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Abstract

Background: Gene trees that arise in the context of reconstructing the evolutionary history of
polyploid species are often multiply-labeled, that is, the same leaf label can occur several times in a
single tree. This property considerably complicates the task of forming a consensus of a collection
of such trees compared to usual phylogenetic trees.

Results: We present a method for computing a consensus tree of multiply-labeled trees. As with
the well-known greedy consensus tree approach for phylogenetic trees, our method first breaks
the given collection of gene trees into a set of clusters. It then aims to insert these clusters one at
a time into a tree, starting with the clusters that are supported by most of the gene trees. As the
problem to decide whether a cluster can be inserted into a multiply-labeled tree is computationally
hard, we have developed a heuristic method for solving this problem.

Conclusion: We illustrate the applicability of our method using two collections of trees for plants
of the genus Silene, that involve several allopolyploids at different levels.

Background

Polyploidy is an important evolutionary process in plants,
as well as in some animal groups (e.g. [1,2]), accounting
for a significant proportion of speciation events [2]. Most
eukaryotes have a life cycle which includes a haploid (one
set of chromosomes) and a diploid (two sets of chromo-
somes) part. A polyploid can arise from a sterile hybrid
which has resulted from the fusion of two incompatible
haploid gametes. If, for example due to meiotic errors, the
hybrid doubles its chromosomes, it can develop into a
new, fertile lineage that is instantaneously reproductively
isolated from its parents (but see e.g. [3]), so called allopol-

yploidy. Genome doubling within a lineage is called
autopolyploidy.

Despite the importance of polyploidy, molecular phylo-
genetic studies of plants, even at shallow levels where
reticulate patterns due to allopolyploidy are to be
expected, have been dominated by the use of sequence
regions that are unable to trace biparentally inherited evo-
lutionary history. For example, sequences from the cyto-
plasmatic genomes are usually maternally inherited only,
and for nuclear ribosomal DNA it is thought that con-
certed evolution can eradicate evidence for hybridization

Page 1 of 11

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2148/9/216
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19715596
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Evolutionary Biology 2009, 9:216

(e.g. [4]). Moreover, most phylogenetic studies aiming at
tracing polyploid histories use a single nuclear low-copy
number gene tree for inference [5-9], or are restricted to
relatively simple problems as the origin of allotetraploidy
[3,10]. However, to successfully distinguish polyploidiza-
tion from other biological processes that may be respon-
sible for incongruent phylogenetic patterns (e.g.
homoploid hybridization, horizontal gene transfer,
incomplete lineage sorting, gene duplication/loss, recom-
bination, sampling or phylogenetic errors), it is desirable
to use a large number of gene loci (e.g. [11]). Following
this approach, in [12,13] multiple biparentally inherited
genes are used for problems involving ploidy levels higher
than 4x (tetraploidy) [12,13]. The collections of gene trees
arising in such studies commonly have the property that
the same species name can label more than one leaf in a
single gene tree, due to polyploidization events [5,8-
10,12-15]. More formally, we call such trees multiply-
labeled trees or MUL-trees, for short (cf. [16]).

Recently, MUL-trees have been used to construct phyloge-
netic networks representing the evolutionary history of
polyploid species [9]. Although there is now a well-devel-
oped algorithm for constructing these networks from a
MUL-tree [17], construction of the MUL-tree has to date
been performed using an ad hoc consensus approach [12],
where, essentially, from the given collection of gene trees,
a MUL-tree was intuitively constructed in such a way that
the number of gene trees that supported each branch was
as large as possible. Here we describe a method that gen-
eralizes this ad hoc approach, and allows the systematic
construction of a consensus MUL-tree(s) from a collection
of MUL-trees. This method generalizes the greedy consen-
sus method for finding the consensus of a collection of
phylogenetic trees [18] although, as we shall see, various
complications arise due to computational issues concern-

http://www.biomedcentral.com/1471-2148/9/216

ing MUL-trees. We illustrate the applicability of our new
method using two collections of MUL-trees of flowering
plants of the genus Silene. An implementation of the
method in Java (version 1.5), which is incorporated
within the PADRE software package [19], is freely availa-

ble for download from http://www.uea.ac.uk/cmp/
research/cmpbio/PADRE.

