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Abstract

Background: Positive selection is a driving force that has shaped the modern human. Recent
developments in high throughput technologies and corresponding statistics tools have made it
possible to conduct whole genome surveys at a population scale, and a variety of measurements,
such as heterozygosity (HET), Fsp, and Tajima's D, have been applied to multiple datasets to identify
signals of positive selection. However, great effort has been required to combine various types of
data from individual sources, and incompatibility among datasets has been a common problem.
SNP@Evolution, a new database which integrates multiple datasets, will greatly assist future work
in this area.

Description: As part of our research scanning for evolutionary signals in HapMap Phase Il and
Phase Il datasets, we built SNP@Evolution as a multi-aspect database focused on positive selection.
Among its many features, SNP@Evolution provides computed Fg;and HET of all HapMap SNPs, 5+
HapMap SNPs per qualified gene, and all autosome regions detected from whole genome window
scanning. In an attempt to capture multiple selection signals across the genome, selection-signal
enrichment strength (Es) values of HET, Fgr, and P-values of iHS of most annotated genes have been
calculated and integrated within one frame for users to search for outliers. Genes with significant
Es or P-values (with thresholds of 0.95 and 0.05, respectively) have been highlighted in color. Low
diversity chromosome regions have been detected by sliding a 100 kb window in a 10 kb step. To
allow this information to be easily disseminated, a graphical user interface (GBrowser) was
constructed with the Generic Model Organism Database toolkit.

Conclusion: Available at http://bighapmap.big.ac.cn, SNP@Evolution is a hierarchical database
focused on positive selection of the human genome. Based on HapMap Phase Il and Il data,
SNP@Evolution includes 3,619,226/1,389,498 SNPs with their computed HET and Fr, as well as
qualified genes of 21,859/21,099 with Eg values of HET and F;r. In at least one HapMap population
group, window scanning for selection signals has resulted in 1,606/10,138 large low HET regions.
Among Phase Il and Il geographical groups, 660 and 464 regions show strong differentiation.
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Background

Natural selection has played an essential role in the for-
mation of the human genome and in the diversity of phe-
notypes. The identification of the functional targets of
positive selection, however, has been a major challenge in
understanding the evolution of human beings. Tradi-
tional investigations to localize loci that have undergone
selection have focused on the coding sequences of indi-
vidual genes. For example, since the finding of hemo-
globin B gene under the selective pressure for malaria
resistance, only a limited number of genes, including
G6PD, LCT, and ASPM, have been functionally deter-
mined as targets of positive selection [1-3]. In recent years,
the rapid development in high throughput DNA technol-
ogies, as well as in statistical analysis and bioinformatics
tools, has promoted whole genome surveys in multiple
aspects of genetic variation [4-6]. Since the construction of
the human HapMap, many massive genome-wide
projects aiming to search and scan for SNPs, indels, copy
number variations (CNVs), functional DNA elements,
DNA methylation sites, and expression quantitative trait
loci (eQTL) have been accomplished or undertaken [7-
17].

These enormous maps and datasets have made great con-
tributions to trace our evolutionary history. Although
only a handful of genome-wide measurements with lim-
ited marker density have been developed to detect selec-
tion signals, these initial studies suggest that large scale
and highly detailed analyses will greatly illuminate our
understanding of human evolution [18-21]. Using whole
genome SNP data, selection signals may be demonstrated
through the computation of classical measurements
including heterozygosity (a measurement which is used to
estimate the frequency of heterozygote in a population,
also referred to as HET), Tajima's D (a statistical test which
is used to determine whether a genetic locus is under neu-
tral selection), and the fixation index (a measurement
which is used to compare the genetic variability within
and between populations, also referred to as Fg)
[18,22,23]. Moreover, haplotype based measurements--
such as extended haplotype homozygosity (EHH) and rel-
ative EHH (REHH), or more complex values including
integrated haplotype homozygosity (iHH) and integrated
haplotype score (iHS)--have been successfully applied to
find signals of recent positive selection across the human
genome [24,25]. A few databases, such as Haplotter and
SNP@Ethnos, serve as public tools in population genetics
[26]. Built to find ethnically related SNPs, SNP@Ethnos
provides 100,736 individual variants with large ethnic dif-
ferences. With the determination of ancestral or derived
allele state, Haplotter is efficient in finding recent positive
selections and their affected genes by the frequency of
haplotypes that extend from a core SNP.

http://www.biomedcentral.com/1471-2148/9/221

To complement these and other publicly available data-
bases, we have built an integrated data library on human
evolution ("SNP@Evolution") which offers several novel
features: (1) the inclusion of Eg (enrichment strength of
selection-signals) to estimate the selection strength on a
specific gene by computation of outlier ratios; (2) a slid-
ing window scanning method that uses measures of HET
and Fg; to locate genomic segments under selection (with
the resulting regional signals reflecting geographical adap-
tation, founder effects, and fixed or unfixed selections);
(3) HapMap Phase III data from samples of 11 popula-
tions; (4) the integration with a haplotype-based dataset
of iHS that simplifies the process of comparing multiple
datasets by providing a simple, easy-to-read table.

