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Abstract
Background: The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies
with latitude, physical topology and population life history and has long been a topic of discussion. However, there
had been little phylogeographical research in south China, where the geophysical complexity is associated with
great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been
reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the
phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain
insight into the effect of geological events on the speciation and diversity of birds endemic in south China.

Results: Mitochondrial genes cytochrome b (Cytb) and cytochrome c oxidase I (COI) were represented by 1236
nucleotide sites from 151 individuals from 29 localities. Phylogenetic analysis showed seven monophyletic clades
congruent with the geographically separated groups, which were identified as major sources of molecular variance
(90.92%) by AMOVA. TCS analysis revealed four disconnected networks, and that no haplotype was shared
among the geographical groups. The common ancestor of these populations was dated to 11.6 Mya and several
divergence events were estimated along the population evolutionary history. Isolation by distance was inferred
by NCPA to be responsible for the current intra-population genetic pattern and gene flow among geographical
groups was interrupted. A late Pleistocene demographic expansion was detected in the eastern geographical
groups, while the expansion time (0.2–0.4 Mya) was earlier than the Last Glacial Maximum.

Conclusion: It is proposed that the complicated topology preserves high genetic diversity and ancient lineages
for geographical groups of A. morrisonia in China mainland and its two major islands, and restricts gene exchange
during climate oscillations. Isolation by distance seems to be an important factor of genetic structure formation
within geographical populations. Although glacial influence to population fluctuation was observed in late
Pleistocene, it seems that populations in eastern China were more susceptible to climate change, and all
geographical groups were growing stably through the Last Glacial Maximum. Coalescence analysis suggested that
the ancestor of A. morrisonia might be traced back to the late Miocene, and the current phylogeographical
structure of A. morrisonia is more likely to be attributable to a series geological events than to Pleistocene glacial
cycles.
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Background
The glacial cycles of the past two million years have tradi-
tionally been considered to have had profound effects on
the genetic patterns of most extant species [1-3]. However,
this paradigm has been long and hotly debated [4-6].
Some studies contend that the late Pleistocene was an
important time for avian evolution, involving phylogeo-
graphic separations and the completion of speciation
events [1,7,8]. Other studies, in contrast, suggest that the
speciation events could be projected back to the Miocene
or even earlier times, and speciation was not accelerated
by the later glacial oscillation [9-11]. Even most intraspe-
cific separations, commonly considered to be footprints
of the late Pleistocene climate shifts, were found to have
been initiated at least one million years ago [6]. On the
other hand, it is apparent that the impact of the Pleis-
tocene ice age on phylogeography and speciation
depended on latitude and topography, and varied with
population life history and geography [3]. On the basis of
phylogeographic comparisons of North American song-
birds, Zink found that co-distributed species had different
evolutionary histories [12]. Weir & Schluter compared the
timing of speciation events from the boreal zone to the
Neotropic and found a strong latitudinal trend of specia-
tion time. These results showed that most boreal specia-
tion events were related to the Pleistocene ice age, while
splits of Neotropic species decreased at that time [13]. All
these discussions and debates call for further phylogeo-
graphic studies to complement our knowledge about the
genetic footprints of the ice age. However most studies
have been done in Europe and North America, compara-
tive information across different regions of the globe
needs to be synthesized to elucidate the effects of Pleis-
tocene climate shifts on the formation of present-day
diversity.

As one of the species richness hotspots in Southeast Asia,
south China has high biodiversity [14-16], reflecting its
high topological complexity [17]. Several high mountains
wind through this region, such the Hengduan, Qinling
and Nanling Mountains. Two main islands, Taiwan and
Hainan, have been repeatedly connected and discon-
nected with the mainland during the past million years
[18]. It has been proposed that the topographical com-
plexity of this region would provide stable habitats during
an ice age, where species could survive in different refugia
and new lineages would be generated [2]. However, little
research has focused on south China. Two recent studies
on herpetological phylogeography revealed intraspecific
divergence, bottlenecks and demographic expansion as a
result of the late Pleistocene climate changes [19,20]. No
other phylogeographic studies on terrestrial vertebrates in
this region exist to our knowledge. The sparse literature on
this region limits our understanding of the formation of

high diversity within the complicated topography of
south China.