Results

The main algorithm

The input to our algorithm consists of a collection of
rooted MUL-trees, where the labels that occur are the
same for each tree. An example of a collection of three
such trees is presented in Figure 1. The leaves of every tree
in this example are labeled by a,, a,, or a;. Labels a, and
as each occur twice, whereas label a, occurs three times. To
take into account that labels may occur more than once,
the leaves of the trees are thus labeled by a multiset , in
which the number of occurrences of any label a in is
called the multiplicity of a. For example, in Figure 1 the
multiset is given by {a,, a,, a,, a,, a,, a5, a;} and the mul-
tiplicity of a, is 2. We will call a MUL-tree with leaves
labeled by a multiset a MUL-tree on , for short. Note that
if all of the labels in have multiplicity 1, then is just a set
and a MUL-tree on is a phylogenetic tree in the usual
sense [20].

The basic approach taken by our algorithm is to break the
input MUL-trees into a collection of clusters, that is, sub-
multisets of . In a MUL-tree T on each cluster arises from
some branch e in T, and contains the labels a in with the
property that we have to traverse branch e on the path
from the root 7 to a in T. We also say that T exhibits these
clusters. For example, in Figure 1 branch e in tree T, gives
rise to the cluster {a,, a,, a,, a;}. We then select clusters
from those obtained by breaking up the MUL-trees, one at

® (o o> X0
e —eo (1 —eo a9 —eo a1
e/ L— e 49 L ed3 L ed3
r — ———e 43 r — ——ed] r — ———e U2
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A collection of MUL-trees. A collection of three MUL-trees, whose leaves are labeled with the elements of the multiset =
{a,, a,, a,, a5, a,, a3, a3}. The root of each tree is marked by r and in tree T, e labels a branch (see text for details).
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a time, starting with those that are exhibited by most of
the input trees, to construct a consensus MUL-tree. At any
time the clusters selected by our algorithm so far are cho-
sen to have the property that there exists a MUL-tree that
exhibits all of them simultaneously.

Note that this approach is also used in the greedy consen-
sus method for constructing a consensus of a collection of
phylogenetic trees [18]. In this method the efficient selec-
tion of the next cluster to be inserted into the consensus
tree is based on the following useful property of phyloge-
netic trees [21]: If every pair of clusters in a collection is
compatible, that is, there exists a phylogenetic tree that
exhibits both clusters, then there is a (necessarily unique)
phylogenetic tree that exhibits the whole collection. In
contrast, for MUL-trees this property does not hold in gen-
eral. For example, among the clusters obtained from the
MUL-trees in Figure 1 every pair can be exhibited by some
input tree. But it can be checked that there is no MUL-tree
that exhibits them all at once. In fact, it is NP-hard to
decide whether a collection of clusters of a multiset can
be exhibited by some MUL-tree on [22]. And, even if
there exists such a tree, it need not be unique (see e.g. Fig-
ure 2(b) and 2(c)).

To cope with these difficulties, our algorithm first greedily
adds in those clusters containing at least one label a that
has multiplicity 1 in, called core clusters. The key property
of these clusters is that, if they can be added to a MUL-tree,
then this can only be done in a unique way [22]. For
example, the cluster {a,, a5} can be added in only one way
to the MUL-tree in Figure 2(a) resulting in the MUL-tree
depicted in Figure 2(d). We call the MUL-tree obtained by
adding in core clusters the backbone tree. Note that if every
element in has multiplicity 1 then every cluster is a core
cluster and our algorithm works precisely like the greedy
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Figure 2
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consensus method for phylogenetic trees [18]. In general,
however, there will be clusters that are not core clusters,
called ambiguous clusters, and therefore, in the second
phase, we continue to greedily select these and, if possible,
insert them into the backbone tree. This results in one or
more MUL-trees, all of which exhibit the same collection
of clusters and that contain the backbone tree as a subtree.

Note that as part of the two-phase strategy outlined above
we also apply a threshold ¢ that determines the minimum
number of input trees that must exhibit a cluster in order
to be taken into account when forming a consensus MUL-
tree. This threshold helps to prevent a core cluster being
exhibited by only a small number of input trees blocking
the addition of an ambiguous cluster that is exhibited by
many input trees later on. The idea of using a threshold is
similar to the approach taken by the majority rule consen-
sus method for phylogenetic trees [18].

