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Abstract
Background: Studies of speciation mode based on phylogenies usually test the predicted effect
on diversification patterns or on geographical distribution of closely related species. Here we
outline an approach to infer the prevalent speciation mode in Iberian Hymenoplia chafers through
the comparison of the evolutionary rates of morphological character systems likely to be related
to sexual or ecological selection. Assuming that mitochondrial evolution is neutral and not related
to measured phenotypic differences among the species, we contrast hypothetic outcomes of three
speciation modes: 1) geographic isolation with subsequent random morphological divergence,
resulting in overall change proportional to the mtDNA rate; 2) sexual selection on size and shape
of the male intromittent organs, resulting in an evolutionary rate decoupled to that of the mtDNA;
and 3) ecological segregation, reflected in character systems presumably related to ecological or
biological adaptations, with rates decoupled from that of the mtDNA.

Results: The evolutionary rate of qualitative external body characters was significantly correlated
to that of the mtDNA both for the overall root-to-tip patristic distances and the individual inter-
node branches, as measured with standard statistics and the randomization of a global comparison
metric (the z-score). The rate of the body morphospace was significantly correlated to that of the
mtDNA only for the individual branches, but not for the patristic distances, while that of the
paramere outline was significantly correlated with mtDNA rates only for the patristic distances but
not for the individual branches.

Conclusion: Structural morphological characters, often used for species recognition, have
evolved at a rate proportional to that of the mtDNA, with no evidence of directional or stabilising
selection according to our measures. The change in body morphospace seems to have evolved
randomly at short term, but the overall change is different from that expected under a pure random
drift or randomly fluctuating selection, reflecting either directional or stabilising selection or
developmental constraints. Short term changes in paramere shape possibly reflect sexual selection,
but their overall amount of change was unconstrained, possibly reflecting their lack of functionality.
Our approach may be useful to provide indirect insights into the prevalence of different speciation
modes in entire lineages when direct evidence is lacking.
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Background
The study of speciation patterns has been traditionally
dominated by the role of geography [1,2], most likely due
to the ready availability of species-level phylogenies and
data on geographical ranges of species [3,4]. Other speci-
ation modes, such as sexual selection or ecological segre-
gation, have usually been studied with phylogenies
through the influence on species numbers or diversifica-
tion rates [5-7], the evolution of ecomorphological char-
acters in relation to habitat type and co-occurrence [8], the
evolution of sexual characters [9-11], or the reconstruc-
tion of the ancestral niche [12]. However, there are only
few cases in which the prevalence of these three main spe-
ciation modes (geographical isolation, sexual selection,
ecological segregation) has been assessed in a compara-
tive framework, rather than testing their individual effect
on a target group (but see e.g., [13,14]).

In this work we use different morphological traits of a
group of chafers of the genus Hymenoplia Eschscholtz to
elucidate the prevalent speciation mode. The genus
Hymenoplia is part of the tribe Sericini, a group of chafer
beetles (Scarabaeidae), which are particularly diverse
among the phytophagous scarabs (Pleurosticti) [15]. Spe-
cies of Hymenoplia are ecologically and morphologically
very similar (see Methods), and their ranges have a large
degree of overlap at larger geographical scales, although
they generally do not co-occur at the local level. This pat-
tern suggests either that there could be factors promoting
speciation other than geographical isolation, or that the
geographical signature of speciation has been lost by post-
speciation range movements [16]. Through the use of spe-
cies-level phylogenies with multiple samples per species
and different sets of morphological traits, we aim to detect
the evidence for the influence of selection during trait evo-
lution in order to discriminate between the dominant role
of three general modes of speciation: geographical, eco-
logical and sexual, taking into account infraspecific varia-
tion. Our null assumption is that if the rate of evolution
of a character system across the phylogeny is proportional
to time it could be considered "neutral", in the sense that
it is not subjected to any strong directional or stabilizing
selection ([17], see other examples in e.g. [1] for genital
shape; [18] for ecological differences; [19] for general
morphological traits).

To have a baseline for a neutral rate we use that of the
mitochondrial DNA (mtDNA) [17,20,21]), and consider
it proportional to time (despite possible exceptions, see
Discussion), and not related to the phenotypic expression
of any of the measured morphological characters. We
compare this reference neutral evolutionary rate with that
of three different morphological character systems: 1)
shape of male genitalia as indicative of sexual selection; 2)
general body size and shape and 3) morphological struc-
tural characters (including those used for species recogni-

tion), the last two indicative of a possible ecological
partitioning. The character systems that show an evolu-
tionary rate significantly correlated to that of the mtDNA
could be said to be neutral and proportional to time, i.e.
evolving under a Brownian motion model [22] or sub-
jected to random fluctuating selection [23]. Those differ-
ing significantly could be said to have evolutionary rates
not proportional to time, likely to be due to stabilizing or
directional selection [23]. Specifically, we examine three
hypotheses:

1) Geographical speciation: if the dominant mode of spe-
ciation in the group has been geographical isolation with
subsequent drift for both molecular and morphological
characters (e.g., [1]), all character sets could be expected to
evolve in a predominantly neutral mode, and in conse-
quence the rates of change be correlated among them as a
result of their own correlation with time or to general plei-
otropic effects.

2) Speciation driven by sexual selection (through diver-
gence in shape and size of the genital structures): this
should be reflected in the rates of evolution of the mor-
phology of the intromittent portions of copulatory organs
[9,24]. If their shape and size are subjected to selection,
their rates of evolution will not be proportional to time or
its surrogate, the rates of mtDNA change. Given the very
weak sexual dimorphism in species of Hymenoplia, only
apparent by enlarged and lobiform anterior inner protar-
sal claws in the male, it may be expected that sexual selec-
tion did not have an impact on structural morphology or
body shape.