The Alcippe morrisonia is a small babbler widely distributed
in tropical and subtropical habitats from Burma to Taiwan
[21]. It is a dominant species, with foraging flocks in the
medium and understory of tropical rain forest and sub-
tropical broadleaf evergreen forest [22,23]. As a typical
Oriental species, all seven subspecies can be found in the
upland and lowland parts of south China [24]. Recent
studies on the molecular taxonomy of A. morrisonia and
its relatives have shown that the genus Alcippe is a
polyphyletic group [25]. The complicated intraspecific
relationships are detected within A. morrisonia, in which
Alcippe peracensis annamensis was grouped within A. morri-
sonia [26]. Another study on the phylogenetic relation-
ships of the subspecies of A. morrisonia using the complete
ND2 gene confirmed this taxonomic complexity and
found deep genetic divergences among subspecies [27].
The peculiarly deep genetic divergences within a tradi-
tional "species" identified by morphological characters
raise questions about how this pattern came into being. In
this study, therefore, we examine the phylogeography of
A. morrisonia and explore its possible mechanisms respon-
sible for the current genetic pattern to provide an insight
into the ice age legacy in south China.

Results
Phylogenetic analysis
We obtained 642 bp of the partial Cytb gene from 156
individuals and 594 bp of the partial COI gene from 153
individuals. The Cytb sequences yielded 141 variable sites
(118 were parsimony informative), identifying 88 haplo-
types (GenBank Access Number FJ472657–FJ472744),
and the COI sequences contained 99 variable sites of
which 81 were parsimony informative, generating 71 hap-
lotypes (GenBank Access Number FJ472745–FJ472815).
Modeltest indicated that the best substitution models
were HKY+G and TIM+I for Cytb and COI respectively.
For the combined sequence data, a total of 151 sequences
of 1236 bp were obtained, as some individuals could not
be sequenced for both partial genes. For the combined
sequence data set, there were 239 variable sites of which
199 were parsimony informative, generating 116 haplo-
types. The best model for the combined dataset was
TrN+I+G. Phylogenetic trees estimated by three methods
(MP, ML and BI) for haplotypes of Cytb, COI and the
combined dataset were generally compatible, the differ-
ences being the relative positions and the statistical sup-
port possibilities of some branches, then the topology
based on the combined dataset is presented in Figure 1.
The tree is geographically structured and haplotypes from
neighbouring locations are mostly clustered. Seven geo-
graphic groups were identified: Fujian, Hainan, Taiwan
WYunnan, SWSichuan, Centre and Guangxi. Most of the
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locations of these geographical phylogroups were consist-
ent with the subspecies distribution ranges. However,
some haplotypes are misplaced, such as H72, which clus-
tered into the WYunnan group though its sampling sites
are in SWSichuan. The monophyly of the Fujian and Cen-
tre groups was ambiguous. Two major clades with high
support probabilities were confirmed: the "Peripheral"
clade contains haplotypes from Fujian, Hainan, Taiwan,
WYunnan and SWSichuan groups; the "Middle" clade
consists of haplotypes from Centre and Guangxi groups.