A detailed description of the algorithm

We now give a full description of our new algorithm: In
Figure 3, we present it in form of pseudo-code. First it uses
the procedure CLUSTERS (presented in Figure 4 in form of
pseudo-code) to compute the sorted lists (D, ..., D) and
(Ay, ..., Ay) of core and ambiguous clusters (Lines 1-3) on
the given multiset . As mentioned in the previous section,
we then select clusters, one at a time, from these lists to
form a consensus of the input trees. We start (Line 4) with
a tree T that exhibits precisely the trivial clusters on , that
is, the clusters containing a single label in (note that these
clusters are exhibited by all of the input trees). Then we
construct the backbone tree using the list of core clusters
(Lines 5-6), and then add ambiguous clusters to the back-
bone tree (Lines 7-14). The output is a MUL-tree selected

() (d)
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Adding clusters. (a) A MUL-tree T used to illustrate the difficulties that can occur when adding a cluster. (b)-(c) The cluster
{a,, a,} can be added in two different ways to the MUL-tree T. (d) The cluster {a,, a;} can be added to the MUL-tree in (a), but

in a unique way.
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MurtiCoNs((11, Ty, . .

ST, t)

Input:

Output:

A list (Th,T5, ..., T;) of MUL-trees on a multiset M.
A threshold ¢t € {1,...,1} (default: t = [I/2]).
A MUL-tree that is a consensus of the input trees.

Using the procedure CLUSTERS((Th, 1%, ...,1}), t), break the input
trees into clusters on M. This yields the sorted lists (D1,...,D,)
and (A;,...,A4,) of core and ambiguous clusters, respectively.
Initialize a MUL-tree T" exhibiting the trivial clusters on M.
for i:=1to pdo

if T can be adapted to exhibit D; then adapt T accordingly.
Initialize the collection 7y := {T'}.

http://www.biomedcentral.com/1471-2148/9/216

for i :=1 to ¢q do

© 00N W=

10. for each tree T' € 7,_1 do

— == =
=~ W N~

15. return a MUL-tree in 7.

Figure 3

Initialize an empty collection 7;.

if T' can be adapted to exhibit an additional copy of A; then
Insert into 7; every MUL-tree that can be obtained
from T by adding an additional copy of A;.
if 7; is empty then 7; := 7;_1.

Pseudo-code for the algorithm MULTICONS. Pseudo-code for our algorithm that computes a consensus MUL-tree of

the input MUL-trees.

from the resulting collection 7, of MUL-trees. An output

tree from this collection can either be selected by the user,
or the whole collection of trees can be returned. In the
next section we provide a score function to aid with the
tree selection process.

To conclude the description of our algorithm we describe
the details of the computation of the core and ambiguous
clusters as presented in Figure 4. First, for each input MUL-

tree T;, 1 <i <[, we compute the collection of non-trivial
clusters C; that are exhibited by T; (Lines 1-4). If an input
MUL-tree exhibits a cluster C several times, e.g. tree T; in
Figure 1 exhibits the cluster {a,, a,, a5} twice, we include
in C; the corresponding number of copies of C and dis-
tinguish them by recording the branch in T; that gives rise
to them.

Next we combine the collections Cy,...,C; into a set of

all clusters that arise from the branches of the input MUL-

trees without taking multiple copies of the same cluster
into account (Lines 5-6). Then using the threshold ¢, for
each cluster C in the number m (C) is computed, which
is the largest number of copies of C such that at least ¢ of
the collections Cy,...,C; contain that many copies of C
(Lines 8-12). The clusters C in with m (C) > 0 are then
partitioned into core clusters and ambiguous clusters
(Lines 13-17).

The core clusters are collected together in the set O (Line
15). Note that if D is a core cluster then m (D) < 1 holds.
In contrast, for an ambiguous cluster A one can have
m (A) > 1, and so we record the numbers of copies of A
that we might be able to accommodate in the consensus
tree in the form of pairs (A, 1), ..., (A, m (A)) denoting the
resulting set of pairs by A (Line 17). The core clusters D
in D are then sorted decreasingly according to the
number of collections among C;,...,C; in which cluster

D is contained (Lines 18-19), where ties are broken arbi-
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CLUsTERS((11, 1%, ..., 1)), t)
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Input:
A threshold t € {1,...,l}.
Output:

A list (T1,T5,...,T;) of MUL-trees on a multiset M.

A sorted list (Ds, ..., D,) of core clusters.

A sorted list (A;,...,A4,) of ambiguous clusters.

fori:=1to !l do

for each cluster C' in B do
fori::=1to!l do

© oSO =

Compute the collection C; of non-trivial clusters exhibited by tree T;
(including multiple copies of the same cluster and recording for each
cluster which edge in T; gives rise to it).