3) Ecological segregation: although there is no informa-
tion on the detailed ecology and biology of most species
of Hymenoplia, it seems reasonable to assume that these
potential differences could be reflected either in body
shape and size or in structural external characters. Again,
if these are subjected to selection, it is expected that their
evolutionary rates will be de-coupled to that of the mito-
chondrial genome.

The decoupling of the molecular and morphological rates
of evolution could be interpreted as indicative of the pres-
ence of directional or stabilizing selection. However, dif-
ferent types of selection are expected to result in
contrasting patterns of morphological variation [23].
Diversifying or directional selection should result in
increasing divergence between species over evolutionary
time, with a low ratio of intra- to interspecific variation
[25]. On the contrary, stabilizing selection may result in
the random drift of the morphological change within
some fixed boundaries [26-28]. In the later, rates of mor-
phological evolution should be neutral and proportional
to time within the allowed boundaries, but over longer
evolutionary periods this relationship is not maintained,
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and rates should be decoupled from time (i.e. mtDNA
rates) [17]. Any sign of selection on the shape of the male
copulatory organs is likely to be related to sexual selection
and speciation, but the presence of selection (i.e. decou-
pling from neutral rates) in body morphospace or other
morphological characters could be related to the same
speciation process or to subsequet anagenetic evolution.

The comparisons of rates of change are performed at two
levels [29,30]: 1) Individual branches, i.e. internodal dis-
tances. We compare the change of each character system
over all corresponding individual branches of the esti-
mated topology. This gives an overall relationship of rela-
tive rates of change for multiple individual time periods.
2) Patristic distances between terminals. We computed a
patristic distance matrix between all terminals for each
character system, and then compared their association
with the mtDNA distances through multiple Mantel tests.
We also use pairwise plots of patristic distances to test for
general differences between infraspecific and interspecific
variation. Although our methods for hypothesis testing do
not require the a-priori delimitation of species, which in
groups with a complex taxonomy (like the genus
Hymenoplia) is not a trivial issue, evolutionary processes
may be expected to be different at infra and interspecific
level under certain types of selection. The type of molecu-
lar data used (mitochondrial DNA) and the difficulties in
the taxonomy of the group (see below) prevents the use of
methods requiring the precise delimitation of species (e.g.
Fontaneto et al. 2007), but the comparisons of the slopes
of the regressions of intra- and among-species variation
could provide insights into how variation is partitioned.

There is an extensive literature on the relationship
between morphological and molecular evolutionary rates
(e.g., [17,19,23,25,30-33]), although in most cases the
rates were compared across different phylogenies, not
between different morphological character systems in the
same phylogenetic tree. By the use of parallel comparisons
of morphological characters measured in the same speci-
mens across the same phylogeny we avoid many of the
problems associated with previous approaches (such as
e.g. differences in taxon sampling, or the evolutionary
background or the biology of the species; see [33] for a
recent review). The existence of clear differences in the
evolutionary rates among the studied character systems
will provide insightful suggestions as to which has been
the dominant speciation mode in this group of polypha-
gous scarab chafers, and thus contribute to understand
which could have been the key factors for their diversifica-
tion.

Species of Hymenoplia feed preferably on leaves and inflo-
rescences of grasses as adults [34,35] and presumably on
humus and roots in the larval stages, like other members

of the Pleurosticts [36]. A recent phylogenetic analysis
[37] showed that Hymenoplia, with ca. 46 taxa, is part of
the least diverse (ca. 150 taxa) of the two sericine sister lin-
eages of the Old World (with a combined diversity of ca.
3,200 species). Hymenoplia species occur exclusively in the
Western-Mediterranean region, and a third of them in the
Iberian peninsula [38]. The traditional taxonomy of the
genus Hymenoplia has been confusing, due to the lack of
clear diagnostic characters, the variability among and
within populations, and their largely overlapping geo-
graphical ranges [39,40]. They do have similar ecologies,
but, intriguingly, despite the general sympatry of their
ranges (Figure 1), they very rarely co-occur syntopically in
the same locality [35,39]

Methods
Taxon sampling, DNA extraction and identification
Hymenoplia specimens were collected from grasses at 16
sites in the southern Iberian peninsula (Figure 1) in 2006.
Among the hundreds of Hymenoplia specimens sampled
by the first author from a vast range of study sites through-
out all southern Spain (Figure 1), in only one site was
more than one species found (D. Ahrens, unpublished
data). Genomic DNA was extracted from thoracic muscle
tissue with Charge Switch gDNA micro tissue kit (Invitro-
gen, Paisley, UK). Extracted specimens were dry mounted
with minimal damage, allowing further morphological
investigation. Vouchers are deposited in the D. Ahrens
collection (NHM). Diagnostic characters to distinguish
adult morphospecies were those traditionally used in tax-
onomic studies of the group, including body size and
shape, coloration, surface sculpture and pilosity as well as
male genital morphology [39-41]. All identifications were
validated by comparison with the type specimens pre-
served in the collection of the MNCN. A representative
subset of 38 male individuals of the eight named species
for which we could obtain DNA samples (half of known
Iberian Hymenoplia species [38]) plus one outgroup spe-
cies (Additional file 1) were used for DNA sequencing and
phylogenetic reconstruction.

Morphological characters and morphometric 
measurements
We studied three different morphological character sys-
tems:

1) General structural characters, including mainly features
of cuticular integument such as body surface texture,
pilosity and color, but also fine structures of legs and tar-
someres (Additional file 2), which are among those used
for the species recognition. Nineteen discrete characters
were scored for each adult male individual (Additional
files 3, 4). The variation of structural morphological char-
acters was visually checked based on a multiple scaling
analysis performed in XLSTAT 2007 (Addinsoft, Paris)
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using the absolute morphological distances calculated
from the original data in PAUP*4.0b10 [42] (Additional
file 5).

