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Abstract

Background: The Neotropical ovenbird-woodcreeper family (Furnariidae) is an avian group
characterized by exceptionally diverse ecomorphological adaptations. For instance, members of the
family are known to construct nests of a remarkable variety. This offers a unique opportunity to
examine whether changes in nest design, accompanied by expansions into new habitats, facilitates
diversification. We present a multi-gene phylogeny and age estimates for the ovenbird-
woodcreeper family and use these results to estimate the degree of convergent evolution in both
phenotype and habitat utilisation. Furthermore, we discuss whether variation in species richness
among ovenbird clades could be explained by differences in clade-specific diversification rates, and
whether these rates differ among lineages with different nesting habits. In addition, the systematic
positions of some enigmatic ovenbird taxa and the postulated monophyly of some species-rich
genera are evaluated.

Results: The phylogenetic results reveal new examples of convergent evolution and show that
ovenbirds have independently colonized open habitats at least six times. The calculated age
estimates suggest that the ovenbird-woodcreeper family started to diverge at ca 33 Mya, and that
the timing of habitat shifts into open environments may be correlated with the aridification of South
America during the last |5 My. The results also show that observed large differences in species
richness among clades can be explained by a substantial variation in net diversification rates. The
synallaxines, which generally are adapted to dry habitats and build exposed vegetative nests, had
the highest diversification rate of all major furnariid clades.

Conclusion: Several key features may have played an important role for the radiation and
evolution of convergent phenotypes in the ovenbird-woodcreeper family. Our results suggest that
changes in nest building strategy and adaptation to novel habitats may have played an important
role in a diversification that included multiple radiations into more open and bushy environments.
The synallaxines were found to have had a particularly high diversification rate, which may be
explained by their ability to build exposed vegetative nests and thus to expand into a variety of
novel habitats that emerged during a period of cooling and aridification in South America.
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Background

The New World ovenbirds and woodcreepers have long
been recognized as a monophyletic lineage based on a
shared unique syrinx structure [1,2]. Until recently most
classifications [3-5] have treated ovenbirds and wood-
creepers as separate families and subdivided the oven-
birds further into the three subfamilies Furnariinae,
Synallaxinae and Philydorinae. This general classification
was mainly based on differences in external morphology,
which in turn is related to habitat preference and different
ways of locomotion and feeding.

As such, the ovenbird-woodcreeper assemblage shares
adaptive features across the entire passerine radiation; 1)
the ecomorphological variation in Furnariidae encom-
passes phenotypes that closely matches those of creepers,
warblers, wheatears, thrashers, thrushes, bulbuls, dippers,
jays, starlings, etc. [6,7], 2) members of Furnariidae have
successfully colonized a wide variety of habitats, from the
treeless grasslands in the Andes, through humid forests,
savanna, and desert, to the coastal shoreline, 3) the varia-
tion in nest construction in the family approaches that
found across the entire order of passerines [8,9]. Due to
this great variation it is not surprising that recent molecu-
lar studies [10-17] have revealed several examples of con-
vergent evolution and that the phylogenetic relationships
among ovenbirds and woodcreepers are much more com-
plex than suggested in traditional linear classifications.

Among the examples of convergent evolution are the
earthcreepers (Upucerthia sensu lato) that despite a similar
external morphology represent several independent adap-
tations to terrestrial life in open country [14,17], and the
parallel adaptation of Limnoctites, Spartonoica and Lim-
nornis/Phleocryptes lineages to a marsh-dwelling life-style
[15]. Tt is apparent that members of the traditional three
ovenbird subfamilies share a functional morphology
rather than a close ancestry. Furthermore, it has been
demonstrated that woodcreepers represent a specializa-
tion for scansorial life within the broader furnariid radia-
tion [10,13].

