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Abstract
Background: YidC/Oxa/Alb3 family includes a group of conserved translocases that are essential
for protein insertion into inner membranes of bacteria and mitochondria, and thylakoid membranes
of chloroplasts. Because mitochondria and chloroplasts are of bacterial origin, Oxa and Alb3, like
many other mitochondrial/chloroplastic proteins, are hypothetically derived from the pre-existing
protein (YidC) of bacterial endosymbionts. Here, we test this hypothesis and investigate the
evolutionary history of the whole YidC/Oxa/Alb3 family in the three domains of life.

Results: Our comprehensive analyses of the phylogenetic distribution and phylogeny of the YidC/
Oxa/Alb3 family lead to the following findings: 1) In archaea, YidC homologs are only sporadically
distributed in Euryarchaeota; 2) Most bacteria contain only one YidC gene copy; some species in a
few taxa (Bacillus, Lactobacillales, Actinobacteria and Clostridia) have two gene copies; 3)
Eukaryotic Oxa and Alb3 have two separate prokaryotic origins, but they might not arise directly
from the YidC of proteobacteria and cyanobacteria through the endosymbiosis origins of
mitochondrium and chloroplast, respectively; 4) An ancient duplication occurred on both Oxa and
Alb3 immediately after their origins, and thus most eukaryotes generally bear two Oxa and two
Alb3. However, secondary loss, duplication or acquisition of new domain also occurred on the two
genes in some lineages, especially in protists, resulting in a rich diversity or adaptive differentiation
of the two translocases in these lineages.

Conclusion: YidC is distributed in bacteria and some Euryarchaeota. Although mitochondrial Oxa
and chloroplastic Alb3 are derived from the prokaryotic YidC, their origin might be not related to
the endosymbiosis events of the two organelles. In some eukaryotic lineages, especially in protists,
Oxa and Alb3 have diverse evolutionary histories. Finally, a model for the evolutionary history of
the entire YidC/Oxa/Alb3 family in the three domains of life is proposed.

Background
Bacterial YidC, eukaryotic Oxa (in mitochondria) and
Alb3 (in chloroplasts) form an evolutionarily conserved
protein translocase family, which plays an essential role in
protein inserting into inner membranes of bacteria and

mitochondria, and thylakoid membranes of chloroplasts.
Proteins translocated by them, regardless of nuclear-
encoded or organelles-encoded, are mainly respiration-
and other energy transduction-involved components
[1,2]. Because mitochondria and chloroplasts are derived
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from a proteobacterial and a cyanobacterial endosymbi-
ont, respectively, Oxa and Alb3 are supposed to have orig-
inated from prokaryotic YidC and they might have played
an important role in establishing a tight relationship
between the endosymbionts and the host cell. Actually, it
has been suggested that, in the course of transforming
from a proteobacterial endosymbiont to mitochondria,
some of the pre-existing protein translocation apparatus
of the endosymbiont appears to have been comman-
deered, with molecular chaperones such as mHsp70 and
Oxa1 derived from the bacterial chaperones DnaK and
YidC, respectively [3]. However, whether Oxa and Alb3
really evolutionarily originated directly from the YidC of
the bacterial progenitors of mitochondria and chloro-
plasts, or inherited vertically from the YidC of the prokary-
otic ancestors of eukaryotes, or arose by other means,
remains an open question.