Population genetic structure
All analyses for population genetics and demographic his-
tory were based on the combined sequences. Ninety-five

of the 116 haplotypes generated by the combined dataset
were singletons. Among the other 21 shared haplotypes,
seven were shared between two or three neighbouring
localities (Additional file 1). No haplotype was shared
among the geographical groups. AMOVA showed that
most of the variance came from differences among
groups, and the seven groups were best recognized
because the grouping maximized the values of among-
group variance (90.92%), while 8.77% of the variance
from differences among individuals (Additional file 2).
Most geographical groups had high haplotype diversities
(0.9532–0.9935) except for SWSichuan (0.8304). High
nucleotide diversities were observed in Fujian (0.54%)
and WYunnan (0.65%), while those in the two insular

Maximum-likelihood tree and nested clade TCS networks based on combined datasetFigure 1
Maximum-likelihood tree and nested clade TCS networks based on combined dataset. Nodal values above the line 
indicate bootstrap supports and poster probabilities of MP/ML/BI, while the values under the line are the divergence times esti-
mated by MDIV. Colours represent geographical groups and spatterworks stand for locations of sample sites. The black dots 
refer to missing steps intermediate between observed haplotypes. Nested clades are indicated by 'N-#', where N is the nesting 
level and # is the number of individuals assigned to the clades within each level.
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groups, Hainan and Taiwan, were relatively low (0.33%
and 0.31%) (Additional file 3).

Analysis of TCS yielded four unconnected haplotype net-
works, which were concurrent with the topology
described in the phylogenetic tree (Figure 1). In networks
A, C and D, haplotypes from the locations within the
same geographical group linked to each other and then
connected with haplotypes in the neighbouring group.
Unexpectedly, haplotypes from the Fujian group were
connected with those from Hainan rather than Taiwan,
while haplotypes from Taiwan formed an isolated clade,
network B. In network C, haplotype H72 from SWSichuan
was linked to the WYunnan group by thirteen mutations.
More than five mutations were observed between two
haplotypes within networks A, C and D. Some phylogeo-
graphical structures were detected within clades. Allopat-
ric fragmentation was found in network A. For low level
clades, restricted gene flow with isolation by distance was
revealed (clades 2–12, 4-1, 4-2 in network A; clade 2-1 in
network D). But these associations were not confirmed by
the Mantel Test or IBDWS; only clade 4-1 in network A
showed a tendency towards a significant IBD pattern (P =
0.08) (Additional file 4).

Population demographic history
The average net distance between geographical groups was
0.060 for the combined sequence and 0.067 for Cytb
alone. We selected a conventional mutation rate for the
avian mitochondrial cytochrome b gene in our study
(1.00*10-8 per site per year) and multiplied it by a factor
of 0.90 to reflect the mutation rate of the combined
sequence. The times of divergence between Fujian and

Hainan, WYunnan and SWSichuan, Centre and Guangxi
were 1.15, 0.87 and 1.12 million years ago, respectively.
The Taiwan group separated from the Fujian and Hainan
groups at 3.51 Mya, and the divergence time of the west-
ern (WYunnan and SWSichuan) and eastern (Fujian,
Hainan and Taiwan) groups was 6.06 Mya. The diver-
gence time between the Middle and Peripheral clades was
earlier, dating back to 9.82 Mya (Figure 1). Restricted gene
flows were found between all geographical group pairs,
and the maximum M value (0.12) occurred between
WYunnan and SWSichuan. The time of the most recent
common ancestor (tmrca) for all haplotypes of A. morriso-
nia was estimated back to 11.66 Mya (Table 1).

Tajima's D showed significant negative values in Hainan,
SWSichuan and Centre, indicating significant differences
from expectation under neutrality, and Fu's Fs test showed
significant negative values in the Fujian, Hainan, Taiwan
and Centre groups (Additional file 3). The demographical
dynamics of the seven geographical groups were inferred
from mismatch distributions. The results showed that the
mismatch distributions in Fujian, Hainan, Taiwan, WYun-
nan and Centre groups fitted unimodal curves (Figure 2).
The variances (SSD) and Harpending raggedness indices
indicated that the curves did not differ significantly from
the distributions expected under the model of population
expansion. With the 0.9 * 10-8 corrected mutation rate
and a generation time of two years, the estimated times
since population expansion for Fujian, Hainan, Taiwan,
and Centre were 0.18, 0.33, 0.39, and 0.43 Mya respec-
tively, corresponding to the penultimate glacial cycle in
the late Pleistocene (Table 1). The expansion time for the
WYunnan group was earlier than for the other groups with