One of SNP@Evolution's primary functions is to find
selection signals from both chromosome regions and
individual SNPs. To achieve this aim, our major strategy
has involved the computation and comparison of HET,
Fgp, and iHS of all SNPs and their regional values using a
sliding window method, then followed by the demonstra-
tion of outliers of each measurement as the selection sig-
nals. Eg values of various measurements in most
annotated genes are also listed as an independent dataset.
Selection signals can therefore be detected in the data
query or visualization interface by (1) SNP outliers, (2)
low HET regions merged from adjacent window outliers,
and (3) Egvalues of individual genes. With the compari-
son and integration of multiple datasets, SNP@Evolution
provides candidate genes and regions that will assist
researchers in locating positive selection signals genome-
wide.

Construction and content

Data source

The strategy of our database construction and data
processing route is illustrated in Fig. 1. Genotype datasets
are derived from the International HapMap Phase II and
Phase III data repository (release 21# NCBI build35,
release 24# NCBI build36, release 26# NCBI build36,
http://www.hapmap.org) [7,8]. Only data of unrelated
individuals were utilized. For HapMap Phase II, samples
of 60 Utah residents with ancestry from northern and
western Europe (CEU), 45 Han Chinese in Beijing (CHB),
45 Japanese in Tokyo (JPT), and 60 Yoruba in Ibadan,
Nigeria (YRI) were included. Considering the great genetic
similarity between CHB and JPT, we pooled the data of
both as one geographical group and denoted it as ASN
(Asian). Phase III data came from samples of 11 popula-
tions, including 84 CHB, 85 Chinese in Metropolitan
Denver, Colorado (CHD), 86 JPT, 113 CEU, 88 Toscans in
Italy (TSI), 113 Yoruba in Ibadan, Nigeria (YRI), 53 Afri-
can ancestry in Southwest USA (ASW), 90 Luhya in
Webuye, Kenya (LWK), 143 Maasai in Kinyawa, Kenya
(MKK), 88 Gujarati Indians in Houston, Texas (GIH), 50
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Data collecting and processing strategy for building SNP@Evolution. HapMap, UCSC, OMIM, and Haplotter were
major sources for SNP, Gene, and iHS. After computation and processing with a sliding window and empirical distribution
method, we obtained five types of outcomes that may contain evolutionary signals in the human genome including low HET or
highly differentiated regions, F¢;outliers of SNPs, E values of HET and Fg;on genes, and SNP outliers of iHS. In order to visual-
ize these datasets, we used PHP and GMOD to build the table and figure interfaces. Links to the public online databases, includ-

ing Entrez Nucleotide, dbSNP, OMIM, and HapMap, are provided together with the query results in SNP@Evolution.

Mexican ancestry in Los Angeles, California (MEX).
According to their continental origination, samples were
then divided into four geographical groups, i.e., CHB,
CHD, and JPT grouped as ASN (Eastern Asian ancestry);
CEU and TSI as EUR (European ancestry); YRI, ASW, LWK,
and MKK as AFR (African ancestry); and GIH and MEX as
AME (Native American ancestry). The iHS dataset (from
HapMap phase II), including iHS of SNPs and P-values on
iHS from 12,683 genes, was retrieved from Haplotter [25].

Data analysis

We first computed HET and Akey's Fgto measure the pol-
ymorphism within each population and the differentia-
tion among geographical groups [18]. For gene analysis,
we considered a genic region to be a gene with 2 kb flank-
ing regions. Genic regions containing no less than 5 gen-
otyped SNPs in the dataset were chosen for subsequent
analysis. From 24,011 annotated genes in NCBI build36,

we identified 21,859 and 21,099 qualified genic regions
in HapMap Phase II and Phase 111, respectively.