2) Morphometric characterization of the body shape and
size. To characterize the morphospace defined by the
studied species we measured total length, width of prono-
tum, length of elytra and width of elytra (Additional file
6). Due to the limited size range of the studied samples it
was not necessary to transform the data, and we used the
raw measurements for the analyses to obtain the matrix of
Euclidean distances among specimens.

3) Sexual characters. We characterized the outline of the
male left paramere (part of the intromittent genital
organs) in lateral view. The shape analysis was performed
with the software package SHAPEv.1.3 [43] after the
images of the lateral view of the paramere were converted
into separate black-and-white bitmaps of the studied
structures (paramere, phallobasis). SHAPE uses elliptic
Fourier descriptors (EFDs) to analyze shape variation of
two-dimensional outline data [44]. Four coefficients and
20 harmonics were then extracted from shape outlines
and treated as shape variables (Additional file 7). Chain

coding, rotation and computation of harmonics were also
carried out in SHAPE. Because the male genitalia of Seri-
cini chafers have a complex three-dimensional structure
(see e.g., [45], the shape analysis of a two-dimensional
projection is likely to provide a more conservative, albeit
more inaccurate, estimate of the total variation. The Fou-
rier descriptors of the specimens were analyzed with Prin-
cipal Components Analyses (PCA) in XLSTAT 2007
(Addinsoft, Paris), and converted into a distance matrix to
be used to compute branch lengths in PAUP*4.0b10 [42]
(see below).

To determine the potential error associated with the use of
the digital images for the morphometric study, we did five
replicates of each image for each specimen; the images
were taken by the same person, with a period of at least 2
to 24 h between replicates. The proportion of the total var-
iation due to methodological error was quantified by
dividing the trace of the pooled within-specimen covari-
ance matrix by the trace of the total covariance matrix
[46]. In addition, we did a MANOVA test to assess
whether interspecific variation was significantly higher
than the measurement error. MANOVA tests demon-
strated that the error was significantly smaller than inter-

Sample localities of the species studied (I-XV) including approximated range extensions of the species studied according to Baguena Corella (1967) and Baraud (1992)Figure 1
Sample localities of the species studied (I-XV) including approximated range extensions of the species studied 
according to Baguena Corella (1967) and Baraud (1992).
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specific differences (Wilk's Lambda P ≈ 0). The covariance
structure of measurement error was not significantly cor-
related with the covariance structure of interspecific differ-
ences. All tests of correlated evolution are based on the
mean shape values from the five replicates per structure.

The morphometric signal in body and paramere shape,
i.e. the resulting principal component axes (Additional
file 5) explaining most of the variation in the respective
traits (see Results), was investigated independently for
potential overlap and significance between infraspecific
and interspecific variation using MANOVA and Canonical
Variate Analysis in PAST [47].

DNA sequencing
Two mitochondrial gene regions were amplified and
sequenced for the analyses: 1) cytochrome oxidase subu-
nit 1 (cox1) and 2) 16S ribosomal RNA (rrnL), with the
adjacent regions tRNA leucine (trRNA-Leu) and NAD
dehydrogenase subunit 1 (nad1; mtDNA nomenclature
follows [48]). The latter three gene fragments are hereafter
referred as "rrnL-nad1". PCR and sequencing was per-
formed using primers Pat (5'tccaatgcactaatctgccatatta) and
Jerry (5'caacatttattttgattttttgg) for cox1 and 16SaR (5'cgcct-
gtttaacaaaaacat) and ND1A (5'ggtcccttacgaatttgaatatatcct)
for rrnL-nad1 [49]. Sequencing was performed on both
strands using BigDye v.2.1 (Applied Biosystems, Carslbad,
US) and an ABI3700 automated sequencer in the facilities
of the CIB (CSIC, Madrid). Sequences were assembled
and edited using Sequencher v. 4.5 (Genecodes Corp.,
Ann Arbor, USA).

Phylogenetic analysis
There was no length variation in the protein-coding genes,
and variation in the ribosomal genes was minimal (see
Results), so progressive alignment procedures were con-
ducted in ClustalX 1.83 [50] under default gap opening
penalty of 15 and extension penalty of 6.66. The
sequences reported in this paper have been deposited in
GenBank with accession numbers FJ847234-68/
FJ956708-41 (Additional file 1).

To estimate the phylogenetic relationships among species
of Hymenoplia we implemented Maximum Likelihood
searches of the combined mitochondrial sequence in
PhyMLv2.4.4 [51] using a GTR+I+Γ model (as selected in
Modeltest 3.06, [52]), with all parameters estimated from
the data. To check the stability of the results we performed
additional parsimony and Bayesian analyses. Parsimony
tree searches were conducted using TNT 1.0 [53], with 10
ratchet iterations, 10 cycles of tree drifting and three
rounds of tree fusing for each of 200 random addition
sequences, coding gaps as 5th character and using five ran-
dom addition sequences that included ten ratchet itera-
tions, and three rounds of tree fusing using default
settings. Bayesian analyses were conducted in MrBayes

3.12 [54] using a GTR+I+Γ model, with four partitions
(each codon for cox1 plus rrnL-nad1) and estimating all
parameters independently in each partition. Partition
homogeneity was tested in PAUP with 100 replicates. All
trees were rooted with one species of the Mediterranean
genus Paratriodonta Baraud, found to be closely related to
(but clearly outside) Hymenoplia [37].

Node support was assessed by the node posterior proba-
bilities in MrBayes, and by searching 100 pseudo-repli-
cated data sets of nonparametric bootstrapping [55] both
in PhyML and TNT (generated in the latter using the par-
simony ratchet).