Compute the set B that contains one copy of each cluster that appears in

at least one collection C;, 1 <1 <.

Initialize an empty set D and an empty set A.

10. m;(C') :=number of copies of C in C;.
11. m*(C) := max{m;(C) : 1 <i <[},
12. m(C) :=max{j € {0,...,m*(C)}: {i € {1,...,1} : my(C) > j}| > t}.
13. if m(C) > 0 then
14. if C' contains a label a that has multiplicity 1 in M then
15. Add C to D.
16. else
17. Add the pairs (C,1),...,(C,m(C)) to A.
18. Sort the clusters in D decreasingly into a list (Dy,..., D,) according
19. to the number of collections C; that contain cluster D).
20. Sort the pairs in A decreasingly into a list ((A1,m1),...,(Aq,my))
21. according to the number of collections C; that contain at least m;
22. copies of cluster A;.
23. return the lists (D1,...,D)p) and (A44,...,4,).
Figure 4

Pseudo-code for the procedure CLUSTERS. Pseudo-code for the procedure that computes the sorted list of the non-

trivial core and ambiguous clusters, respectively.

trarily. This yields a sorted list (D;, ..., D,) of core clusters.
Similarly, the pairs (A, m) in A are sorted decreasingly
according to the number of collections among Cy,...,C;

that contain at least m copies of A (Lines 20-22). Again ties
are broken arbitrarily. This yields a sorted list ((A;, m;), ...,

(A4 m,)) of the pairs in A from which the sorted list (A;,

..., A4) of ambiguous clusters is extracted, with some clus-
ters possibly occurring more than once in this list.

The run time of our algorithm can be bounded in terms of
the number [ of input trees, the sum m of the multiplicity
of all elements in, and the sum d of the multiplicity of all
elements in except those that occur with multiplicity 1.
For example, for the multiset labeling the tree in Figure
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2(a) we have m = 6, which is the same as the number of
leaves of the tree, whereas d = 4 because the multiplicity
of a; and a, is not taken into account. Note that, since the
number of branches of a tree is linear in the number of its
leaves, the total number of clusters (core and ambiguous)
is in O(ml). Hence a straightforward implementation of
the procedure CLUSTERS in Figure 4 has a run time in
O(m212).

Once the lists of clusters have been computed, the main
task is to check, for a given tree and a cluster, whether the
tree can be adapted to exhibit the additional cluster. Basi-
cally we can use the algorithm presented in [[22], ch. 5]
for this task, which yields a run time for MULTICONS of
O(m212 + mA4l + diml). The first term in this bound comes
from the run time of the procedure CLUSTERS. To give the
reader some idea how the remaining two terms in the
bound arise, note first that checking whether a core cluster
can be added in Line 6 of the algorithm MULTICONS can be
done by going through the vertices of degree higher than
3 in the tree constructed so far and checking whether they
can be resolved to accommodate the additional cluster.
Implementing this in a straightforward way, each core
cluster can be checked in O(m3) time and the resulting tree
is, as mentioned above, unique. Since there are O(ml)
clusters, this yields the second term.

As for the third term, checking whether an ambiguous
cluster can be added to a particular tree in Lines 12-13 can
be done in a similar way as outlined above for core clus-
ters. However, the key difference is that there are now
O(d) resulting trees. This implies that the number of trees
in the output collection 77, is bounded by O(d), in view

of the fact that the number of non-trivial ambiguous clus-
ters in a MUL-tree on is in O(d) (see [22] for more on
this). This leads to the last term in the bound above.

Pre- and postprocessing

It often happens that the collection of input MUL-trees are
labeled by slightly different multisets (due e.g. to sequenc-
ing difficulties or lack of sampling). Hence, we have also
developed a simple preprocessing procedure that essen-
tially restricts the input trees to a common multiset of
labels. This procedure employs a majority rule, that is, for
every label a that appears in at least one of the input trees,
the multiplicity of a in is chosen as the largest integer m
such that a appears in at least half of the input trees with
multiplicity at least m. Note that it is possible that some
labels appear in so few input trees that they have multi-
plicity 0 in , that is, they will not appear in the consensus
tree.