The extraordinary diversity of adaptations in the oven-
bird-woodcreeper family offers a unique opportunity to
study the evolution of morphological, ecological and
behavioral traits, as well as to explore how adaptations
and habitat shifts facilitate further diversification and evo-
lutionary success. Such studies may not only shed light on
the evolution of the ovenbird-woodcreeper clade per se,
but also provide insight into the role of adaptation for the
diversification process. So far, a comprehensive evalua-
tion of morphological, ecological and behavioral diversity
in the ovenbird-woodcreeper clade has been hampered by
the lack both of a well-supported phylogeny that includes
all major lineages, and reasonable age estimates of the
divergences within this clade.
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We present a well supported multi-gene phylogeny that
includes more than one third of all species recognized in
Furnariidae, including representatives from most genera
and multiple species of large and heterogeneous genera.
The phylogeny includes representatives of almost all
major morphological, ecological and behavioral lineages,
and the taxa that are missing mostly belong to species-rich
and close-knit genera (e.g., Geositta, Cinclodes, Synallaxis,
Cranioleuca, Xiphorhynchus, Asthenes and Philydor; some of
these cases being covered in other more detailed studies,
see [18-22]).

We use the phylogeny and age estimates to study the rela-
tionship between major shifts in nest construction and
habitat preference with the climatic and ecological history
of South America. We also investigate whether the
observed variation in species richness between ovenbird
clades can be explained by differences in diversification
rates among clades. Specifically, we investigate if the
diversification rate has been particularly high in the synal-
laxine clade, since it has been proposed that the change
from cavity nests to vegetative nests associated with this
clade may have facilitated the colonization of and adap-
tive radiation within new habitats [12]. Finally, we inves-
tigate the systematic position of certain enigmatic
ovenbird taxa and evaluate the postulated monophyly of
some species-rich genera.

Methods

Taxon sampling, amplification and sequencing

The 105 ingroup species in this study represent more than
one third of all species in Furnariidae recognized by Rem-
sen |[7]. The species selected cover all major radiations of
ovenbirds and woodcreepers as suggested by recent
molecular studies [10-14,16,17]. We have also included
several taxa whose affinities have been difficult to estab-
lish by morphology and that had not been included in
previous molecular studies, and we have sampled certain
genera whose monophyly have been contested more
densely [7]. Only five genera (Gyalophylax, Thripophaga,
Acrobatornis, Anabazenops and Cichlocolaptes) out of 69 in
the ovenbird-woodcreeper assemblage are not included in
the study. Based on their overall morphology, most of
these taxa are probably correctly placed in recent classifi-
cations and their omission here should only have mar-
ginal effect on the results. The only obvious exception is
the genus Thripophaga, which although presumed to
belong to the synallaxine group [7], may not form a
monophyletic clade.

To root the phylogenetic trees we included a representa-
tive of the sister clade to all other passerines, the New Zea-
land rifleman, Acanthisitta chloris, as well as a parrot and a
bee-eater. To break up the long branch between Acan-
thisitta chloris and the ovenbird-woodcreeper assemblage
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we also included two oscines and 12 additional subos-
cines.

Five independent loci comprising 3674 bp of DNA have
been sequenced and used in the phylogenetic analyses:
the nuclear loci glyceraldehyde-3-phosphodehydrogenase
(G3PDH) intron 11, myoglobin intron 2, B-fibrinogen
intron 5, and ornithine decarboxylase (ODC) introns 6
and 7 (along with the intercepting exon 7), and the mito-
chondrial cytochrome b gene. Extractions, amplifications,
and sequencing procedures for fresh tissue/blood samples
follow [10,23-25] while corresponding procedures for
study skin samples follows [26]. Several new internal
primers were designed for the amplification of the cyto-
chrome b gene from study skins, Cytb-furnH1 (GTT GTC
AAC TGA GAA TCC TCC TCA), Cytb-furnH3 (TCA GAA
TGA TAT TTG GCC TCA TGG), Cytb-furnH4 (ARA AGT
ATG GGT GGA ATG GGAT), Cytb-furnH5 (ARG TTATTG
TTC GIT GIT TTG AT), Cytb-furnL1 (GTC CTA CCA TGA
GGC CAA ATATC), Cytb-furnL4 (CYY TAG GAATYT CAT
CAA ACT G), Cytb-furnL5 (GCT CTA GCY CTC GCT GCY
TCA GT), and Cytb-furnL6 (TAA TAG CAA TAC ACT AYA
CAG Q).