Comparison of the rates of evolution of the different 
character sets
To compare the rates of evolution of the different charac-
ter systems we used as a reference tree the topology
obtained with the ML search on the combined mtDNA
dataset. We obtained the branch lengths of the four data
sets to be compared (mitochondrial, structural characters,
morphometry of the body shape, paramere outline) on
this constrained topology using PAUP as follows (see e.g.,
[56] for a similar approach):

1) The mtDNA branch lengths, used as a reference for
"neutral" change, were obtained using a GTR+I+G model
with parameters estimated from the data.

2) The length of the branches of the morphological struc-
tural character matrix (Additional file 4) were determined
under two different approaches: a) with parsimony [Mor-
phology (pars)] using accelerated transformation
(ACCTRAN) character-state optimization, as the number
of character state changes along the branch; and b) using
a mean character difference distance matrix [Morphology
(dist)] derived from the morphological structural charac-
ter matrix (negative branches were set to be zero). We used
a distance approach in addition to the parsimony branch
lengths to make the three morphological data sets directly
comparable (see below).

3) The length of the branches of the body morphospace
and the outline of the male parameres were obtained
using a Euclidean distance matrix, obtained from the raw
measurements for the body morphospace and from the
normalized EFDs of the shape analysis of the parameres
(Additional files 6, 7). Negative branches were set to be
zero.

We compared the morphological vs. the mtDNA branch
lengths at two levels (see Introduction), individual
branches and patristic distances between terminals.

1) Individual branches. We did multiple correlation tests
(morphology, paramere shape, body shape vs. mtDNA
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branches) [29,30] or ANOVA, with the amount of mtDNA
change as explanatory variable, comparing it to different
sets of branches (body shape, paramere shape, and mor-
phology) grouped according to their amount of character
state changes. We divided the mt branches in four (0, 0-
0.001, 0.001-0.01, >0.01) or seven logarithmic categories
(0, 0-0.0005, 0.0005-0.001, 0.001-0.005, 0.005-0.01,
0.01-0.05, >0.05), each having almost similar amounts of
branch numbers. Since the distribution of the length of
the branches of the morphological structural change was
highly biased towards low values (Additional file 8) we
also did the reverse ANOVA, i.e. with the length of the
morphological branches as explanatory variable for the
comparison with the DNA change. We divided the
branches between those with no change (length = 0) and
those with change (length > 0), and compared the length
of the mitochondrial branches of the two groups with an
ANOVA analysis. To have an overall comparison of the
differences of the individual branches over the tree, we
also used the K-score as measured by Ktreedist 1.0 [57].
The software provides a single metric (the K-score) for the
comparison between the branch lengths and the topolog-
ical differences of the two trees, with no associated signif-
icance. In our cases, the topologies of all trees were
identical, so K-scores were a measure of branch length dif-
ferences only. Lower values of the K-score imply less dif-
ferences from the mtDNA tree, with a higher degree of
similarity between the branch lengths and, consequently,
a predominantly neutral mode of trait evolution. The pro-
gram first calculates the scale factor that minimizes differ-
ences between trees, and then computes the branch length
distance (BLD, [58]) between the scaled comparison tree
and the reference tree [57]. The K-score is thus the mini-
mum branch length distance between two trees, once one
of them has been scaled. To estimate the probability that
the observed K-scores were due to random processes, for
each data set we obtained a null distribution of the mor-
phological change in the same tree topology by randomiz-
ing the names of the terminals, obtaining the
corresponding branch lengths in PAUP (which will now
be random, with the constraint of the total amount of var-
iation in the tree) and measuring the resulting K-score.
This was computed using a Perl script (available on
request), with 10,000 random replicas. To assess its signif-
icance, the observed K-score was compared to the null dis-
tribution of random K-scores [59].

2) Patristic distances. We computed the patristic distances
between all terminals of the tree for the four character sys-
tems (mtDNA and three morphological data sets), and
tested their association through multiple Mantel tests
[60]. Significance was assessed with 10,000 permutations
of the observed matrix in the program zt v1.1 [61]. Since
diversifying and stabilizing selection can cause differences
in the infraspecific and interspecific rates of change [e.g.

[25]], we used pairwise plots of the patristic distances and
least square regressions to test for possible differences in
the slope of the relationship between infraspecific or
interspecific morphological and mitochondrial distances
(we did not use simple correlations with these data due to
the non-independence of the individual measures,
[17,32].

The node density effect [62-64] could affect trees with
either missing data or a punctuated form of evolution,
introducing artifacts through the underestimation of the
measure of root to tip distances in lineages with a lower
number of intermediate nodes. We tested the presence of
node density effect in the trees with branch lengths esti-
mated for each character system (mitochondrial and mor-
phological) using the "delta" test [64], implemented
online in http://www.evolution.reading.ac.uk/pe/
index.html[65]. The strength of the effect is measured
with the curvilinear relationship between the number of
nodes and the root to tip distance, and it is considered to
be significant if the strength of the relationship is signifi-
cantly greater than 0, and the degree of curvature signifi-
cantly greater than unity.

Results
Hymenoplia phylogeny
We obtained 826 bp of the 3' end of cox1 (without length
variation) and a fragment of rrnL-tRNAleu-nad1 varying in
length between 812-816 bp (ingroup). The combined
molecular data matrix included 1,651 aligned positions,
with 292 parsimony informative characters. The mean
uncorrected p-distance between any two sequences was
0.104% and 0.048% for the cox1 and rrnL-nad1 partitions,
respectively.

In all analyses Hymenoplia was split into three well sup-
ported clades (A, B and C) (Figure 2; see also Additional
file 9). The sister group relationship between clade A and
B had only low support. Within the clades A-C, all mor-
phologically defined species were monophyletic and well
supported, with the only exception of H. lineolata (Figure
2), which had low support in the ML analysis and was par-
aphyletic in the MrBayes and parsimony analyses due to
the inclusion of H. fulvipennis (Additional file 9).

