synonymous substitutions per synonymous sites based on M0 model of PAML.

2P-value of the McDonald-Kreitman test (group A vs. B) [33].

3p-values of likelihood ratio tests for both Mla vs. M2a, and M7 vs. M8 in PAML [34]. Significant value indicates the presence of positively selected

sites.

4Number of codons under positive selection detected by the model showing the highest likelihood (indicated in parentheses) of PAML (P < 0.05).
5 Number of codons under positive selection changed on the branch of the group A-B boundary according to PAML using the model described in

ny column.

6 Number of codons under positive selection according to TreeSAAP [35].
7 Number of codons under positive selection changed on the branch of the group A-B boundary according to TreeSAAP.

non-synonymous polymorphism within groups and that
of synonymous to non-synonymous divergence (fixed dif-
ferences) between groups; these two ratios should be
equal under the null hypothesis of neutrality [33]. Again,
none of the MK test P values was significant (Table 3), and
thus did not provide evidence for selection on the branch
of the group A-B boundary.

All of the above analyses are based on the average nucle-
otide polymorphism; however, these kinds of test are not
sensitive enough to detect a single or small number of
adaptive amino acid changes, which are sometimes
responsible for improved fitness of a given gene. Two pro-
grams, PAML and TreeSAAP, were therefore used to over-
come this problem. The first program PAML uses the same
approach as the dy/dg consideration but applies it to indi-
vidual sites on the basis of maximum-likelihood, thus
enabling codons under positive selection to be detected.
Using PAML, we employed the "site models", and per-
formed two likelihood-ratio tests, a test of M1a (nearly
neutral) versus M2a (positive selection), and that of M7
(beta; assuming a beta distribution of dy/dg over sites
ranging from 0 to 1) versus M8 (beta & ®; the same as M7
with an additional estimate of ® = d/dg> 1) to determine
any sites under positive selection (dy/dg> 1), as suggested
by the author [34]. Significant likelihood ratio values were
obtained for mcyG and mcyJ (P < 0.01), but not for mcyD
(P > 0.50). For each locus (mcyG and mcy]), two codons
were identified as positively selected sites by the model
that showed the highest log-likelihood (the M2a model
for mcyG, and M8 model for mcyJ). Although the number
was small (up to two), the most likely positively selected
sites were substituted on the branch bordering groups A
and B.

The second program, TreeSAAP, provides a method to
detect an adaptive amino acid change by taking quantita-
tive amino acid properties into account. On the basis of
statistical tests for differences in the observed versus the
expected change under neutrality in the eight categories of

516 physicochemical criteria (e.g., changes in hydropathy,
isoelectric point, polarity, and so on), TreeSAAP identified
24, 15, and 10 sites under positive selection in mcyD,
mcyG, and mcyJ, respectively; these numbers of sites were
much larger than those identified by PAML. TreeSAAP
also identified all of the positively selected sites identified
by PAML, including the sites at the branch of the A-B
boundary. Unlike the result of PAML analyses, the most
likely positively selected sites identified in mcyD and mcy]
did not change on the branch bordering groups A and B,
whereas half of the selected sites in mcyG were identified
to have been substituted on the branch of the A-B bound-

ary.

Genetic differentiation

To investigate the significance of geographic isolation on
the genetic diversity of the mcy genes, our strains were par-
titioned into their geographic origins. Because the inclu-
sion of localities with a small number of strains may bias
the result of AMOVA, we included only strains for which
more than five isolates were available from a single local-
ity. On the basis of this criterion, nine groups of strains
from Lake Barato (n = 6), Lake Inba (n = 22), Lake Kasum-
igaura (n = 22), Lake Okutama (n = 12), Lake Suwa (n =
5), Lake Teganuma (n = 11), Ishigaki Dam (n = 5) and
Kunnma Dam (n = 6) were selected and analyzed. The
results of AMOVA (Table 4) indicated low but significant
genetic structuring among local populations (Fgp= 0.212,
P < 0.001), although the within-population genetic vari-
ance was still high.