To search for outliers of HET and Fg;, the SNPs with HET
values larger than average were considered as outliers
directly. For Fg;, we defined an "outlier" as a SNP whose
value extends beyond the nearest quartile by a length of at
least 1.5 times the inter-quartile range. With simulated
data, we first sought to determine whether this method
(henceforth referred to as the "empirical distribution
method") is efficient and reliable to obtain selection sig-
nals without having to consider the apriori distributions.
Genotype data under different selection strength and neu-
tral selection generated by SelSim were mixed together
[27], then the empirical distribution method was applied
to find outliers. The results indicated that the empirical
distribution method separated data under positive selec-
tion from the mixed data pool with a high sensitivity, sta-
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bility, and low error rate (manuscript in preparation). (To
test the empirical distribution, the positive predictive
value, or PPV, can be used to describe the proportion of
outliers that have been the targets of selection [28]. For
instance, when the simulated proportion of selection tar-
get is 0.05 with a certain recombination environment--
Rec rate = 108, the PPV of the empirical distribution
ranges from 0.50 to 0.90 under the selection strength 20-
200.) Therefore, we used the empirical distribution
method to identify SNP outliers of Fg;as well as the win-
dow outliers of HET (see below).

The ratios of outlier numbers of both HET and Fgin each
genic region to the corresponding total SNPs were then
calculated. Relevant enrichment value Eg of both HET and
Fyrwere determined as the percentile values on the distri-
bution of outlier ratios for all qualified genes. Thus, the Eg
value of HET or Fg;in a particular gene represents the
enrichment strength of the outliers of each measure. (Dis-
tributing from 0 to 1, a larger Eg value indicates a higher
outlier ratio of the corresponding measure in a gene.)

To estimate regional genetic diversity, we set up a 100 kb
window and slid it with a 10 kb step throughout the
human autosomes to obtain the averages of HET and Fg;.
This window scanning resulted in 267,069 and 266,650
regions (with 90 kb overlapping each other) in HapMap
Phase Il and Phase I1I data, respectively. Regional HET was
first normalized within each chromosome and then the
empirical distribution method described above was used
to obtain window outliers of Fg; and normalized HET.
Adjacent window outliers were merged to regions and the
qualification of each region was determined by a boot-
strap test. Briefly, we picked 1,000 regions randomly with
the similar length to the testing region, and then calcu-
lated the HET values of these picked regions plus the test-
ing region. The percentile values of these 1,001 HET
values were defined as P, and only those with P, <
0.01 were accepted as low HET regions.

Consequently, 1,606 low HET regions were obtained
from Phase II Build36 data, including 434 in ASN, 576 in
CEU, and 596 in YRI. In addition, merged window out-
liers of Fy; identified 660 highly differentiated regions
among three groups. Moreover, 10,138 low HET regions
were found from Phase III data, including 807 in CHB,
802 in CHD, 803 in JPT, 995 in CEU, 1,000 in TSI, 881
YRI, 965 in ASW, 916 in LWK, 962 in MKK, 1,023 in GIH,
984 in MEX. Additionally, 464 regions show strong differ-
entiation among four geographical groups.

Datasets containing evolutionary signals

To help users locate selection signals, SNP@Evolution
describes the population genetic variations of chromo-
some regions, genes, and SNPs with measurements of Fgr,

http://www.biomedcentral.com/1471-2148/9/221

HET and iHS (Fig. 2). The iHS obtained from Haplotter
were first aligned with the corresponding HapMap SNPs.
Of the 3,619,226 SNPs in HapMap Phase II Build36 that
we computed with Fgrand HET data, 2,663,137 SNPs also
contain iHS information in Haplotter. Using the criteria
of [iHS| > 2 as defined in a previous study [25], 79,149,
86,272, and 100,624 SNP outliers of iHS in ASN, CEU,
and YRI, respectively, were then obtained. In addition,
33,601 SNP outliers of high Fg from the empirical distri-
bution method were found. As shown in Table 1, signals
of large population differentiation are shown with the
trend of increased strength from intergenic to genic
regions (y2 test, P = 0.0000), suggesting that functional
regions of the genome tend to be the targets of geographic
selection. Additionally, the 5' UTR has the highest ratio of
outliers. The outlier ratio in the 5' UTR is higher than
other genic sections (x2 test, P = 0.0366, 0.0433, and
0.0728 for coding sequence, intron, and 3' UTR, respec-
tively), implying the regulatory regions may play impor-
tant roles in geographic differentiation.