Morphological traits
Except for structural morphology, the variation of body
and paramere shape had no clear clustering according to
the traditionally recognized species, with considerable
overlap between them (Additional file 5). A box test
(asymptotic approximation to χ2 and Fischer's F) with the
measurement of the total body length was not significant
(p = 0.3), revealing equal intra-class variance, i.e. the
amount of variation within each species is similar. On the
contrary, the Wilks' lambda test for the body length was
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significant (p: < 0.0001), detecting significant differences
in the mean body size for at least one species. The Fisher
distances for the species classes were significant for about
half of the inter-species comparisons, and highly nega-
tively correlated with their significance, as revealed by a
mantel test; in other words, large differences between spe-
cies had the tendency to be also significant. Most of the
variation of body morphospace was represented by PC
axis 1 (92.7%), with all measurements being strongly cor-
related with it (r>0.9).

For paramere shape, 95% of the variation was represented
by PC axis 1-22. However, and despite the apparent over-
lap (Additional file 5), differences between the scores of
the species in the PC axes corresponding to 95% of total
trait variation were highly significant, as measured with

MANOVA (paramere shape, Wilks' lambda95%: 4.37E-09;
p: 2.028E-20; body shape, Wilks' lambda95%: 0.1994; p:
1.135E-05). The same was valid for the axes representing
only 75% (i.e. PC axis 1-10) of shape variation in para-
meres (Wilks' lambda75%:0.0005526; p: 4.15E-16). The
Canonical Variate Analysis applied to these PC axes shows
a better species discrimination for paramere shape than
for body shape (Additional file 10).

Comparison of molecular and morphological rates of 
evolution
For the comparison of the rates of evolution of the differ-
ent character systems we used the topology of the tree
obtained from ML search with the combined mtDNA
(Figure 2). Branch lengths for the morphological rates of
evolution were obtained in PAUP using this topology as a

Maximum Likelihood phylogram of the mtDNA data obtained with PhyML, including bootstrap values (only above 50% shown)Figure 2
Maximum Likelihood phylogram of the mtDNA data obtained with PhyML, including bootstrap values (only 
above 50% shown).
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constraint (see Methods). None of the trees showed signs
of the presence of node density effects, as measured with
the "delta" test [64].

1) Comparison of individual branches
The length of the branches reflecting mtDNA change and
both measures of morphospace (male parameres and gen-
eral body shape; Figure 3) had approximate normal distri-
butions (Additional file 8), and we used correlations
(Pearson correlation) to estimate their relationship. All
three correlations were very weak (r<0.1), and not signifi-
cant (p > 0.05) (Table 1).

The branches with less mtDNA change were also signifi-
cantly shorter for the structural morphological characters,
as measured with both ANOVAs (using four or seven cat-
egories of mtDNA change, p4Cat = 0.015 and p7Cat = 0.0003
respectively). This was also the case for the reverse com-
parison, i.e. the branches with no morphological change
were also significantly shorter for the mtDNA change (p <
0.0005, Table 2). On the contrary, there were no signifi-
cant differences in the length of the morphospace or par-
amere outline branches between the four and seven
categories of mtDNA change (Table 2). When the
branches with morphological change were subdivided in
three categories (length = 0, length = 1, length > 1) the
results were similar (Table 2), with significantly less
mtDNA change in the branches with less morphological
character state changes, but no relationship with the other
two character systems. The number of branches with more
than two morphological changes was too low to allow for
further subdivisions of the data (Table 2; Additional
file 8).

We computed the null distribution of the values of the K-
score between the tree with mitochondrial branch lengths
and the trees with branch lengths reflecting the change in
the three morphological character sets with 10,000 rand-
omized replicas (Figure 4). Only in the comparison
between the branches of the mtDNA and the paramere
outline the observed value was within 95% of the null
random distribution of values (Table 3; Figure 4), provid-
ing no evidence of a significant relationship between the
evolutionary rates of the two character systems based on
the K-score. For the body morphospace and structural

morphology character systems (with both parsimony and
distance branch lengths) the observed difference with the
mtDNA branches was significantly lower than that
expected at random, indicating a significant association
between the evolutionary rates of these character systems
(Table 3).

2) Comparison of patristic distances
The Mantel tests measuring the correlation between the
distance matrices of the mtDNA and structural morphol-
ogy (with both parsimony and distance branch lengths)
and between mtDNA and paramere outline were highly
significant. On the contrary, the correlation between the
mtDNA and the body morphospace matrices was not sig-
nificant (Table 1).

The pairwise plots of intraspecific patristic distances of the
body morphospace and the paramere shape vs. mitochon-
drial distances show no significant relationship, with
slopes of the regression of shape distance vs. sequence
divergent not different from zero [17]. The slope of the
plot of the morphological vs. mtDNA distances was signif-
icantly negative, although with a very low correlation (R2

= 0.04; p < 0.05; slope -7.0, 95% confidence interval [-
13.8, -0.1]; Figure 5). For interspecific distances, the slope
of the plot of the paramere outline vs. mtDNA was not sig-
nificantly different from zero, but the body morphospace
had a negative, and the morphology a positive slope
(body morphospace, R2 = 0.03; p < 0,0001; slope 0.8, 95%
confidence interval [-1.2, -0.4]; morphology, R2 = 0.1; p <
0.0001; slope 11.0. 95% confidence interval [8.4, 13.51];
Figure 5).