Microcystin analysis

Most strains were found to produce multiple variants of
microcystins (Additional file 1). On the basis of the
microcystin composition, our strains were divided into
eight categories (Fig. 5). Several isolates were found to
produce other microcystin variants at a low concentration
(less than 10% of the total amount of microcystins). We
did not include them here, because such minor variants
are highly likely to have been produced through the occa-
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Table 4: Analysis of molecular variance (AMOVA)

http://www.biomedcentral.com/1471-2148/9/115

Source of variation d.f. Sum of squares Variance component % of variation Fst P value
Among local populations 8 282.739 2.83773 21.26
Within populations 73 767.395 10.51226 78.74
Total 8l 1050.134 13.34999 0.212 <0.001

sional misrecognition of amino acids by the substrate-
binding pocket of the A domain and therefore would
appear to be not selectively important.

The most dominant form of microcystin was microcystin-
LR and -RR, representing 56% of the total 118 mcy-posi-
tive isolates. The second most dominant form was micro-
cystin-LR, -RR, and -YR, which accounted for 22% of the
118 strains. In general, group B appeared to be more
divergent in microcystin composition as compared with
group A. For example, demethylated microcystin variants
([Dha?]microcystin-LR, -RR, and -YR, Fig. 1) were exclu-
sively present in strains assigned to group B (except for the
anomalous mcyST10), although genotypic relationships
among the different variants were poorly resolved.
Indeed, the difference in microcystin composition
between group A and group B was significant (32 = 44.7,
d.f. = 6, P < 0.001). Some strains with the same mcyST
were found to produce a different combination of micro-
cystin variants (e.g., mcyST1, see Additional file 1). Once
again, it should be noted here that five mcy-positive iso-
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Figure 5

Microcystin composition. Distribution of microcystin var-
iants in groups A, B, and "X" (putative hybrid mcySTs:
mcyST10, meyST1 1, meyST24, and mcyST46). Abbreviations
for the microcystin variants are as follows: LR, microcystin-
LR; RR, microcystin-RR; YR, microcystin-YR; dLR,
[Dha’]microcystin-LR; dRR, [Dha’]microcystin-RR; dYR,
[Dha’]microcystin-YR; ND, not detected.

lates did not produce a detectable level of microcystins
[13] (Additional file 1).

Discussion

Phylogenetic analysis based on the seven housekeeping
loci (MLST) indicated that toxic strains are affiliated into
two major clades, group A and group B, and an outlier
clade group "X" (Fig. 2). This observed subgrouping of
toxic strains is largely consistent with our previous MLST
phylogeny [13], suggesting that the ability to produce
microcystins is genetically structured to some extent. On
the other hand, our phylogenetic and multilocus genea-
logical analyses of the mcyMLST divided our strains into
two clades (Fig. 3, 4a). Importantly, these two clades cor-
respond to groups A and B in the MLST phylogeny. The
congruent phylogenies between the mcy (mcyA, mcyD,
mcyG, and mcyE) and housekeeping genes (e.g., 16S
rRNA) of several microcystin-producing cyanobacterial
genera have been demonstrated and suggested to be evi-
dence for the vertical rather than interspecific horizontal
transmission of mcy genes [10,36]. The overall concord-
ance of group assignment between the mcy and MLST phy-
logenies in this study suggests that horizontal
transmission of mcy between distantly related Microcystis
strains is also not so frequent. Interestingly however,
strains included in group "X" and ST28 (mcyST11) in
group A show discordant phylogenetic placements
between groups A and B in the mcy phylogeny depending
on the mcy loci used, suggesting that these strains repre-
sent the consequence of intergroup horizontal transmis-
sions of mcy genes followed by recombination.