In archaea, some proteins distantly related to YidC/Oxa/
Alb3 were considered to be members of this family in
some previous studies [1,2]. However, because of their
low sequence similarities, whether these archaeal
sequences really belong to the YidC/Oxa/Alb3 family
needs to be further confirmed. In bacteria, one YidC gene
copy has been reported in most species studied; only a few
taxa, including Bacillales and Lactobacillales, reportedly
possess two YidC genes [1,2]. Two Oxa versions are found
in eukaryotes: Oxa1, the first identified Oxa, is required
for the assembly of the respiratory-chain protein subunits
into mitochondria inner membrane [4,5] whereas Oxa2
(or Cox18) provides a complementary role to Oxa1 in the
assembly of cytochrome oxidase. The two Oxa were con-
sidered to have evolved from a duplication of their ances-
tral gene during the early evolution of mitochondria [6,7].
Because this evolutionary scenario was deduced only from
the studies on higher eukaryotes, further investigations
are necessary to include lower eukaryotes such as protists,
which represent the early stage of eukaryote evolution. As
for chloroplastic Alb3, a few plastid-containing eukaryo-
tes have been investigated thus far. Two members of Alb3
were identified in Chlamydomonas reinhardtii and Arabi-
dopsis thaliana; one is proved to be essential for the effi-
cient assembly of subunits of photosynthetic complexes
[8,9] and the other has a special function in proper chlo-
roplast biogenesis besides more or less involvement in
assembling photosynthetic complexes [10,11]. Neverthe-
less, whether all plastid-containing eukaryotes possess the
two Alb3 members is still unclear and their evolutionary
history is unknown yet.

Earlier phylogenetic analysis of Oxa1 family performed by
Yen et al [2] included only a very limited number of
sequences and taxonomic samples. Until now, no studies
on the evolution of the entire YidC/Oxa/Alb3 family in all
the three domains of life are reported.

To address the above issues, we conducted comprehensive
searches against all available public databases for YidC/
Oxa/Alb3 homologs. We further investigated the phyloge-
netic distribution of the family in the three domains of life
and performed phylogenetic analyses using maximum
likelihood and neighbor-joining approaches. An evolu-
tionary route chart of the entire YidC/Oxa/Alb3 family is
proposed mainly based on the results of our study.

Results
Phylogenetic distribution of YidC/Oxa/Alb3 in the three 
domains of life
Of the 45 archaeal species investigated, no YidC
homologs were found in all the 13 Crenarchaeota and one
Nanoarchaeota. YidC homologs were only found in seven
of the 31 Euryarchaeota, each containing a single copy
(see Additional file 1) with low sequence similarity to
those from bacteria. Nevertheless, though their sequences
are usually short (174~308aa), our prediction with
Tmpred showed these Euryarchaeota YidC homologs all
possess four transmembrane regions (see Additional file
2). Among these homologs, only two (15790660 and
15668657) had been reported previously [2].

We have investigated 589 bacterial species which cover
almost all the lineages (see Additional file 1). As previous
work [1,2] showed, one YidC homolog was identified in
most species and two in many Bacillus and Lactobacillales.
For the first time, we found that many Actinobacteria and
one Clostridium also have two YidC genes. Interestingly,
all the bacteria with two YidC homologous genes are gen-
erally Gram-positive bacteria, but not every Gram-positive
bacterium possesses two YidC genes. These bacterial YidC
have various sizes ranging from 249 to 794 aa, but our
prediction with Tmpred showed that they all possess sev-
eral (5–6) transmembrane regions (see Additional file 2).

In eukaryotes, two Oxa (Oxa1 and Oxa2) homologs can
be found in fungi and metazoa, which is consistent with
the previous investigation of fewer species [7]. However,
we found much more distributional diversity in other lin-
eages. Firstly, the number of Oxa homologs varies among
protists: two copies are found in Monosiga brevicollis,
Trypanosoma and Leishmania, with the exception that T.
cruzi contain three copies. Only one copy was found in
Plasmodia and none in amitochondriate protozoa [12],
including Giardia lamblia, Trichomonas vaginalis (both of
which had been reported to have no Oxa, previously
[13]), Cryptosporidium hominis, C. parvum, Encephalitozoon
cuniculi, and Entamoeba histolytica; Secondly, green algae,
red algae, diatoms, oomycetes and plants generally have
two Oxa homologs, but surprisingly C. reinhardtii has
none at all. It is noteworthy that one Oxa in green algae
and plants is longer than the other (see Additional file 1).
Our further analysis indicated that besides the conserved
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60 KD IMP domain, the longer one has an additional C-
terminal Tetratricopeptide Repeat (TPR) domain that can
be predicated by CDART. In Oryza sativa, for example, the
TPR domain was predicted to be located between residues
361P and 508 V in the longer Oxa. The longer Oxa is def-
initely predicted to be a mitochondria-located protein by
MitoProt II (see Additional file 3).