Discussion
In this work we exemplified the use of a novel approach
to compare rates of evolution of different character sys-
tems with the study of speciation modes in a clade of Ibe-
rian Sericini chafers of the genus Hymenoplia. There are
many factors known to influence character change and
speciation, but the usual approach is to study their effect
in isolation to increase the explanatory power of the sta-
tistical tests, avoiding being swamped by uncontrollable
variation [10,66-68]. The simultaneous consideration of
alternative mechanisms is still uncommon [14,23,69],

Table 1: Correlation of individual branch lengths (Pearson r) and patristic distance matrices (Mantel test) between the trees resulting 
from optimizing the different character systems on the ML tree topology obtained with mtDNA sequences (significant values in bold).

Individual branch lengths Patristic distance matrices
r p r p

mtDNA/Paramere outline 0.059 0.62 0.254 < 0.005
mtDNA/Body morphospace -0.036 0.76 0.059 0.27
mtDNA/Morphology (pars) 0.681 < 0.0001 0.620 < 0.0001
mtDNA/Morphology (dist) 0.717 < 0.0001 0.630 < 0.0001
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and there is still a lack of standard approaches to compare
different sources of information in phylogenetic studies.

We obtained three sets of measures of different character
systems potentially subjected to different selection pres-
sures, and tested the basic assumption that evolutionary
rates should be proportional to time (i.e. "neutral") when
there is no such selective pressure, but decoupled from
this neutral rate when there is directional or stabilising
selection acting on them [1,17,18,23]. The potential rela-
tionship between morphological and molecular evolu-
tionary rates has been contentious, with successive re-
examinations of the question in the light of new method-
ological approaches [30,32,33]. There are two main differ-
ences between ours and previous studies: 1) we assume
that any possible correlation between the mtDNA and
morphological rates is due to their independent correla-
tion to time [17,31]; and 2) we do not aim to establish a
general correlation between "molecular" and "morpho-

logical" rates, but try to determine whether different mor-
phological character systems evolve at a neutral rate
proportional to time or, on the contrary, are decoupled
from the rates of mtDNA change. Thus, other than indi-
rect effects related to population size or general pleio-
tropic factors [32,33], there should be no functional
relationship between our measure of molecular evolu-
tion, based on mitochondrial genes, and any of the phe-
notypic traits considered. As we do not compare
evolutionary rates among different phylogenies, we only
need to establish a relative measure of the rates of differ-
ent morphological character systems in the same phylog-
eny, minimizing problems associated with high type I
errors or lack of statistical power, which are likely to be
major drawbacks [33]. The fact that for almost all type of
tests we find both significant and not significant results
(Table 4) suggests that our methods are powerful enough
to detect a relationship, but with type I errors low enough
to avoid generalized false positives.

Comparison of ML branch lengths obtained with the different character systems, optimized in the topology obtained with the mtDNA (see Figure 2)Figure 3
Comparison of ML branch lengths obtained with the different character systems, optimized in the topology 
obtained with the mtDNA (see Figure 2). For the structural morphology only the parsimony reconstruction is shown 
(see text).
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Of the three tested character systems, the evolutionary rate
of "structural morphology" was in all analyses propor-
tional to that of the mtDNA (irrespective of the method
used to reconstruct the branch lengths), and thus it could
be assumed that structural morphological characters
evolved at rates proportional to time. Structural characters
are used regularly to separate morphospecies for classifica-

tion purposes, and also for phylogenetic reconstruction.
For most of the characters used here (Additional file 3)
there is no evidence of their biological function (e.g. small
differences in the density of the pubescence or the punc-
tuation, surface integument, color), and thus how they
could drive speciation through selection. The only puta-
tive "key innovation", the tarsal claws bearing a ventral

Table 2: ANOVA of the branch lengths of the different traits associated to changes in mtDNA using 4 and 7 different categories of 
change (see text).

Source of Variation SS df MS F p

4 categories DNA
mt DNA Between groups 17.762 3 5.921 3.721 0.015

vs Morphology Within groups 112.958 71 1.591
Total 130.720 74

mt DNA Between groups 0.008 3 0.003 1.998 0.122
vs PmO Within groups 0.095 71 0.001

Total 0.104 74

mt DNA Between groups 0.070 3 0.023 0.557 0.645
vs Body shape Within groups 2.974 71 0.042

Total 3.044 74

7 categories DNA

mt DNA Between groups 39.663 6 6.611 4.937 0.0003
vs Morphology Within groups 91.057 68 1.339

Total 130.720 74

mt DNA Between groups 0.010 6 0.002 1.157 0.340
vs PmO Within groups 0.094 68 0.001

Total 0.104 74

mt DNA Between groups 0.114 6 0.019 0.441 0.849
vs Body shape Within groups 2.930 68 0.043

Total 3.044 74

2 categories Mor Between groups 0.013 1 0.013 14.107 <0.0005
Morphology Within groups 0.069 73 0.001
vs mt DNA Total 0.083 74

3 categories Mor Between groups 0.020 2 0.010 11.825 <0.00005
Morphology Within groups 0.062 72 0.001
vs mt DNA Total 0.083 74

SS - sum of squares; df- degree of freedom; MS - mean square; F - value of F statistic; p - P-value (significant values in bold).

Table 3: K-scores between the reference tree (mitochondrial DNA) and the trees with branches reflecting morphological change of 
the three studied character systems (observed K-scores).

Comparison tree Scale factor K-score observed No. random trees with K
lower than observed

Estimated p

Body morphospace 0.0203 0.2972 31 0.003
Paramere outline 0.1786 0.2929 947 0.095
Morphology (pars) 0.0179 0.2116 0 <0.0001
Morphology (dist) 0.3812 0.2007 0 <0.0001

For the structural morphology, we calculated tree similarity for both optimisation methods, parsimony (pars) and distance (dist). Significance was 
tested through the use of a null distribution of 10,000 randomized trees (see Methods and Figure 4).
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membranous fringe (Additional file 3, 4), could be highly
adaptive to feeding on grasses, but is not relevant here
being a synapomorphy of Hymenoplia + Hymenochelus
[15].