Table 1: Time estimation of demographical history of A. morrisonia by MDIV and Bayesian skyline plot methods

MDIV Bayesian skyline plot

group pairs M tdiv (Mya) tmrca (Mya) Groups ta since expansion (Mya) tmrca (Mya)

Fujian 0.20 0.51
Fujian-Hainan 0.02 1.15 1.72 Hainan 0.15 0.44

Fujian/Hainan-Taiwan 0.02 3.51 4.81 Taiwan 0.10 0.37
Wyunnan 0.30 0.67

WYunnan-SWSichuan 0.12 0.87 2.87 SWSichuan 0.23 0.76
Centre 0.17 0.27

Centre-Guangxi 0.06 1.12 1.73 Guangxi / 0.17

Fujian/Hainan/Taiwan-WYunnan/SWSichuan 0.04 6.06 8.03 Peripheral / 7.63
Middle / 0.76

Peripheral-Middle 0.04 9.82 11.60 Total / 8.11

M, scaled migration rate, and M = 2Nef * m, Tmrca, the time of MRCA in units of mutation rate and tmrca, the geological time transformed from Tmrca 
by the mutation rate 0.9 * 10-8. ta, time since expansion, /, no demographic expansion was detected.
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a value of 0.81 Mya. SWSichuan and Guangxi did not fit
the demographical expansion model according to the
MMD shapes and Fu's neutrality tests.

The Bayesian skyline plot (BSP) simulated the fluctuation
of populations over time. Recent population increases
were observed in the Fujian, Hainan, WYunnan and Cen-
tre groups; the times of growth were estimated at 0.20,
0.15, 0.30, and 0.23 Mya respectively (Figure 2; Table 1).
The population sizes of the other three groups have
remained rather stable over time. The time of most recent
common ancestor for all the haplotypes was dated to 8.11
Mya (Table 1).

Discussion
Biogeography and evolutionary history of Alcippe 
morrisonia
Phylogenetic reconstruction shows that populations from
the middle of south China (Centre & Guangxi) are rooted
at the base of the tree. Although geographically separated,
the eastern populations (Fujian, Hainan and Taiwan) are
sister groups of the western populations (WYunnan and
SWSichuan), forming the Peripheral clade. The estimated
Tmrca of all haplotypes of A. morrisonia could be tracked
back to 11.6 Mya by MDIV and to 8.11 Mya by BEAST,
which is located in the late Miocene [28]. The first popu-
lation differentiation between the Peripheral and Middle