Once we have determined this multiset it remains to
restrict the input trees to and to compute a consensus of

http://www.biomedcentral.com/1471-2148/9/216

the restrictions. However, the restriction process might
involve a choice of which leaves labeled by copies of a cer-
tain label should be removed. As the number of possible
choices increases rapidly for different labels, potentially
leading to a huge number of different restrictions, we
avoid deciding which copies of a label to remove as fol-
lows. If a cluster contains more copies of a label than the
multiset , these additional copies are removed from the
cluster, independently of all other clusters. Note that this
might however yield two copies C and C' of a cluster in the
collection C; arising from some input tree T;such that the

branch e that gives rise to C lies on the path from the root
of T; to the branch e' that gives rise to C'. For example, con-
sider the tree T, in Figure 1. Branch e gives rise to the clus-
ter {a,, a,, a,, a5} and branch e’ to the cluster {4y, a,, a;}.
However, if we restrict T, to the multiset {a,, a,, a,, a5, a5},
say, we remove one copy of a, from {a,, a,, a,, a5}, then
after the restriction both ¢ and e' give rise to the same clus-
ter {a,, a,, a;}. In this situation the cluster arising from e'
is not counted as an additional copy and can rather be
viewed as an artifact of the restriction to and will, there-
fore, not be included in C; . So, for the tree T, in Figure 1
only the two copies of cluster {a,, a,, a5} that arise from
branches e and e" will be taken into account.

We also developed a postprocessing procedure that scores

the MUL-trees in the collection 77, computed by the algo-

rithm MULTICONS, to deal with the fact that this collection
could be quite large. The basic idea for the scoring is to
estimate the number of allopolyploidization events that
are implicitly hypothesized by a MUL-tree. To do this, we
use an algorithm presented in [17], called MULTIBUILD, to
compute for each MUL-tree T'in 7, a network N (T) rep-

resenting T. We then use the number of allopolyploidiza-
tion events hypothesized by N (T) to score each MUL-tree
T, since N (T) can be viewed as a most parsimonious rep-
resentation of T in terms of such events. In practice, we
have found it best to take all possible refinements of T to
bifurcating trees and to calculate the minimum number of
allopolyploidization events in the networks obtained for
those refinements as the score of T. We suspect that this is
because MULTIBUILD is only guaranteed to find an optimal
network with respect to the number of allopolyploidiza-
tion events if the MUL-tree is binary.

Applications
We illustrate the application of our method, along with
some of the complexities involved in constructing a con-
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sensus of MUL-trees, using two data sets of MUL-trees of
the flowering plant genus Silene (Caryophyllaceae). These
examples were computed using the implementation of
the algorithm in the PADRE package. This takes as input a
collection of trees in NEWICK format [23], and displays
the resulting consensus tree, which can also be saved as a
file in encapsulated postscript (eps) or NEWICK format.

The first collection of MUL-trees we apply our algorithm
to is depicted in Figure 5. We chose this example, as it is
small enough to easily follow the workings of the algo-
rithm. The labels represent Silene species, namely, the dip-
loids S. ajanensis (A) and S. uralensis (U), the tetraploid S.
involucrata (I), and the two hexaploids S. sorensenis (S) and
S. ostenfeldii (O). All trees are rooted at S. zawadskii (Z).
They are restrictions of the larger gene trees published in
[12] to the species A, U, I, S, O and Z.

The gene trees in [12] are reconstructed using standard
techniques in phylogenetic analysis from regions of the
nuclear RNA polymerase (RNAP) gene family (RPB2,
RPA2, RPD2a, and RPD2b, Figure 5(a)-(d)), two concate-

@ o, O
—e (O A

N S — o0
—e ] — oS
| —o O I

Figure 5
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nated chloroplast regions (rps16 intron and the psbE/petG
spacer, Figure 5(e)), and one nuclear ribosomal region
(ITS1 and ITS2, with the intervening 5.8S gene, Figure
5(f)). Although all 6 gene trees in Figure 5 may be viewed
as MUL-trees, it should be noted that only the four trees
on the RNAP genes (Figure 5(a)-(d)) are true MUL-trees.
For the chloroplast regions, this is because chloroplasts
are maternally inherited and harbor a haploid genome. A
MUL-tree constructed for such regions is therefore a phyl-
ogenetic tree in the usual sense. Regarding the nuclear
ribosomal DNA, the reason is different in the sense that,
although they constitute a very large multigene family, its
members are kept identical or very similar by concerted
evolution. Therefore, traces of hybridization events are
quickly eradicated (e.g. [4]). As a consequence, nuclear
ribosomal DNA can behave similarly to a haploid, unipa-
rental locus.