On the contrary, for both body shape and size and para-
mere outline some of the analyses showed a decoupling of
the evolutionary rates with respect to that of the mtDNA.

In the case of the body shape and size, the amount of
change in the individual branches of the tree was more
similar to that of the mtDNA than expected by chance, as
shown with the null random distribution of the K-scores.
However, when the accumulation of change over the tree
was compared through the patristic distances, there was
no correlation between the amount of change of the
mtDNA and that of the body morphospace. This suggests

Null distributions of the values of the K-scores between the tree with mtDNA branch lengths and the trees with a random dis-tribution of the morphological change of the different character systems (10,000 replicas)Figure 4
Null distributions of the values of the K-scores between the tree with mtDNA branch lengths and the trees 
with a random distribution of the morphological change of the different character systems (10,000 replicas). 
The observed (i.e. non-randomized) value of the K-score is marked with an arrow. For the structural morphology characters 
both methods of branch length reconstruction (parsimony and distance) are shown.
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that when measuring individual branches the deviation
from the mtDNA rate is small enough not to be significant
with the tests we used (ANOVA comparisons and the null
distribution of the K-scores), but when measured over the
whole tree with patristic distances the accumulation of
changes in the body morphospace is decoupled from the
amount of mtDNA change. The lack of correlation
between body shape and size and mtDNA may be inter-
preted as the result of homoplasy, producing "saturation"
in the signal due to the independent development of sim-
ilar shapes and sizes in different lineages of the tree

[17,23]. This could be due to stabilizing selection favoring
certain shapes and sizes (although weak enough not to be
detectable when comparing individual branches, see
above), or just to the existence of a limited range of possi-
ble body sizes and shapes for the whole lineage [28]. In
other words, there could be a random drift or fluctuating
random selection at small temporal scales, detectable with
the comparison of individual branches, but over longer
periods measured with the patristic distances the limited
morphospace (due to stabilizing selection, functional
constraints or "saturation" of the morphospace, see [17])

Pairwise plots of intra- (above) and interspecific (below) patristic distances for structural morphology (Mor), body morphos-pace (BMS), the paramere shape (PMO) vs. mtDNA distances showing for each comparison the slopes of the regression includ-ing their equation and their coefficient of determination (R2)Figure 5
Pairwise plots of intra- (above) and interspecific (below) patristic distances for structural morphology (Mor), 
body morphospace (BMS), the paramere shape (PMO) vs. mtDNA distances showing for each comparison the 
slopes of the regression including their equation and their coefficient of determination (R2).
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would cause the individual trajectories to converge and
lose their proportionality to mtDNA change [28]. This is
quite consistent with the dominance of the PC axis 1 for
the morphospace (explaining 92% of variation) and that
the discriminant analysis of the total body length revealed
that general body size has some significant but not the
only contribution to the variation of morphospace data.

The evolution of the shape of the paramere seems to be
complementary to that of the body morphospace: when
comparing individual branches the rates are not propor-
tional to time, as would be expected under a neutral sce-
nario [1,70], suggesting strong changes driven by factors
other than pure random drift. This directional change,
together with high infraspecific variation (see below), are
some of the marks of sexual selection [70]. However, the
patristic distances do seem to be to some extent propor-
tional to genetic distance: even if at shorter term changes
may be directional (and possibly driven by sexual selec-
tion), the accumulated change through several cladog-
enetic events has no directionality, becoming more like an
unconstrained random drift and thus with a general cor-
relation with genetic distance. The potential morphospace
for the genital organs should be much larger than that of
the body shape and size, given the wide range of different
genital shapes known in Sericini in contrast with the lim-
ited variation in body shape and size (see e.g., [71]). The
overall correlation of the patristic distances with the
mtDNA rates suggests an unconstrained amount of
change over longer periods of time, reflecting a lack of a
functional role of the shape of the paramere. The uncon-
strained change of structural morphological characters
and (to a lesser extend) paramere outline can be directly
appreciated in the plots of the interspecific variation
(Additional files 9, 10). On the contrary, body morphos-
pace show a high degree of overlap, and poor discrimina-
tion among species.

Branch correlation and the assumption of neutral mtDNA 
evolution
Our conclusions are based on the assumption that the
mtDNA evolves neutrally and proportionally to time. This
is known not to be the general case, due to heterogeneity

of rates among branches (e.g., [62,72,73]), the effect of
incomplete sampling and node density [63,64,74], and in
some cases active selection on the mitochondrial genome
[75-79].

Our conclusions should be robust to random deviations
from a clock-like behavior, as they should reduce, but not
bias, the informative signal. It must be noted that our null
hypothesis (i.e. neutral change) is based on a positive
result, not on a negative one: we do find a significant cor-
relation between the evolutionary rates of mtDNA and
those of some character systems, a result highly relevant in
itself [32,33]. We did not find evidence of a node density
effect, and the possible bias introduced by incomplete
sampling could be expected to affect in a parallel way all
character systems when plotted on the same tree topology,
and thus not to introduce any strong bias in our results
[19,32,80]. Although there are numerous examples of
selection on mitochondrial genes (see [79] for a recent
review), it is still unknown to what extend this is a wide-
spread phenomenon that could undermine the general
assumption of neutrality, especially among closely related
species with a similar biology.

Methodological issues of evolutionary rate comparisons
We used three main statistical approaches to compare the
evolutionary rate of the studied character systems (Table
4): 1 correlation and ANOVA; 2) comparison of the K-
scores against a null distribution; and 3) Mantel test for
the correlation of the matrices of patristic distances. The
first two were measures of the comparison of individual
branches of the tree, and the last one of the accumulated
change over the pathway from the root to the tip of each
terminal taxa (Omland 1997). Standard statistics can only
be applied under certain restrictions, which were not met
by most of our character systems (i.e. normality; uniform-
ity of variance [60]; see Additional file 8). For those varia-
bles showing approximate normal distributions,
correlations were all not significant (Table 1), possibly
due to the heterogeneity in the distribution of the change
across the branches (Additional file 8) or the limited
number of branches involved [33]. It seems reasonable to
assume that the length of individual branches is subjected

Table 4: Overview over the main results: association of the change in the different morphological traits with the mtDNA rates of 
change: ++strongly positive, + positive, n.s. non-significant.