Mismatch distribution and Bayesian skyline plot for geographical groups of A. morrisoniaFigure 2
Mismatch distribution and Bayesian skyline plot for geographical groups of A. morrisonia. Coloured dots stand for 
phylogenetic relationships of sampling sites and colour boundaries indicate the distribution ranges of each subspecies of A. mor-
risonia according to Cheng et al. The histograms in the MD represent the observed frequencies of pairwise differences among 
haplotypes and the line shows the curve expected for a population that has expanded. The X axis in the BSP represent num-
bers of mutations and the Y axis is Ne*μ (effective population size * mutation rate per generation). Italic characters label the 
main geographical barriers in South China.
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clades was estimated at 9.82 Mya. Other population diver-
gences with different time scales were detected by MDIV:
three pairs of geographical groups were separated about
0.87–1.15 Mya, while the divergence time between the
Taiwan group and its continental relatives was 3.51 Mya,
and two subclades (eastern and western populations)
within the Peripheral clade separated after 6.06 Mya. We
propose here that A. morrisonia originated in the late
Miocene and colonized a wide area from the centre of
south China to the peripheral regions. The possible causes
of the first population split were environmental shifts due
to the uplift of the Tibetan Plateau at the end of the
Miocene [29,30]. Although the isolation by distance pat-
tern cannot be rejected, the phylogenetic result suggests
that certain geological events and geographical barriers
are more likely related to the population structure coming
into being. For example, if the population structure was
formed under isolation by distance scenario, the genetic
distances of SWSichuan to Centre and Fujian to Centre
would be smaller than that of SWSichuan to Fujian. In fact
SWSichuan was more related to Fujian than to Centre.
During the period within a few million years of 8 Mya, a
wide variety of changes took place in the region surround-
ing and including the rise of the Tibetan Plateau. This epi-
sode of fauna turn over in Mio-Pliocene boundary was
also evidenced by the rodent fossils from Northern Paki-
stan [31,32]. Environmental changes in much of eastern
Asia were suggested to either become drier or precipita-
tion become more seasonally concentrated [33]. It is rea-
sonable to assume that environmental changes in south
China with a significant rise of the Tibetan Plateau
account for the two major clades (Peripheral and Middle)
differentiation of A. morrisonia around 8 Mya. The other
two subsequent divergences ascended to 6.06 and 3.51
Mya respectively, are presumably consequences of the glo-
bal substitution of C3 to C4 vegetation [34], coinciding
with the major diversifications of the birds of genus Gar-
rulax [35], which are closely related to A. morrisonia. The
three recent population divisions were traced back to the
Sicilian Stage in the early Pleistocene (MIS 20-MIS 30,
0.8–1.0 Mya) [36], consistent with the dramatic climate
shifts called the "Middle Pleistocene Revolution", during
which the Milankovitch oscillation changed from 40,000
to 100,000 years [37]. Taking these arguments together,
we suggest that the chronology of genetic divergence in
the A. morrisonia might be the result of various geological
events.

There is no obvious trend of genetic diversity for geo-
graphical groups along the lat/longitude gradient. High
haplotype and nucleotide diversity was observed both in
western and in eastern geographical groups in the China
continent. Deep genetic gaps and restricted gene flow
were identified among the geographical groups. The inter-
ruption of gene flow along geographical groups of A. mor-

risonia is quite different from another phylogeographical
study based on Chinese Hwamei (Leucodioptron canorum
canorum) [38], which has a similar distribution range as A.
morrisonia's in China continent. Putative gene flow was
observed among geographical groups of L. c. canorum
while it was hardly detected in A. morrisonia. We consider
that some of the causes might be related to the limited
gene exchange among geographical groups. Firstly, geo-
graphical barriers seem to be important effects on popula-
tion divergences. Great mountains and deep valleys in
south China possibly shaped multi-refugia for A. morriso-
nia in the cold weather extension, and then blocked sec-
ondary contact during the postglacial recolonization. It
can be imagined that the complicated topology of this
region played an important role in initiating phylogeo-
graphic differentiation and further sculpting pre-existing
phylogeographic variety during the glacial oscillations.
Secondly, as a sedentary bird in the forest understory and
shrubs, small size and poor dispersal capability [39] of A.
morrisonia might impede gene flow among populations
with a distant range, especially in the complicated topol-
ogy of south China.

Within the geographical groups, association of restricted
gene flow with isolation by distance was inferred from
NCPA analysis, supposing that geographical distance was
an important factor in forming the current genetic struc-
ture. This is consistent with the moderate mobility and
limited foraging range of A. morrisonia [40] and the phys-
ical topology of south China. However, the scenario was
not well supported by the results of Mantel test and IBDW
analysis at the same clade level. Possible causes for this
discrepancy might lie in either the haplotype difference
involved in the three methods or our limited spotty sam-
pling. NCPA has long been debated for its validity and the
risk of false-positives [41,42]. With a difficult population
structure to study and having no better method to apply
to our analysis, we nevertheless accept the outcome here
cautiously. Dense samples from more sites in its distribu-
tion range might improve our understanding and make it
more reliable.