Two Alb3 homologs were also identified in many other
plants, green algae, and, for the first time in diatoms, in
addition to C. reinhardtii and A. thaliana which had been
previously studied [10,11,14]. Only one Alb3 homolog
could be found in the red alga Cyanidioschyron merolae
and, interestingly, four in plant Populus trichocarp. No
Alb3 homolog could be detected in the completely
sequenced genome of Plasmodium falciparum and in sev-
eral partially sequenced genomes of oomycetes (Phytoph-
thora ramorum, Phytophthora sojae and Phytophthora
infestans), though the two lineages were considered to
possess typical plastids once [15,16].

Phylogeny of YidC/Oxa/Alb3 family
(1) Evolutionary correlation between prokaryotic YidC and eukaryotic 
Oxa/Alb3
Homologous sequences from representative species of
archaea, bacteria and eukaryotes were used to perform
phylogenetic analysis. It was showed that mitochondrial
Oxa, chloroplastic Alb3, and archaeal YidC form three
separate clades, respectively, while bacterial YidC alone
form several other clades that are largely consistent with
their source organism lineages (Figure 1). The mitochon-
drial Oxa clade does not group with proteobacterial YidC
clade; The Alb3 clade is nested within the large bacterial
YidC clades without obviously showing a close relation-
ship with the cyanobacterial YidC clade.

The AU test significantly rejects (P < 0.05) that proteobac-
teria YidC is a sister of Oxa (see Additional file 4). The
topologies placing cyanobacteria YidC as sister of Alb3
have low P values (P = 0.009, P = 0.154) in the tests.
Although a possible close relationship between Alb3 and
cyanobacterial YidC cannot be significantly rejected, the
topology shown in Figure 1 is supported to be the most
likely evolutionary scenario (P = 0.889) by the AU test,
suggesting that Alb3 is unlikely of cyanobacterial origin.

To test whether the high divergence of archaeal YidC leads
to the low support values of our Figure 1, further phyloge-
netic analyses (see Additional file 5) were conducted only
including representative bacterial and eukaryotic
sequences. These additional analyses generated a similar
topology without any obvious increase in support values.

(2) Phylogeny of Oxa and Alb3 subfamilies in eukaryotes
To investigate the evolutionary history of Oxa and Alb3 in
eukaryotes, phylogenetic analyses were performed based
on most of the Oxa and Alb3 protein sequences from
diverse eukaryotes. The ML and NJ methods gave essen-
tially the same tree topology except for some minor
details. Oxa sequences from all eukaryotes form two sep-
arate groups (Figure 2) and they are denoted Oxa1 and
Oxa2 respectively as suggested before [7]. These data sug-
gest that the Oxa1 and Oxa2 genes are derived from a sin-
gle gene duplication that occurred at least as ancient as
before the divergence of algae, fungi and metazoa.

It is notable that Oxa2 from algae and plants have under-
gone accelerated evolution which is reflected by their rel-
atively long branches in the phylogenetic tree (Figure 2).
Among them, the Oxa2 sequences from green algae and
plants all (but except A. thaliana Oxa2-2) possess an addi-
tional TPR domain as mentioned above, which might par-
tially contribute to their long branches. Such accelerated
evolution can also be seen from the matrix of amino acid
sequence identities among these sequences (see Addi-
tional file 6), which shows that the percent identities
among Oxa2 sequences are always lower than those
among Oxa1 homologs in green algae and plants.