For each gene and taxon, multiple sequence fragments
were obtained by sequencing with different primers.
These sequences were assembled to complete sequences
with SeqMan II (DNASTAR Inc.). Positions where the
nucleotide could not be determined with certainty were
coded with the appropriate IUPAC code. Due to the low
number of indels in the introns the combined sequences
could easily be aligned by eye. All gaps have been treated
as missing data in the analyses. No insertions, deletions,
stop or nonsense codons were observed in any of the cyto-
chrome b sequences, and it therefore seems highly likely
that the sequences are of mitochondrial origin and not
nuclear copies (numts). Voucher and GenBank accession
numbers are given in Additional file 1: Table S1.

Phylogenetic inference and model selection

We used two model-based methods to estimate phyloge-
netic relationships; Bayesian inference and maximum-
likelihood analysis. The models for nucleotide substitu-
tion used in the analyses were selected for each gene indi-
vidually by using Akaike Information Criterion (AIC,[27])
and the program MrModeltest [28] in conjunction with
PAUP* [29]. Bayesian inference was used in the analyses
of the concatenated dataset of all genes, a dataset consist-
ing of the nuclear genes only, and the cytochrome b data-
set. The posterior probabilities of trees and parameters in
the substitution models were approximated with MCMC
and Metropolis coupling using the program MrBayes 3.1
[30]. The models selected for the individual gene parti-
tions were used, but the topology was constrained to be
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the same. Chains were run for 20 million generations with
arandom starting tree and trees were sampled every 100th
generation. The program AWTY [31] was used to estimate
when the chains had reached its apparent target distribu-
tion and trees sampled during the burn-in phase were dis-
carded.

As the Bayesian analyses from the individual nuclear loci
did not converge to the apparent target distribution (due
to few variable nucleotides compared to the included
number of taxa), these gene trees were estimated using
maximum-likelihood analyses in the program GARLI
[32].

Calibration of divergence time estimates and calculation
of diversification rates

We used a relaxed clock model implemented in Beast
1.4.7 [33,34] to estimate divergence times between phyl-
ogenetic lineages based on the concatenated dataset of all
genes. The chains were run with the GTR+I+I" model for
20 million generations with a random starting tree, and
trees were sampled every 1000th generation. As calibra-
tion point the geological split between New Zealand and
Antarctica was used, as it has been related to the basal sep-
aration of the Acanthisitta-lineage from the other passer-
ines [35-37]. The dating of this split has often been
assumed to be around 85-82 Mya [38], but more recently
the timing of this split has been suggested to be more
uncertain, 85-65 Mya [39,40]. In order to account for this
uncertainty we used a normal distributed tree prior with a
median at 78 Mya and a standard deviation of 7 (quan-
tiles 2,5% = 63,3 Mya, 5% = 65,7 Mya, 95% = 90,3 Mya,
97,5%= 92,7 Mya). As for other priors, we used all default
settings, except for the Tree Prior category that was set to
Yule Process and an uncorrelated lognormal distribution
for the molecular clock model [33].

It has been suggested that changes in nest construction
strategy have served as an ecological release in furnariids,
and particularly in the synallaxine clade [12]. We thus
explored the diversification rate for the synallaxine clade
and compared it to the diversification rates of other fur-
nariid clades. All species of ovenbirds and woodcreepers
recognized by Remsen [7] and Marantz et al. [41] were
included in the calculations of diversification rates (except
the 4 species of Thripophaga whose precise placement
within the synallaxine radiation is uncertain, see Material
and Methods). The systematic position of species not
included in the phylogenetic analysis was assessed based
on the relationships suggested by Remsen [7] and
Marantz et al. [41].

We generally calculated the diversification rates for clades
where all members have the same principal nesting habit,
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but in a few small clades both cavity and exposed vegeta-
tive nesters occur. In a few cases, when information of
nesting habits was lacking, we postulated that the species
has the same nesting habit as its closest relatives. We used
the descriptions of nesting habits provided by Zyskowski
and Prum [9] and Remsen [7] to divide all species into
either of these two groups. The variation in ovenbird nests
sometimes makes this division arbitrary as some species
are difficult to assign to either category (i.e. some species
that make "improved cavities" may represent transitional
stages towards the derived nesting habit). However, as
only a few species build nests that are difficult to assign
either category, this should only have a marginal effect on
the calculations.