Two insular populations, Hainan and Taiwan, were sepa-
rated from the mainland by the strait barriers, while diver-
gence times of the two insular groups from their
continental relatives are discordant (1.15 and 3.51 Mya
respectively). This is similar to the genetic variance of Chi-
nese mainland Hwamei with their two island relatives
[43]. A possible cause for the difference in divergence
times between Hainan and Taiwan Islands might be eco-
logical barriers. Both islands repeatedly connected and
disconnected with the continent during the Pleistocene,
and the last separation happened around 10,000 years
ago [18]. Although a large land surface emerged between
Taiwan and the mainland with sea level retreat, it is sup-
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posed that the flora covering this area was temperate
deciduous broad-leaved forest and steppe rather than
evergreen broad-leaved forest during the glaciations [44].
Absence of appropriate habitat may have constricted gene
flow between the Taiwan and mainland populations in
spite of the connection. Hainan Island is close to the
tropic, and the strait interval is just 29.5 km wide. The
homogeneity of the vegetation probably kept contact
between the geographical groups after the sea level fell.
Thus, the genetic distance between Fujian and Hainan is
much smaller than between Fujian and Taiwan. Analysis
of diversity and distribution patterns of endemic birds in
China found Taiwan Island has more endemic species
than Hainan, which was supposed a result of earlier isola-
tion from mainland of Taiwan than Hainan [45,46]. Here
we suggest that the ecological barriers might be more
plausible to the different divergence of two insular islands
from China mainland.

Recent population expansion and the late Pleistocene 
paleoenvironment
Paleovegetation based on pollen data implied that large
areas of the exposed continental shelf in eastern China

might have been dominated by grasslands, while the
uplands of South China were occupied by less dense
coniferous or temperate forests during glacier extension
[47,48]. There is a contrary opinion that subtropical
broadleaved evergreen forest is more plausible as the suc-
cession of rain forest during the glacial maximum [49]. As
a typical bush babbler, A. morrisonia mostly inhabits
shrub, the understory of the tropical and sub-tropical
evergreen leaf forests, so its demographical fluctuation
might reflect changes in the flora of south China. Signifi-
cant negative Tajima's D and Fu's Fs values were detected
in the Fujian, Hainan, Taiwan and Centre groups, and
mismatch distribution showed that most groups fit popu-
lation expansion except for SWSichuan. Recent demo-
graphic expansions were also found in the eastern
geographical groups by Bayesian skyline plot reconstruc-
tion, while the western groups WYunnan, SWSichuan and
Guangxi seemed stable in the late Pleistocene. It seems
that expansions occurred in the eastern groups rather than
in the west, suggesting intense changes of flora in the east-
ern part of south China. Compared with the continuous
high mountains in the western part of south China, the
mountains in the east are isolated and low, so the vegeta-

Sampling sites for A. morrisoniaFigure 3
Sampling sites for A. morrisonia. Green segments with plain text represent the sampling locations and sample sizes, while 
the black text indicates provinces in south China. The small map in the right upper section shows the distribution range of 
Alcippe morrisonia according to Mackinnon et al.
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tion communities might have changed more drastically in
the eastern part of south China during the glacial oscilla-
tion [50,51]; demographical expansions were therefore
more evident in the eastern groups than in the west.

The time since demographical expansion was estimated
mostly around 0.2–0.4 Mya, earlier than the Last Glacial
Maximum (LGM), which was regarded as a vital event
inducing population divergence [52-54]. Inconsonantly,
the present results suggest that great vegetation changes
most probably occurred during the largest glacial exten-
sion stages in the late Pleistocene, dating in the Marine
Isotope Stages 16–18 (MIS 16-MIS 18, 0.6–0.7 Mya). Pre-
vious paleoclimates based on δ18 O value and pollen data
evidenced that the most substantial glacial extension
occurred MIS 16-MIS 18 in China [55]. Since then, envi-
ronmental changes seem to be moderate in subsequent
climate oscillations in the eastern part of south China,
where populations were growing stably throughout the
LGM.