Trypanosoma and Leishmania homologous genes are usu-
ally highly divergent from those of other eukaryotes [17].
This is also true to Oxa. Because such divergence can affect
the phylogenetic tree seriously, especially when combined
with the fast evolved alga and plant Oxa2 genes, they were
excluded from the phylogenetic analyses above. To deter-
mine their phylogenetic affinity, further analyses were
performed with a smaller data set that included samples
from fungal and animal Oxa, YidC and Alb3. It was
showed that all T. cruzi, T. brucei and L. major Oxa
homologs cluster together and form two groups, each
including one homolog of the two of each species. Both
these groups cluster together with the Oxa2 clade, indicat-
ing a recent Oxa2 duplication and the loss of Oxa1 in
these kinetoplastid. We here named the two kinetoplastid
Oxa groups as OxaI and OxaII instead of Oxa1 and Oxa2
(Figure 3).

Alb3 homologs from green algae and plants cluster
together in our phylogenetic trees (Figure 2 and Figure 3).
Within this large clade, green alga Alb3 form two distinct
but adjacent branches, which are designated as Alb3.1 and
Alb3.2 respectively [14], and each branch includes one of
the two Alb3 copies. Plant Alb3 also split into two distinct
and adjacent groups that are in turn sister to green alga
Alb3.1. We named the two plant Alb3 groups Alb3.a and
Alb3.b, respectively. Each of the two groups comprise of
one Alb3 from A. thaliana, Oryza sativa, and two from Pop-
ulus trichocarp (the four homologs from P. trichocarp were
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named Alb3.a-1, Alb3.a-2, Alb3.b-1, and Alb3.b-2, respec-
tively). Although bootstrap values are sometimes not par-
ticularly strong, additional AU tests significantly rejected
the scenario that alga Alb3.1 and Alb3.2 are sister groups
(P = 0.028), suggesting that the Alb3 gene duplication
event happened in the common ancestor of plant and
green algae rather than in green algae lineage specifically,
and that the secondary loss of one Alb3 gene occurred in
the process of evolutionary origin of plant from green
algae. However, it is hard for us to determine which Alb3
gene (Alb3.1 or Alb3.2) had been lost in the process as the

alternative tree placing alga Alb3.2 as a sister group to
plant Alb3 was not be rejected significantly (P = 0.415) in
our AU test.

Outside the green alga-plant Alb3 clade, the only one
Alb3 of red alga (C. merolae) forms a separate branch, and
the two Alb3 (named Alb3-1, Alb3-2) of diatoms (P. tri-
cornutum, T. pseudonana) form two other separate
branches (Figure 2 and Figure 3).

Maximum-likelihood phylogenetic tree of representative archaea, bacteria and eukaryotes YidC/Oxa/Alb3 protein sequencesFigure 1
Maximum-likelihood phylogenetic tree of representative archaea, bacteria and eukaryotes YidC/Oxa/Alb3 
protein sequences. The tree is based on alignment of the full sequences. The nodes with bootstrap support values more 
than 70% are marked by black dots and the bootstrap support values for some important nodes are shown directly in the tree.
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Phylogeny of Oxa and Alb3 subfamilies in eukaryotesFigure 2
Phylogeny of Oxa and Alb3 subfamilies in eukaryotes. Phylogenetic tree of Oxa/Alb3 from representative eukaryotes 
based on alignment of the full protein sequences with bacterial YidC as outgroup. NJ and ML methods were both used. ML tree 
was shown with bootstrap values for NJ and ML analyses (the first and second values, respectively), the bootstrap values 
exceeding 50% were showed.
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Discussion
YidC in archaea and bacteria
Although nine YidC homologs were reported in archaea
by earlier studies [2], only a limited taxonomic sample
was covered and the distribution of YidC in the entire
archaea domain was largely unclear. Here we have inves-
tigated all the available 45 species in all the three archaea
lineages, Crenarchaeota, Euryarchaeota, and Nanoarchae-
ota, but only identified seven YidC homologs, including
two old ones (the other reported ones were denied by our
reciprocal BLAST search). All the seven homologs were
identified in Euryarchaeota. They all contain the con-
served homologous transmembrane domain though not
the typical 60 KD-IMP (YidC) domain. These results sug-
gest that YidC might have arisen in the Euryarchaeota lin-
eage. However, whether these identified homologs in
Euryarchaeota maintain the same function as their bacte-

rial homologs and whether these functions are substituted
by other translocases in other archaea remain interesting
issues for further studies.