Individual branches Patristic distances

Pearson ANOVA K-score Mantel

Morphology (pars) ++ + ++ ++
Morphology (dist) ++ + ++ ++
Body shape n.s. n.s. + n.s.
Paramere shape n.s. n.s. n.s. +
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to multiple sources of variation, and that it would be dif-
ficult that simple correlations of a limited set of characters
and specimens reflect any potential relationship. The
comparison of the K-scores proved to be more powerful,
discriminating between character systems. The absolute
values of the K-score would suggest that the optimized
tree based on paramere outline was closer to the mtDNA
tree (K-score = 0.293) than that optimized on the body
morphospace (K-score = 0.297) (Table 3). However, the
randomization procedure revealed that the tree optimized
on the paramere outline was not significantly different
from a random tree, since the observed K-score was
among the 95% of the null random distribution of values.
Although the computation of the K-score includes a scal-
ing factor, this depends on the distribution of the total
amount of variation in the individual branches, so the
final K-scores cannot be considered a non-dimensional
number and thus comparable across character systems
with different scale of change [57]. It is thus necessary to
associate the K-scores to a null distribution in order to
obtain meaningful results in this comparative framework.
For some trees their null distribution appeared clearly
bimodal (Figure 4). This suggests the presence of two dis-
crete "stable states" within the tree, determined by the
presence of two long branches: when the random tree
placed these two branches together, the overall K-score
decreased in a marked step, creating a bimodal distribu-
tion. The effect of long branches in originating bimodal
(or trimodal) null distributions can be confirmed by sim-
ulations of trees (J. Castresana and V. Soria-Carrasco, pers.
com. 2009).

Trait change and hierarchical levels of the tree
A surprising result of our study was the amount of varia-
tion in the morphometric measures within what is usually
recognized as a unique morphospecies, despite the
reduced mtDNA distances (Figure 3; Additional files 5,
10). There was a perfect correspondence between mor-
phologically recognized nominal species and mtDNA
clusters of the sampled specimens (Figure 2), but some
individuals within these clusters had relatively long
branches for both the paramere outline and the body
morphospace (Figure 3). As already noted, the difficult
taxonomy of the group, and the limited amount of avail-
able data and specimens, makes difficult the rigorous
assessment of the partition of the measured variation
among and within species. We plotted the morphological
vs. mitochondrial inter- and infraspecific distances as an
exploratory tool [17]), and although the results have to be
taken cautiously (due to the non-independence of the dis-
tances), they may provide useful insights into the data.
The most striking difference was in the structural morpho-
logical characters, with a strong positive relationship with
mtDNA distances at the interspecies level, but slightly
negative (although significant) at the intraspecific level,
possibly reflecting the choice of diagnostic characters of

taxonomic use. It is also interesting to note the slightly
(but significant) negative slope of the relationship
between body morphospace and mtDNA distances, possi-
bly reflecting the "saturation" of this character system
([17], see above) (Figure 5; Additional file 9, 10).

In any case, our basic approach does not require the
delimitation of species, since it does not include species-
counts or a different treatment of within- and between-
species variation. It is thus not affected by potential taxo-
nomic artefacts due to the difficult recognizability and
complex taxonomy of the group [39,40], and does not
depend on the partition the morphological variation (e.g.,
[25]).

To compare the rates of change of the character systems
over the tree we used statistics giving a global measure of
difference, usually based on multiple pairwise compari-
sons (K-scores and Mantel test on patristic distance matri-
ces). We did not study in detail the distribution of the
change in different parts of the tree, such as e.g. between
sister species, or between internal and terminal branches.
The examination of the branch lengths in Figure 3 sug-
gests some interesting patterns, such as the strong diver-
gence between the syntopically co-occurring H. lineolata
and H. fulvipennis, or the frequency of deep branches with
length = 0 in the paramere outline. However, the number
of taxa included was insufficient to draw any conclusion
from these observations, which would require more com-
prehensive data to be tested [33].

Conclusion
In this work we outline an approach to compare evolu-
tionary rates of different character systems in a clade of
Hymenoplia chafers with the aim to study their speciation
mechanisms. Although based on indirect evidence, we
were able to obtain insightful conclusions on the preva-
lent mode of speciation, which could be the base for sub-
sequent, more detailed ecological or biological studies.
Thus, it seems likely that changes of the male genitalia are
shaped by sexual selection, and that body morphospace is
subject to either functional or developmental constraints
with signs of stabilizing selection that cannot be unam-
biguously associated with speciation (Table 4). On the
contrary, more structural morphological characters,
including those used for species delimitation and recogni-
tion (other than male genitalia), seem to evolve at a rate
proportional to time and are thus not related to specia-
tion. These conclusions would be supported by the appar-
ently widely occurring sympatry of the Hymenoplia species
(Figure 1), although the taxa seem not to co-occur syntop-
ically (see above). The possibility that sexual selection was
an important factor in the diversification of the genus
Hymenoplia is highly relevant, as much of recent biological
diversity of scarabs in the Mediterranean region is attrib-
uted to vicariance only (e.g., [81,82]). The approach pre-
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sented here has the additional advantage of not being
dependent on species definition, and could be of poten-
tial use for comparative studies not only related to specia-
tion, but to any question requiring the comparison of the
amount of change of different character systems over a
phylogenetic tree.
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