Conclusion
The present study shows deep geographical differentia-
tions of A. morrisonia. The genetic distinction among geo-
graphical groups is associated with the complicated
topology of south China, where high genetic diversity
might be conserved and gene flows be blocked. Ecological
barriers might result in variant divergence time between
two insular groups (Taiwan and Hainan) from China
mainland. Isolation by distance seems to be an important
factor for genetic structure formation within the geo-
graphical populations. Recent demographical expansions
corresponding to vegetation changes may have occurred
during the largest glacial extension stages rather than the
LGM, and more extensive in the eastern part of south
China. However, the results suggest a long evolutionary
history for A. morrisonia, the common ancestor of which
could be dated to the late Miocene, and the population
differentiations correspond to a series of geological events
beyond the Pleistocene ice ages.

Methods
Sampling and molecular data
One hundred and sixty birds were collected from 29 local-
ities during 2004 to 2007, covering most of the distribu-
tion range of the A. morrisonia (Figure 3). Total genomic
DNA was extracted from blood or tissue samples using the
QIAamp DNA Mini Kit (QIAGEN) following the manu-
facturer's instructions. A partial cytochrome b (Cytb) gene
was amplified with the primer pair OSCL1 (5'-
ATGGCCCTCAATCTACGTAAA-3') and OSCH2 (5'-
ATAGGACTAGGATGATTGTGAAGTA-3'). The thermocy-
cling program consisted of an initial denaturation at 94°C
for 5 min, followed by 40 cycles of 94°C for 40 s, 53°C
for 40 s and 72°C for 40 s, plus a final extension at 72°C
for 5 min. The same primers were used in sequencing reac-

tions with a Big Dye Terminator Cycle Sequencing Kit
v.2.0 and run with an ABI 377 automatic sequencer. The
other mitochondrial gene fragment, partial cytochrome c
oxidase I (COI), was amplified and sequenced following
Hebert et al. [56].

Sequences were assembled using Seqman II (DNASTAR)
and proofread against the original chromatograms. The
presence of stop codons or indels, which could reveal
pseudogene sequences, was checked in MEGA3.1 [57].
Sequences were combined by eye and relevant sequences
of Yuhina flavicollis (EU447103, EU447058), Alcippe dubia
(FJ754289, FJ754291), Alcippe brunnea (FJ754290,
FJ754292), Stachyris ruficepes (EU447106, EU447061)
and Garrulax sannio (EU447086, EU447041) were used as
outgroups.

Phylogenetic analysis
Haplotypes for Cytb, COI and the combined sequence
were generated in Dnasp, version 4.0 [58]. Maximum par-
simony (MP), maximum likelihood [56] and Bayesian
inference (BI) phylogenetic analyses were used to identify
major clades and to evaluate the relationships among
haplotypes of Cytb and COI separately and combined.
Modeltest 3.6 [59] and the Akaike information criterion
[60] were used to identify the appropriate nucleotide sub-
stitution models and the selected models of sequence evo-
lution were used for ML phylogeny reconstruction. MP
analyses were performed in PAUP* 4.10b [61] using a
heuristic search with 1000 random sequence repetitions
and tree-bisection-reconnection (TBR) branch-swapping.
ML analyses were performed using PHYML [62]. Non-par-
ametric bootstrapping (1000 replicates) performed in the
programs PAUP* 4.10b (MP) and PHYML was used to
evaluate nodal support among branches, with 70% or
more considered to provide strong support [63]. Bayesian
analyses were performed with MrBayes 3.1 [64] with
default parameters, using the three selected models gener-
ated by Modeltest 3.6 for each gene and the combined
dataset. Two independent parallel runs of four incremen-
tally heated Metropolis-coupled MCMCs (Monte Carlo
Markov Chains) were run with trees sampled every 100
generations for 5 * 106 generations or more until to the
average standard deviation of split frequency below 0.01.
The first 10% of the generations were discarded as 'burn-
in', and posterior probabilities were estimated for the
remaining saved generations.