Our survey covers much more bacterial species and line-
ages (589 species in 8 lineages) than earlier studies. The
results confirmed that YidC is ubiquitous in bacteria, with
most bacteria possessing one YidC copy and some Bacillus
and Lactobacillales possessing two copies. In addition, we
found that some Actinobacteria and one Clostridium also
have two YidC copies, and that all the bacteria bearing
two YidC copies are Gram-positive bacteria. These results
indicate YidC is a common protein translocation system
in bacteria. It remains to be further investigated why so
many Gram-positive bacteria bear two YidC.

Phylogeny of Oxa subfamilyFigure 3
Phylogeny of Oxa subfamily. The tree is based on alignment of the full protein sequences with Alb3 and YidC as outgroups. 
It mainly shows the phylogeny of Trypanosoma and Leishmania Oxa. NJ and ML methods were both used, and percent boot-
strap values are given as in Figure 2. Numbers of species for the condensed branches are shown in brackets.
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The diversity and evolution of Oxa in eukaryotes
Our investigation showed a rich diversity of Oxa in
eukaryotes, reflecting the specific divergences of the trans-
locases in different lineages.

Our survey showed that besides plants, fungi and metazo-
ans, which were studied previously [7], protists (including
green algae, red alga, diatoms, oomycetes and choanoflag-
ellate) also possess two Oxa versions (Oxa1 and Oxa2).
This suggests that a very early Oxa duplication must have
occurred at least prior to the divergence of protists, fungi,
plants and metazoans, that is, in the common ancestor of
theses lineages. Thus, our results provide stronger evi-
dence than the previous work, which was only carried out
on higher eukaryotes [6,7], for the supposition that the
duplication occurred during the early evolution of mito-
chondria [6,7]. The formation of Oxa1 and Oxa2 may be
one of the prerequisites for transforming a bacterial endo-
symbiont into a mitochondrion during the evolution of
eukaryotic cells.

Gene duplication often leads to functional differentiation
between homologs. It has been suggested that, by acquir-
ing a ribosome-binding coiled-coil structure in the C-ter-
minal to facilitate the interaction with mitochondrial
ribosome, Oxa1 carries out co-translational transport of
neo-peptides while Oxa2 carries out a post-translational
transport in the biogenesis of cytochrome oxidase [6,18].
However, our data indicate that such a C-terminal coiled-
coil structure is only restricted to a few Oxa1 sequences
(data not show). In addition, only one substrate of Oxa2
has been found so far, and little is known about the func-
tion of Oxa2. Therefore, the above "co- and post-transla-
tional transport" hypothesis is doubtful, and actually the
functional divergence and collaboration between Oxa1
and Oxa2 is unclear yet. Nevertheless, this issue might be
intimately related to the early establishment of proteobac-
terial endosymbionts or mitochondria during the origin
and evolution of eukaryotic cells.

After the early duplication in the common ancestor of
eukaryotes, Oxa diverged in different eukaryotic lineages,
especially in protists, resulting in rich diversity or adaptive
differentiation.

1) Oxa genes in C. reinhardtii were completely lost. The
reason for such a specific loss is unknown. There may be
another system to substitute the Oxa system in this organ-
ism.

2) In Trypanosoma and Leishmania, Oxa sequences form
two other groups (OxaI and OxaII) that are sister to Oxa2,
rather than being included in Oxa1 and Oxa2 groups of
the other organisms. This might reflect an independent
duplication occurred in the common ancestor of Trypano-

soma and Leishmania. The most likely scenario for the evo-
lution of OxaI and OxaII includes a loss of Oxa1 and a
lineage-specific duplication of Oxa2. These kinetoplastids
possess a peculiar mitochondrion called kinetoplastid,
which is unique in many respects [19,20]. Therefore, such
a condition of Oxa might relate to the peculiar mitochon-
dria in these organisms. It will be interesting to study why
OxaI in T. cruzi duplicated again and produced twocopies.