To estimate diversification rates, we used the method
described by Magallon and Sanderson [42], which uses a
stochastic, time-homogeneous birth and death process
depending on diversification rate (r) and the relative
extinction rate (). As we wanted to investigate if certain
furnariid clades are excessively species rich or species poor
we also estimated a 95% confidence interval for the diver-
sification rate based on the mean diversification rate for
the entire ovenbird-woodcreeper family (stem group
[42]). Cavity-nesting is reconstructed as the plesiomor-
phic state in the ovenbird-woodcreeper clade (e.g.,
[9,12,13]). In lineages where shifts in nest design have
occurred these shifts may have occurred anywhere along
the ancestral branch. To avoid this uncertainty we conse-
quently used a method to calculate the diversification
rates for crown groups [42]. As this confidence interval
will depend on the relative extinction rate (which is
unknown) we calculated confidence intervals for a com-
paratively high ( = 0.90), intermediate ( = 0.5) and low (
= 0) relative extinction rate. The clades for which diversi-
fication rates have been compared, and their principal
nesting types and habitat preferences, are given in Table 1.

As we primarily were interested to investigate if the synal-
laxine clade has an excessively higher rate of diversifica-
tion compared to the background rate for the Furnariidae,
we also calculated diversification rates for larger sub-
clades nested within the synallaxines (the sub-clades for
which diversification rates have been calculated are given
in Table 1). This was done to examine if certain sub-clades
nested within the synallaxines may have a particularly
great influence on the calculated diversification rate for
the entire synallaxine clade.

Results

Sequence variation and selection of substitution models
In total, the concatenated dataset of all genes consists of
3674 bp. Except for a few cases where species lack a short
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segment of a studied gene region, the obtained sequences
from the nuclear loci ranged from 667 bp (Heliobletus) to
721 bp (Grallaria) in the myoglobin intron 2, from 287 bp
(Chamaeza) to 410 bp (Margarornis) in the G3PDH intron
11, from 491 bp (Corvus) to 700 bp (Tityra) in ODC
intron 6 and 7, and between 519 bp (Acanthisitta) and 574
bp (Merops) in the B-fibrinogen intron 5, while 999 bp
were obtained from the mitochondrial cytochrome b
gene. Most indels observed in the introns were autapo-
morphic or synapomorphic when mapped onto the tree
topology obtained from the Bayesian analyses of the con-
catenated dataset. A few indels were found to be incongru-
ent with this phylogeny but these were generally found in
highly variable gene regions.

The GTR+I+I" model of nucleotide substitutions had the
best fit for the cytochrome b and ODC datasets, while the
GTR+I' model was selected for the myoglobin, G3PDH
and B-fibrinogen intron 5 datasets. These models were
used in the Bayesian/maximum-likelihood analyses of the
individual genes, as well as in the analysis of the com-
bined dataset. The inference for the two concatenated
datasets were, after discarding the burn-in phase, based on
a total of ca 180,000 samples from the posterior. The pos-
terior distribution of topologies for the concatenated
dataset of all genes is presented as a majority-rule consen-
sus tree (Figure 1).

Phylogenetic relationships

The trees obtained from the maximum-likelihood analy-
ses of the individual gene partitions exhibit different
degrees of resolution and are not topologically congruent
(Additional file 2: Figure S1). The B-fibrinogen intron 5
produced the topologically most different tree, where, for
example, woodcreepers are not recovered as sister group
to the core-ovenbirds but are placed at a more terminal
position [14]. In general, however, the incongruence is
found in parts of the tree with short internodes that have
modest support values. Most conflicting topologies are
observed in loci with rather few variable positions, where
a few homoplasious characters may influence the topol-
ogy. The cytochrome b tree is in general similar to the tree
obtained from the concatenated dataset of all nuclear
genes (Additional file 2: Figure S1), except that the deeper
relationships are poorly resolved. Some conflicts do
occur, but mainly at short and poorly supported nodes
(the position of the Xenops minutus and Xenops rutilans lin-
eage is perhaps the most obvious difference between the
cytochrome b tree and that based on the nuclear genes -
see also Fjeldsd et al. [13]). However, the overall topology
of both the cytochrome b tree and the nuclear tree largely
agree with the tree obtained from the combined dataset of
all genes. No nodes with support values > 0.95 (posterior
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Table I: Absolute rate of diversification for major ovenbird-woodcreeper clades.