Population genetic analysis
The numbers of haplotypes (H), and values of haplotype
diversity (h) [65] and nucleotide diversity [66] for each
sample site, were computed on the basis of the combined
sequence dataset in Dnasp, version 4.0. A hierarchical
analysis of molecular variance (AMOVA) was performed
using pairwise differences; a measure of the extent of DNA
divergence between populations was calculated, and the
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significance was tested using 1,000 permutations with
Arlequin version 3.1 [67]. The correlations between
genetic and geographic distances were tested by both the
Mantel test [68] in Arlequin and in the isolation by Dis-
tance Web Service [69]http://ibdws.sdsu.edu/~ibdws/.

A maximum parsimony network was constructed using
TCS 1.21 [70] with a 95% connection limit. Loops were
resolved following the criteria given by Pfenninger and
Posada [71]. Haplotypes were hierarchically nested to vis-
ualize higher-order patterns of association [72,73]. The
null hypothesis of no geographical associations between
tip and interior clades was tested using nested clade anal-
ysis (NCPA) implemented in Geodis 2.0 [74]. For those
clades in which the null hypothesis of random geograph-
ical distribution was rejected, potential geographical asso-
ciations were inferred by the inference key (http://
darwin.uvigo.es, updated November 2005).

Population demographic history
MDIV [75] was used to estimate the divergence time and
migration rate between groups. The program uses a Baye-
sian approach to estimate population divergence times
and migration rates simultaneously between pairs of pop-
ulations that are assumed to have diverged from a com-
mon ancestral population. MDIV was run multiple times
with different random seeds in order to obtain consistent
distributions of results using the following setting: HKY
model with the transition/transversion ratio estimated
directly from the data; Markov chain simulation for
5,000,000 steps, of which the first 500,000 were discarded
as burn-in; and prior distributions from 0 to 10 for M and
from 0 to 5 for T. The divergence times of splits between
phylogroup pairs were estimated using the Formula tdiver-

gent time = Tpop *(Theta/2 μk) with mutation rate μ and a gen-
eration time of 2 years.

Values of Tajima's D [76] and Fu's F [77] were calculated
and used to assess evidence of population expansion for
the geographical groups arranged by AMOVA partitions
and phylogenetic topology. Mismatch distributions were
calculated and the sum of squared deviations (SSD) and
raggedness indices (r) between observed and expected
mismatch distributions were used as a test statistic; their P
values represented the probability of obtaining a simu-
lated sum of squared deviation greater than or equal to
the one observed. Estimation and testing were done by
bootstrap resampling (10,000 replicates) using Arlequin
3.1. The relationship Tau = 2 μkt [77] was used to estimate
the time of expansion (t), where k is the number of nucle-
otides assayed and μ is the mutation rate per nucleotide.
Because no direct calibration point refers to mutation rate
of A. morrisonia or its relatives, we cautiously applied
"2%"rule of molecular clock for avian Cytb gene [78-82].

An average mutation rate of 1.00*10-8 per site per year for
the avian mitochondrial Cytb gene was assumed [9,38].
This mutation rate was modulated by multiplying the
ratio of average net distance for the combined sequence vs.
that for Cytb alone for the geographical group pairs [38].
A generation time of two years was used for A. morrisonia
according to Sibley & Ahlquist [83] and Zhou, Liu and Li
(personal communication).

In order to estimate the dynamics of population size fluc-
tuations over time, we used the Bayesian Skyline Plot
(BSP) [84] method implemented in the program BEAST
1.4.6 [85]. This Bayesian approach incorporates the
uncertainty in the genealogy by using MCMC integration
under a coalescence model, in which the timing of dates
provides information about effective population sizes
over time. Chains were run for 50 million generations,
and first 10% was discarded as 'burn-in'. The substitution
model used was HKY+G+I, as selected in Modeltest 3.6. In
addition, the times to the most recent common ancestor
(TMRCA) of the seven geographical groups and the whole
population were estimated using the same mutation rate
as above. The results were summarized through TRACER
1.4 (Rambaut & Drummond 2007, Available from http://
beast.bio.ed.ac.uk/Tracer).
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