3) Oxa in amitochondriate protozoa is completely absent.
Our investigation also indicated that the genes of Oxa
substrates (such as Cox2, Cox3, F0F1-ATPase [6,21]) and
Oxa-associated proteins (including Mba1, PET122, and
Rmp1 [22-24]) are also absent in these organisms (data
not shown). These amitochondriate protozoa lack canon-
ical mitochondrion but have mitosome or hydrogen-
some, which contain no respiratory complex and genome
[25]. Therefore, the Oxa translocation system may have
lost completely in these organisms.

4) Green algae and plants have two Oxa, but their Oxa2
sequences are obviously longer because of an additional
C-terminal TPR domain. Since this domain is not present
in Oxa of any other lineages, the acquisition of the TPR
domain in Oxa2 of these organisms must have occurred
after the split of green algae from other eukaryotic line-
ages. TPR domain has been shown in various organisms
to mediate protein-protein interactions and assembly of
multiprotein complexes [26]. Proteins containing TPRs
are involved in a variety of biological processes, one of
which is protein transport [27]. It was reported that many
mitochondrial out membrane translocases including
Tom20, Tom70 and Tom34 possess TPR domain, [28-30].
No inner membrane translocase was ever found to have
this domain so far. Therefore, this is the first report that
TPR domain occurs in a mitochondrial inner membrane
translocase. Similar differences in mitochondrial translo-
cases between plant and yeast were considered to be
involved in avoiding mitochondria mistakenly importing
chloroplast proteins in plants [31]. Therefore, the addi-
tional TPR domain of Oxa2 in green algae and plants
might also to be involved in keeping away similar mis-
taken import of chloroplast proteins. But the inner-mem-
brane location of Oxa in mitochondria and the absence of
TPR domain in Oxa of red alga and diatoms weaken this
hypothesis.

Alb3 in plastid-containing organisms and its evolution
Except for C. merolae, our survey indicated that almost all
plastid-containing eukaryotes investigated possess at least
two Alb3 copies. Our phylogenetic analyses indicated that
Alb3 gene duplication and loss occurred several times dur-
ing the evolution of plastid-containing eukaryotes. The
first duplication event might occurred at least in the last
common ancestor of green algae and produced Alb3.1
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and Alb3.2; Then, during the emergence of land plant
from green algae, one Alb3 gene copy was lost and the
other was subject to a second duplication event and led to
the two genes (Alb3.a and Alb3.b) found in present
plants; Interestingly, the two plant Alb3 genes both dupli-
cated recently once again in P. trichocarp and produced
four Alb3 genes. Additionally, another duplication of
Alb3 occurred in the ancestor of diatoms and resulted in
two Alb3 (Alb3-1 and Alb3-2) in extant diatoms. The red
alga C. merolae possesses only one Alb3 copy, and this
may be related to its smallest genome among all photo-
synthetic eukaryotes [32]. An Alb3 gene copy might have
been lost in Cyanidioschyzon in the process of its genome
reduction.

Oomycetes are often considered to have secondarily lost
their plastids and become nonphotosynthetic [16,33]. No
Alb3 could be identified in oomycetes, suggesting a loss of
the Alb3 system likely as a result of loss of plastids. Plas-
modia possess degenerated plastids, but no Alb3 gene and
its substrate (e.g. Lhcb4.1 and Lhcb5) genes could be
detected (data not show). This suggests that Alb3 pathway
exists no longer in the degenerated plastids.

The universal distribution of two Alb3 in plastid-contain-
ing organisms may imply distinct functions for the two
Alb3 copies. According to Woolhead et al [8] and Gohre
et al [11], Alb3.1/a is responsible for the assembly of pho-
tosystem units into thylakoid membrane, whereas Alb3.2/
b is in charge of the formation of proper chloroplast
ultrastructure and also partially involved in photosynthe-
sis. Photosynthesis and chloroplast biogenesis are two
important activities for photosynthetic eukaryotes. The
availability of two Alb3 gene copies will render the regu-
lation of the two separate activities more effectively. Any-
way, to determine the functional differentiation between
Alb3.1 and Alb3.2, Alb3.a and Alb3.b would gather more
attention in the future.