Clade Number of Age Diversification Diversification Diversification Nest type Habitat
species rates rates rates
(=0) (=0.5) (=0.90)

A (Synallaxinae) 124 19.2 0.22 0.20 0.13 EV X, (F)
Cranioleuca/Metopothrix 27 10,6 0.24 0.22 0.12 EV X, F
SpartoniocalAsthenes cactorum 7 13,6 0.09 0.08 0.03 EV X(F)
Synallaxis/Certhiaxis 38 13,4 0.22 0.20 0.11 EV X
Asthenes ottonis/A dorbignyi 29 10,8 0.25 0.22 0.12 EV X
Anumbius/Hellmayrea 3 16.0 0.03 0.02 0.01 EV X(F)
Phacellodomus 7 7 0.18 0.15 0.06 EV X, F
Sylviorthorhynchus/Aphrastura 13 17,8 0.11 0.09 0.04 EV X, F

B (Upucerthia- Phleocryptes) 21 15 0.16 0.14 0.07 C, (EV) X

C (Furnarius) 6 8.3 0.13 0.11 0.04 MN, (C) X

D (Tarphonomus- 7 21.8 0.06 0.05 0.02 C, (EV) X, F

Berlepschia)

E (Margarornis- Premoplex) 6 18.9 0.06 0.05 0.02 EV F

F (Core Philydorinae) 42 16.3 0.19 0.17 0.10 C F

G (Ochetorhynchus- X. 6 20.4 0.05 0.05 0.02 C,EV X, F

milleri)

H (Dendrocolaptinae - 55 27.7 0.12 0.11 0.07 (o F

Xenops)

I (Geositta) I 14.4 0.12 0.10 0.04 C X

) (Sclerurus) 6 14.2 0.08 0.07 0.02 C F

Ovenbird-woodcreeper 288 32.7 0.15 0.13 0.09

clade

The absolute rate of diversification have been estimated for clades A - ] in absence of extinction ( = 0), intermediate ( = 0.5) and comparatively high
(=0.90) relative extinction rate. Principle nesting types and habitat preference are indicated by symbols. Nest type symbols; EV = exposed
vegetative, C = cavity, and MN = mud nest. Habitat symbols; X = xeric (open and bushy habitats), and F = forest. Symbols placed between
parenthesis indicate that occasional member within the clade build this type of nest or occupy this type of habitat. Diversification rates for larger
sub-clades nested within the synallaxines (clade A) are given in lower case and normal font.

probability) in the nuclear tree are in conflict with those
in the combined tree. The phylogenetic hypotheses are
also generally in good agreement with previous phyloge-
netic studies [10,12-14,16,17,43].

Among the strongly supported relationships, which have
not already been demonstrated in other recent molecular

studies, are; 1) the affinity of Xenops milleri as a basal
branch in the Pygarrhichas-Ochetorhychus clade, instead of
being closely related to other Xenops species, 2) the posi-
tion of Clibanornis dendrocolaptoides as deeply nested
within the core philydorine radiation, rather than being
associated with synallaxine ovenbirds as previously
assumed, 3) the position of Sylviorthorhynchus desmursii as
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+ Cranioleuca albicapilla
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Siptornis striaticollis
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. nallaxis scutata | 15

Synallaxis erythrothorax
Siptornopsis hypochondriaca
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Asthenes ottonis
1089 Schizoeaca harterti 1
“Asthenes pudibunda 6
Oreophylax moreirae
Schizoeaca fulginosa 1
Asthenes modest
n ‘sg Asthenes wyam/A punensis
"Asthenes flammulata
Asthonss urubambensis
Asthenes dorbign,
A p—
histera alaudina 7
Hellmayroa gulars
+ Phacellodomus erythrophthalmus |
Phacellodomus ruber 17
Phacellodomus rufifrons
Leptasthenura yanacensis
Sylviorthorhynchus desmursii
Leptasthenura pileata 18
Aphrastura spinicauda 19