Our population genetic data corroborate our previous
finding that recombination is an important force in main-
taining the genetic diversity of the mcy genes [12]. Moreo-
ver, population recombination rates were larger than
mutation rates in general (p/6>1, Table 1), suggesting that
recombination is more frequent than point mutation
within the mcy genes. Although our data may not be
robust owing to the small sample sizes, the relative contri-
bution of recombination and point mutation to the
genetic diversity of the mcy genes may be comparable to
that of various genes of other highly recombinogenic bac-
teria, such as Helicobacter pylori and Streptococcus pneumo-
niae [37]. ClonalFrame assumes that recombined
fragments (imported donor sequence) differ from the
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parental segments (original recipient sequence) at a con-
stant percentage of v, which can be used to roughly infer
the origin of recombined fragments [20]. Our estimate of
v of mcy is 0.018, which is lower than the maximum
sequence divergence (0.050) of mcy genes. This result sug-
gests that most recombined segments originated from
within M. aeruginosa. ClonalFrame also estimated the
mean length of recombined segments as 206 bp, which is
in line with a previous study showing that bacterial
recombination can occur within a very short length of
DNA (<1 kbp) [38]. The very small size of the imported
segments implies that they are subject to various restric-
tion systems [39] discovered within the genome of M. aer-
uginosa [8].

Within clades, recombination was suggested to be fre-
quent, although the effect of recombination appeared to
differ between groups and loci. For example, interlocus
recombination in group B was so frequent that alleles at
different mcy loci were assorted randomly ("panmictic"),
whereas the clonal divergence of mcy genes was suggested
in group A (Table 2). When we examined intralocus
recombination, however, most significant recombination
was found for group A, with little recombination for
group B (Table 1). The different impact of recombination
between two clades might be due to the different forms of
genetic exchange and restriction system, because the
length of recombined segments is known to be highly
dependent on these mechanisms [40].

Importantly, statistical tests indicated that recombination
seems to be more substantial within groups than between
(Table 1, 2), implying that there is genetic isolation
between groups A and B owing to DNA sequence diver-
gence. This result suggests that homology-dependent
recombination makes a significant contribution to the
strong genetic clustering of mcy genes. In this context, each
mcy group may be recognized as a fuzzy analog of "biolog-
ical species" in higher eukaryotes [41]. Accordingly,
strains belonging to group "X" might represent "hybrids"
that could successfully cross over the genetic barrier
between the two groups A and B. Bacterial recombination
is often mediated by vectors (e.g., phages). Some cyano-
phages that are infectious to Microcystis have been sug-
gested to have a very narrow host range [42]. Such vector
specificity might play a role in augmenting the genetic iso-
lation between the two mcy clades. Finally, the hypothesis
that recombination might also play an important role in
the diversification of mcy genes should not be dismissed.
As shown in Fig. 4b, significant recombination is likely to
have occurred on the branch bordering groups A and B.

Our data suggest that selection has not been an important
factor in the genetic divergence of the mcy genes. None of
Tajima's D-values was significantly different from the neu-
tral assumption, and the MK test failed to reject the neu-

http://www.biomedcentral.com/1471-2148/9/115

tral divergence of mcy into the two groups A and B. In
addition, the PAML and TreeSAAP analyses identified few
positively selected sites within the mcy genes on the
branch separating groups A and B. One exception was the
TreeSAAP analysis of mcyG, which identified seven possi-
ble sites under positive selection on the branch of the
group A-B boundary. The product of mcyG is probably
involved in polyketide chain elongation within the Adda
of microcystins [5]. All microcystin variants identified in
this study share the same Adda at the corresponding posi-
tion of the microcystin (Fig. 1), and therefore positive
selection at these sites, if present, appears to have little sig-
nificance with regard to microcystin structure. It is possi-
ble that the observed deep divergence of mcyG arose as a
result of selection at different but linked mcy genes. If so,
it would be expected that these two clades would differ in
microcystin composition, which might be thought to con-
fer selective advantages under different (but unknown)
ecological conditions. However, analysis of microcystin
composition did not support this hypothesis. Although
demethylated types of structural microcystin variants are
exclusively present in strains in group B (except for
mcyST10 in group "X"), the most frequently found micro-
cystin compositions (e.g., microcystin-LR and -RR, and
microcystin-LR, -RR, and -YR) are present in both groups
(Fig. 5), suggesting that mcy genealogy is decoupled from
microcystin variation. Similar results have been obtained
for the freshwater cyanobacterium Planktothrix, in which
discordance between the genetic relationships and com-
positional trends of nonribosomal peptides is encoun-
tered [43]. Moreover, it has been demonstrated that
positive selection at the amino acid site neighboring the
binding pocket of the A domain of mcyB in Microcystis
does not contribute to the production of specific micro-
cystin variants [11]. Unfortunately, the biological role of
microcystins has yet to be determined, although several
possible functions have been proposed [44-46]. Clarify-
ing the function of microcystins will be critical to evaluate
further the importance of selection on the mcy genes.