The origin of eukaryotic Oxa and Alb3: not directly from 
the YidC of the bacterial endosymbiotic ancestors of 
mitochondria and chloroplasts
YidC/Oxa/Alb3 family was customarily considered as a
good example to exhibit the conservation of protein trans-
porting system in prokaryotes and eukaryotic endosymbi-
onts [1,34]. According to the endosymbiosis theory, it
seems reasonable to suppose that Oxa and Alb3 are
derived directly from the YidC of the bacterial progenitors
of mitochondrion and chloroplast, respectively [3] Con-
sequently, like many mitochondrial or chloroplastic pro-
teins [35,36], Oxa and Alb3 are expected to group with
YidC sequences from proteobacteria and cyanobacteria
respectively. However, our phylogenetic analyses indi-
cated that, although Oxa and Alb3 do have two separate
origins, they are not particularly related to proteobacterial

and cyanobacterial YidC sequences, respectively. Instead,
Oxa sequences appear to form a separate clade; Alb3
sequences group with YidC clades of various bacterial lin-
eages with generally poor bootstrap support and their spe-
cific affiliation cannot be decisively pinpointed from our
data. Therefore, our studies have denied the supposition
that Oxa and Alb3 originated directly from YidC of the
bacterial progenitors of the two organelles. What prokary-
otic YidC once gave rise to the eukaryotic Oxa and Alb3
remains an issue for further study.

Conclusion
We propose a scenario of the evolutionary history of the
YidC/Oxa/Alb3 family (Figure 4) mainly based on the
results generated from this study. In this model, YidC gene
arose in some Euryarchaea and all Bacteria, and later in
some gram-positive bacteria the gene duplicated to pro-
duce two copies. The eukaryotic Oxa, Alb3 have two sep-
arate prokaryotic origins, which might not be directly
related to the endosymbiotic origins of mitochondria and
chloroplasts. An early Oxa duplication in the common
ancestor of eukaryotes led to Oxa1 and Oxa2, and thus
most eukaryotes generally bear two Oxa. However, sec-
ondary loss, duplication or acquisition of new domain
also occurred on Oxa genes in some lineages, especially in
protists, resulting in a rich diversity or adaptive differenti-
ation of the translocase in these lineages. A subsequent
Alb3 duplication led to the origin of Alb3.1 and Alb3.2 in
green algae, and one of them was lost and the other under-
went another duplication and generated two other Alb3
copies (Alb3.a and Alb3.b) in the evolution of land
plants. In diatoms, another duplication of Alb3 occurred
and produced Alb3-1 and Alb3-2. Alb3 genes were also
lost partially (e.g. in red alga C. merolae) or completely
(e.g. in Plasmodium and Oomycetes) in eukaryotes that
either lost the plastids entirely or only retain a relic plas-
tid. This model outlines the evolutionary history of the
Oxa/Alb3/YidC family in the three domains of life.

Methods
Search and identification of YidC/Oxa/Alb3 homologs
Protein sequence of Escherichia coli YidC (NP_756486)
was used as query to search against all available com-
pleted (589, up to October 2008) bacterial genomic data-
bases with protein annotation in GenBank with E value
1e-03 as cutoff to get candidate homologs; Using the pro-
tein sequences of Homo sapiens Oxa1 and Cox18
(NP_005006; NP_776188) and C. reinhardtii Alb3.1 and
Alb3.2 (AAM11662; AAM49792) as queries, eukaryotic
candidate homologs were retrieved by BLASTP and
TBLASTN searches (E-value < 10-3) from 51 eukaryotic
genome databases in NCBI http://www.ncbi.nlm.nih.gov,
Doe Joint Genome Institute http://www.jgi.doe.gov, the
Institute For Genome Research http://www.tigr.org and
Broad institute http://www.broad.mit.edu/. Then, the
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obtained candidate homologs were retained as putative
ones only after 1) they were predicted to have the con-
served 60 KD-IMP or YidC domain by CDART (Conserved
Domain Architecture Retrieval Tool) [37] with default
parameters; 2) their best hits of BLASTP against NCBI nr
database were known YidC/Oxa/Alb3. To acquire
archaeal homologs, all sequences obtained hereinbefore
were used as queries to PSI-blast search against 45 anno-
tated archaeal genome databases for five iterations, with E
value 1e-03 as cutoff, and then they were accepted as puta-
tive homologs only if their best hits of BLASTP against nr
database were known YidC/Oxa/Alb3.