When we apply our algorithm to the input MUL-trees in
Figure 5, we first apply the preprocessing procedure to
compute a multiset to which we restrict the input trees,
yielding = {A, LI, O, O, O, S, S, S, U, Z}. Using this mul-

(c) e A (d) A

NT~NnO

Input trees for first example. Six MUL-trees, restrictions of gene trees originally published in [12], that we used as input for

our algorithm.
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tiset and the default value ofl/21= 3 for the threshold t we
obtain the 4 non-trivial core clusters

{A,0,8}, {A,1,0,0,5S}, {A11,0,0,0,58S,U}, {I,0,5U},

and the non-trivial ambiguous clusters {O, S} (two cop-
ies) and {I, O, S} (one copy) to build a consensus tree.
Note that, although the cluster {A, I, O, O, S, S} is gener-
ated twice when breaking T, into clusters (since it is exhib-
ited by T, and also results from restricting the exhibited
cluster {A, A, I, O, O, S, S} to by removing one copy of
label A), it is taken into account only once. Also note that
the choice of the threshold ¢ implies, for example, that
even though {A, I, O, S} is a core cluster it is not taken
into consideration for constructing the backbone tree as
this cluster is only exhibited by a single input tree, namely
the tree in Figure 5(f).

The backbone tree constructed from the 4 selected core
clusters is depicted in Figure 6(a). Adding in the ambigu-
ous clusters results in 3 semiresolved consensus MUL-
trees one of which we depict in Figure 6(b). When apply-
ing the scoring procedure, by constructing a reticulate net-
work with MULTIBUILD for all 32 distinct refinements of
these 3 trees to bifurcating trees, we find a single refined
MUL-tree with minimum score which is depicted in Fig-
ure 6(c). Note that this tree was also constructed by the ad
hoc method mentioned above in [12]. The reticulate net-
work computed for this MUL-tree is depicted in Figure
6(d). It postulates 2 consecutive allopolyploidization
events, the first one resulting in the tetraploid S. involu-
crata and the second one leading to the two hexaploids S.
sorensenis and S. ostenfeldii.

(a) A (b) )
@, @)
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The second collection of MUL-trees we applied our algo-
rithm to is depicted in Figure 7. This collection is more
complex than the previous one since it involves more spe-
cies and the trees are much more unresolved. The addi-
tional Silene species appearing in the trees (again
represented by their label) are: S. linnaeana (L), S. uralensis
(Mongolia) (U M), S. samojedora (SAM), and S. villosula
(V), which are all diploid, and S. sachalinensis (SAC) and
S. tolmatchevii (T), whose chromosome numbers are
unknown but, in view of the number of RNAP gene copies
found, are likely to be tetraploids. It should be noted that
in contrast to the trees in Figure 5, the four MUL-trees in
Figure 7 were reconstructed solely from RNAP gene fami-
lies (i.e. RPB2 (a), RPA2 (b), RPD2a (c), and RPD2b (d)).
As before, all MUL-trees are rooted at S. zawadskii (Z).

The multiset of labels constructed by the preprocessing
procedureis = {A, LI, L, O, O, O,S, S, S, SAC, SAC, SAM,
T, T, U, UM, V, Z}. Using this multiset a collection of 15
non-trivial clusters is derived from the input trees, of
which 12 are core clusters and 3 are ambiguous clusters.
We employed a threshold of ¢t = 1, as the input trees are
very unresolved and larger thresholds yield only a small
number of non-trivial clusters to form a consensus tree. In
Figure 8(a) we depict the unique backbone tree con-
structed from 10 of the non-trivial core clusters. Adding
ambiguous clusters to this tree results in 6 semiresolved
consensus MUL-trees one of which we depict in Figure
8(b). By exhaustively searching through the set of all 885
refinements of these 6 trees, we find that only 9 of them
give rise to a reticulate network with the minimum
number of 4 hypothesized allopolyploidization events. In
Figure 8(c), we depict one of them and in Figure 8(d) we
depict the corresponding reticulate network. Note that
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Output for first example. (a) Backbone tree using the default value for threshold t. (b) One of the three MUL-trees
obtained by adding ambiguous clusters to the backbone tree. (c) A possible resolution of the tree in (b) to a bifurcating tree.