As described above, strains affiliated to groups A and B in
the MLST phylogeny (Fig. 2) are generally clustered in the
same groups in the mcy phylogeny (Fig. 3, 4a). We previ-
ously suggested that the intraspecies clades found in the
MLST phylogeny might represent "ecotypes" [13]. In this
context, it is possible that selective sweeps on linked loci
outside the mcy genes yielded the structured mcy phylog-
eny (i.e. a "hitchhiking effect"). For M. aeruginosa, several
morphological (e.g., colony morphology [47]) and phys-
iological (e.g., photosynthetic pigments [48]) variations
are known. As shown in other cyanobacteria [49], positive
selection may favor these characteristics, but none of them
is specific to either of the two groups (A and B) in M. aer-
uginosa (YT, unpublished data). Of course, investigation
of previously uncharacterized ecological parameters are
needed to rule out the possibility of mcy divergence due to
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a hitchhiking effect. In any event, selection acting on the
mcy genes has little impact on their deep divergence with
regard to the variation of microcystin composition.

Genetic clustering can arise in the absence of selection
where gene flow among populations is restricted due to a
geographic barrier. Although a few exceptions are known
[50], this possibility has been considered unlikely for
microbes including M. aeruginosa for which long-distance
dispersal may be easy owing to their small cell size and
immense population size [51]. In fact, M. aeruginosa
strains belonging to different groups in the mcy phyloge-
nies are often isolated from a small amount of water sam-
pled from one location at one time (Additional file 1),
suggesting that allopatry is not an important factor in the
genetic isolation observed between the two mcy groups.
Consistent with this observation, the results of our
AMOVA found little geographic contribution to the pat-
tern of genetic variation within the mcy genes (Table 4).

Despite the absence of geographic isolation and selection,
we have identified two distinct mcy clusters for which
recombination is much more frequent within than
between. These results suggest that recombination and neu-
tral genetic drift are primarily responsible for the observed
deep divergence of the mcy genes in M. aeruginosa. This pat-
tern of bacterial genetic divergence is in line with recent the-
oretical results indicating that genotypic clusters can arise
and be maintained in the absence of selection or physical
isolation when the recombination rate is a negative log-lin-
ear function of genetic distance [52,53] and the effective
population size (Ne) is extremely large [54]. Although the
Ne of a bacterial population is difficult to appreciate and
would be at least much lower than the census population
size [53], M. aeruginosa often forms a bloom with extremely
large numbers of cells (sometimes exceeding 10¢ cell/ml
[55]) with a high level of neutral genetic diversity [13], and
is thus likely to fulfill the latter condition [54]. Recently,
neutral molecular evolution in the natural bacterial popu-
lation has received more attention than previously, and
indeed potential evidence for it has been reported [56,57].

Conclusion

Our phylogenetic and population genetic analyses of mul-
tiple conservative loci within the microcystin synthetase
(mcy) gene cluster suggested that mcy genes of M. aeruginosa
are subdivided into two cryptic clades, which have been pri-
marily generated and maintained as a result of homology-
dependent recombination and neutral genetic drift.

Abbreviations

AMOVA: analysis of molecular variance; BP: bootstrap
probability; MLST: multilocus sequence typing; NJ: neigh-
bor-joining; PP: posterior probability; ST: sequence type.
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