As for all individual 24,011 genes listed with annotations,
21,859 genes with 5 or more genotyped SNPs in their
genic regions are provided with Egvalues of HET and Fg,
resulting in 1,094 genes of low HET which exceed the Eg
threshold of 0.95. In these 1,094 genes, ASN and CEU
share 370, ASN and YRI share 147, CEU and YRI share
169, and all three groups share 81. Such a pattern--non-
Africans sharing twice the number of genes containing
enriched selection signals in comparison with that
between non-African and African populations--suggests
either geographical selection or founder effects by ances-
tors of ASN and CEU after their migration out of Africa.
(Accordingly, we performed simulations based on both
selection and neutral models. Very little founder effect
was revealed (data not shown), suggesting that the selec-
tion events most likely resulted in these signals in genes.
Our analysis results are consistent with recent reports
which showed also geographic selections rather than
founder effects as the major force of evolution in large
genomic regions [29,30].) For the 535 genes of high Fg;
(Eg threshold of 0.95), 369 were seen in at least one pop-
ulation which showing low HET (247 genes in ASN, 163
genes in CEU, and 42 in YRI respectively). In addition, P-
values of iHS are included in 10,375 genes. For those with
significant iHS (P < 0.05), 441, 527, and 433 genes are in
ASN, CEU, and YRI, respectively, among which 32/441,
43/527, and 41/433 are also shown as low HET.

There are 1,389,498 genotyped SNPs in HapMap Phase I1I
Build36, and among them, 351 outliers of Fg,were found.
Egvalues of HET and Fgin 21,099 qualified genic regions
of all 11 populations are provided in our database.
Finally, in our study we have found that for a fixed sample
size and in regions with the same number of polymorphic
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Search Results of Gene: edar

Region statistics

1 regions with strong selection signals:
ASN 2 108920000 109100000 0.0536

Gene statistics

1 genes:

2 | 108969448 | 109064345 | 0.9849 0.7848 0.1878 0.0010 | 0.52389 0.5460 |0.9915
NM_022336 |EDAR |604095 -
ectodysplasin A receptor
SNP statistics
114 SNPs:

rs10865025 dbSNP 2z 108970283 Gene_3' UTR 0.0349 0,2432 0.4265 -2,9684 -0.9835 -1.5793 0.6008
rs10206737 dbSNP 2 108970882 Gene_3' UTR 0,0000 0,0000 0,1388 - -0.49385 0,1222
rs3749096 dbSNP 2z 108970946 Gene_3' UTR 0,0000 0.0644 0.,4300 2.2458 1.0588 0.4304
rs3749097 dbSNP 2 108971124 Gene_3' UTR 0,0000 0.0644 0,3299 2.2458 0.4297 0.1557
rs7607563 dbSNP 2z 108971839 Gene_3' UTR 0.0000 0,1932 0,3832 = 0.9484 -0.0384 0.2887
rs3827760 dbSNP 2z 108972119 Gene_CDS 0.0849 0.0000 0,0000 -3.1570 = = 0.9236
rs6542783 dbSHP 2 108972623 Gene 0.0000 0.0644 0.4300 2.4794 1.0233 0.4304

Figure 2

Using EDAR to demonstrate the output of a data query. After submitting EDAR as the search term, all hit data are
provided in three tables. The regional statistics indicate whether the query is localized in a low HET region in a certain popula-
tion or in a highly differentiated region among populations. The gene table with the sequence accession ID, gene symbol, and
OMIM ID provides Egvalues of HET and P-value of iHS of each HapMap geographical group, as well as the Eg value of Fg;to
show population differentiation. Finally, in addition to the rs# and its locations at both the chromosome and gene, SNPs of
EDAR are displayed with individual HET and iHS of each population followed with Fg;. The number above the third table indi-
cates the total number of the SNPs identified in the query (only the first 7 were shown in the figure in this example). To illus-
trate selection related signals, the SNP outliers of iHS and Fg, as well as the extra Eg values (>0.95) of HET and Fgy, are
highlighted in the tables.

loci, the regional HET is linear to Tajima's D [see Addi-
tional file 1]; therefore, we present HET data only in
SNP@Evolution. Considering that iHS was derived from
EHH and iHH, we have chosen iHS to be the measure-
ment of haplotype diversity in our database.

Utility and Discussion

There are two user interfaces in SNP@Evolution, one for
data query and another for data visualization. In the data
query interface, users submit one or more SNP rs# labels,
gene symbols, gene sequence accession IDs, or specific

chromosome regions. Results are displayed in three
tables, as shown in the EDAR example in Fig. 2. Measure-
ments--including the highly differentiated region among
three geographical groups, Eg values of HET, Fg;, and P-
value of iHS of the gene, as well as the HET, Fg;, and iHS
of the SNPs--indicate that the EDAR gene is under positive
selection in Asians as previously reported [19,31]. Like all
queries, these EDAR results can be downloaded in a table
formatted file.