(d) The reticulate network constructed from the tree in (c).
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Input trees for second example. The second collection of MUL-trees we apply our algorithm to, involving additional Silene

species.

this network agrees with the network presented in Figure
6(d) when restricted to the Silene species in the first collec-
tion. In addition two further allopolyploidization events
are hypothesized, suggesting that S. sachalinensis and S.
tolmatchevii are tetraploids.

Conclusion

In this paper, we have presented a new algorithm for con-
structing a consensus MUL-tree(s) from a collection of
MUL-trees, and illustrated its applicability using two
examples. Both consisted of collections of gene trees that
were constructed from sequence data of polyploid plants,
including biparentally informative sequences. In both
cases, we have also obtained networks that provide sce-
narios for how the plants evolved.

As a preprocessing procedure we provide a way to deal
with the situation that some input trees might have miss-
ing or additional leaf labels. A key task in this context is to
determine the multiset of labels that should appear in the
consensus tree. The simplest possible approach would be
to just take the union of the multisets over all input trees,

that is, every label has the maximum multiplicity with
which it occurs in an input tree. However, in practice we
found that this tended to lead to an overestimation of the
multiplicity of some labels, hence our use of a majority
rule procedure. Even so, our approach is still rather simple
in that it is only likely to work well in case the number of
additional or missing leaf labels is small since otherwise
too much information is lost. To circumvent this problem
one might try to develop supertree methods for MUL-
trees, although we expect that this task would be quite
challenging in the light of the fact that many versions of
the supertree problem are hard even for collections of
phylogenetic trees (see e.g. [24]). In this vein, it might also
be of interest to explore the possibility of constructing
consensus- or super-networks [25].

The basic idea for our algorithm, that is, breaking the
input trees into clusters and then combining some of
these clusters to form a consensus tree, seems to yield
good results if the input trees are not too unresolved and
there are enough clusters that are exhibited by many input
trees. However, in some circumstances, the greedy con-
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Output for second example. (a) Backbone tree using threshold t = I. (b) One of the 6 MUL-trees obtained by adding
ambiguous clusters to the backbone tree. (c) A possible resolution of the tree in (b) to a bifurcating tree. (d) The reticulate

network constructed from the tree in (c).

struction involves a random choice of which clusters,
exhibited by the same number of input trees, should be
added next. In view of this, a more canonical approach to
selecting clusters could be desirable. This might be
achieved by generalizing, for example, the majority rule
consensus approach [18] to MUL-trees. Even so, the
results in [22] imply that as the total multiplicity d of
those labels that appear with multiplicity greater than 1
grows, the majority rule consensus tree will resemble
more and more the strict consensus tree, which tends to
be very unresolved. Our algorithm tries to address this
issue by allowing the user to explore how being strict
(large threshold t) or generous (small threshold t) affects
the resulting consensus trees. In addition, there is also the
option to explore whether further clusters exhibited by
less than t input trees could still be added into the consen-
sus tree at the end. In future work, it could also be inter-
esting to try and generalize non-cluster-based approaches
for computing a consensus of phylogenetic trees as
described in [18] (e.g. by recoding the MUL-trees in some

way).

We employ a postprocessing procedure to score the result-
ing trees, but as this potentially involves refining trees to
binary trees, it has a worst case run time that is exponen-
tial in the number of leaves of the resulting trees
(although the score for a single refined tree can be com-
puted by the algorithm MULTIBUILD in polynomial time).
Therefore, despite working quite well for the examples we

have considered, it is likely to be limited to rather small
problem instances. Moreover, the number of trees with
optimal score can be quite high, especially when the input
trees are very unresolved. Even though multiple optimal
solutions are not uncommon in phylogenetics (e.g. there
can be several most parsimonious trees [26]), it could still
be of interest to develop ways to systematically select spe-
cific optimal trees. For example, alternative score func-
tions could be developed that take into account how the
clusters are arranged in the input MUL-trees or, if availa-
ble, branch length information.

The parameter that seems to have the biggest impact on
the run time is the total multiplicity d of those labels that
appear with multiplicity greater than 1 in many input
trees. Even though the theoretical worst case run time of
our algorithm increases exponentially with this parameter
(which is to be expected due to the inherent computa-
tional complexity involved in computing a consensus of
MUL-trees), for both examples presented above the run
time was only a few seconds on a modern desktop com-
puter.

In view of recent advances in DNA sequencing technolo-
gies (e.g. [27]), we anticipate that many more data sets
will soon become available giving rise to collections of
MUL-trees. The algorithm proposed in this paper will
hopefully provide a useful new tool for analyzing such
collections.
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