In order to search exhaustively the homologs from proto-
zoa and algae, which are usually highly divergent from
those of other lineages, the above obtained putative
homologs from these lineages were also used as queries to
search back against all the available databases of these lin-
eages themselves to find more, if any, candidate
homologs, and as above, the conserved 60 KD-IMP or
YidC domain and the best hit were two criteria to deter-
mine whether are putative homologs.

At last, the assignment of the above obtained putative
eukaryotic homologs to Oxa or Alb3 is according to the
highest expect values produced by H. sapiens Oxa or C.
reinhardtii Alb3 sequences, the best hit sequences of blast
search against the nr database, the similarities showed by
multiple sequence alignments (Additional file 7), alto-
gether.

MitoProt II http://ihg.gsf.de/ihg/mitoprot.html was used
as described before [38] for the cellular organelle localiza-
tion prediction of some Oxa homologs which have partic-
ular domain structure.

Tmpred http://www.ch.embnet.org/software/
TMPRED_form.html was used to predict the hydropathy
plots of representative members of the different branches
of YidC subfamily.

All the homologous sequences (see Additional file 1)
obtained from archaea, bacteria and eukaryotes were
retrieved from public databases in October, 2008.

Sequence Alignment and Phylogenetic analysis
Sequence alignment was performed using M-Coffee [39],
with default parameters for gap opening and extension,
and blosum30mt as the protein weight matrix. After man-
ually refined, the alignments were used to carry out maxi-
mum likelihood (ML) and neighbor-joining (NJ)
phylogenetic analyses, using PHYML [40] and PHYLIP
3.65 (Felsenstein 2005), respectively.

The ProtTest program [41] was used to select the model of
protein evolution that best fits our datasets. The invoked
options in the maximum likelihood analysis with PHYML
program were 100 bootstrap replications, the RtREV sub-
stitution matrix [41], and the gamma distribution model
(1 invariable site+8 gamma rate categories) for estimation
of rate heterogeneity.

Programs from the PHYLIP package were used to create
pseudoreplicate data sets (SEQBOOT), calculate distance
trees (NEIGHBOR), and assemble a bootstrap consensus
tree (CONSENSE), followed by 1000 replications of boot-
strap resampling.

Tree Topology Tests
The AU nonparametric bootstrap test was used to com-
pare alternative phylogenetic hypotheses. Using the ML
tree (Figure 1) as the backbone tree, alternative trees were
produced by switching branches using Treeview (version
1.6.6). Site-wise log-likelihoods were calculated for each
topology in Tree-Puzzle 5.2 [42], and then were supplied
to the program CONSEL (version 0.1j) [43].

An evolutionary route chart of the YidC/Oxa/Alb3 family in the three domains of life (for detailed illustration please see the text)Figure 4
An evolutionary route chart of the YidC/Oxa/Alb3 
family in the three domains of life (for detailed illus-
tration please see the text). In cells, chloroplast is repre-
sented by polygon and mitochondrion by ellipse. 
Degenerated mitochondrion and plastid are represented by 
dashed polygon and dashed ellipse, respectively. Asterisks (*) 
indicate the Oxa2 possessing an additional C-terminal TPR 
domain in green algae and plants. Dashed line indicates an 
uncertain relationship. The color of the letters refers to their 
evolutionary correlations of the members of the family.
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