Table I: The distribution of Fs;outliers across autosomes in data of HapMap Phase Il Build36

Gene
5'UTR CDS* Intron 3'UTR Total Intergenic region Total
Outlier 59 420 12,598 299 13,370 20,225 33,601
SNP
All 4,604 43,858 1,280,810 30,153 1,358,805 2,259,801 3,619,226

Ratio (outlier/all) 0.0128 0.0096 0.0098 0.0099 0.0098 0.0089 0.0093

* CDS, coding sequence.
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Figure 3 (see previous page)

Results of EDAR in the visualization interface. Data are illustrated in three parts as Overview (chromosome scale),
Region (area of searching target and flanking sequences), and Details (searching target). The Overview shows the Fg; values of
100 kb sliding windows (maroon) and the low HET regions of merged window outliers in HapMap geographical group of ASN
(red), CEU (green), and YRI (blue) along the ideogram of the chromosome. Region image displays the normalized HET values
of 100 kb sliding windows that flanking the searching target in each population with the same color as illustrated in Overview.
The basic line (zero) represents the average values of Normalized HET, therefore the comparatively high HET windows are
shown above zero and low HET windows appear below the basic line. For the Details of the searching target, it provides (from
the top to the bottom) the fine position in the chromosome, the low HET region (merged outliers of sliding windows) in the
geographical group (red bar for ASN in EDAR gene), the genes (incarnadine) with the arrow pointing to the transcription
direction, the transcripts and the frame usage of the genes (grey), the SNP outliers of iHS in each population as colored sticks,
and at last the SNP outliers of Fg; (maroon) to demonstrate if differentiation signals exist among three populations. For EDAR
gene with a yellow label as the target gene, it is localized in a highly differentiated region among the geographical group and

much more iHS outliers are in ASN than that in CEU and YRI groups. In addition, Fs; outliers are also enriched in EDAR.

To better visualize the data, we implemented the Generic
Model of Organism Database (GMOD) tool [32]. This
interface uses similar input as described above. As shown
in Fig. 3, each search result is shown as three parts as the
Overview, the Region, and the Details. First, along the
electronic G-stain of a given chromosome, Fg; values of
100 kb sliding windows are depicted as scatter plots, and
the low HET regions which were merged from adjacent
window outliers are plotted as block diagrams (Fig. 3,
top). Normalized HET values of 100 kb sliding windows
are enlarged and illustrated as histograms (Fig. 3, middle).
These figures allow one to directly observe the polymor-
phism and population differentiation patterns in chromo-
somes. In order to help locate positive selection signals
throughout the genome, the SNP outliers of F¢rand iHS
are displayed as sticks in different colors along the search-
ing regions, with additional gene annotation (Fig. 3, bot-
tom). These features are provided with information of the
three geographical groups shown in different colors.

Furthermore, results in the data query interface can be eas-
ily linked to the visualization interface to see the features
under the background of the chromosome. To help users
obtain additional information, we also provide the SNP
links to HapMap database and NCBI dbSNP database and
the gene links to Entrez Nucleotide and OMIM. To facili-
tate the operation, a page of '‘Complete Guide' is included
for detailed introduction and efficient use of SNP@Evolu-
tion. The terms used in measurements and population
groups in this database are hyperlinked to the 'Abbrevia-
tions' page for brief reference.

Generally speaking, SNP@Evolution allows users to
access all data through the 'Download' link. In these data-
sets, most of computations were conducted based on
HapMap and related projects. As the data came from no
more than a hundred of individuals in each HapMap pop-
ulation group, one shall also consider the sample size
while making conclusions. The aim of SNP@Evolution is

to provide genome wide signals of positive selection on
human being, to generate fine scale traces of natural selec-
tion in enlarged samples is a long term goal in our
research and computation.

Conclusion

SNP@Evolution is a valuable and useful resource for find-
ing and verifying signals of natural selection, and we will
continue to update SNP@Evolution as research in posi-
tive selection progresses. At regions showing strong selec-
tion signals, we plan to add additional SNP information
obtained from resequencing data from our work and from
public datasets. Genotype data of new individuals from
various sources will also be added to the database. By eval-
uating the effects of amino acid substitution with the
method of Sorting Intolerant From Tolerant (SIFT) [33],
we also plan to include protein functions at genic regions
showing strong selection signals.

Availability and requirements

SNP@Evolution is freely available at http://bighap
map.big.ac.cn/. A minimum screen resolution of 1,152 x
864 is recommended. Please send all questions, com-
ments, and suggestions to chengf@big.ac.cn.
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Additional material

Additional file 1

Linear relationship between regional HET and Tajima's D. The figure
provided represents the statistical relationship between regional averaged
HET and Tajima's D. The example is taken from Chromosome 22 of Hap-
Map YRI group.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-221-S1.doc]
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