*Upucerthia validirostris
Upucerthia dumetari
ucorthia serrana
Limnornis curvirostris

Phleocryptes melanops 20
Lochmias nematura
Furnarius cristatus | o
Furnarius leucopus I

{* 10
Y Tarphonomus harterti
21

Berlepschia rikeri 2
Margarornis squamiger 22

Heliobletus contaminatus 23
Philydor atricapillus
Anabacerthia striaticollis

Syndactyla rufosuperciliata 3
groeeeaaaaees Ancistrops stringilatus
Automolus leucophthalmus
Hyloctistes subulatus
Hylocryptus erythrocephalus

Clibanornis dendrocolaptoides
Thripadectes flammulatus
Thripadectes ignobilis
Qchetorhynchus phoenicurus
Ochetorhynchus ruficaudus
Ochetorhynchus andaecola
Ochetorhynchus melanura

a

kil

Xenops milleri 24
Lepidocolaptes affinis
Lepidocolaptes angustirostris

Dendrexetastes rufigula
Nasica longirostris
Dendrocolaptes certhia
Dendrocolaptes platyrostris

3 Xiphocolaptes major

* Xiphocolaptes promeropirhynchus
Hylexetastes perroti
Dendrocincla fuliginosa
Dendrocincla merula

Sittasomus griseicapillus

lyphorynchus spirurus

Xenops minutus

Xenops rutilans I 25

Geositta uifpennis | 1,
Geositta i

{ Sclerurus mexicanus

Sclerurus scansor

Chamaeza
i
Grallaria
C
Elaenia
Tityra
Pipra
Pyroderus
Philepitta
Corvus
Parus

Acantisitta

Merops

Figure |

Phylogenetic relationships of the ovenbird-woodcreeper clade. The 50% majority rule consensus tree obtained from
the analyses of the combined dataset (cytochrome b, myoglobin intron 2, ornithine decarboxylase introns 6 and 7, glyceralde-
hyde-3-phosphate dehydrogenase intron | |, and B-fibrinogen intron 5). Posterior probability values are indicated below the
nodes, posterior probability values of 1.00 are indicated with an asterisk. Dashed lines are used to tentatively place taxa (from
which nuclear data is lacking) based on their relative position in the cytochrome b tree. Differently coloured branches illustrate
where the different lineages were placed in traditional classifications (purple = Dendrocolaptidae, green = Philydorinae, red =
Furnariinae, yellow = Synallaxinae). The morphological adaptive radiations and examples of convergent evolution within the
ovenbird-woodcreeper family are illustrated by drawings to the left of the tree; the phylogenetic positions of the birds are indi-
cated by numbers in bold font. The left column of birds illustrates large scansorial groups (from above; Pseudoseisura, Berlep-
schia, Syndactyla, Pygarrhichas, and Xiphorhynchus), the center column depicts groups with terrestrial feeding (from above;
Asthenes dorbignyi, Coryphistera, Upucerthia, Furnarius, Tarphonomus, Ochetorhynchus, and Geositta), and the right column portrays
small acrobatic birds feeding in the vegetation (from above: Cranioleuca, Xenerpestes, Synallaxis, Schizoeaca, Phacellodomus, Lep-
tasthenura, Aphrastura, Phleocryptes, Premnornis, Margarornis, Heliobletus, Xenops milleri, and Xenops).
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nested within the genus Leptasthenura, and 4) the affinity
of the small acrobatic/scansorial species Siptornis striaticol-
lis and Roraima adusta as closely related to the genera Meto-
pothrix, Xenerpestes and Cranioleuca. The phylogenetic
results also strongly suggest that the genus Asthenes is par-
aphyletic. Asthenes cactorum (and A. humicola [43]) clus-
ters with the genera Anumbius and Coryphistera, while the
other Asthenes species (with A. modesta, which previously
included A. cactorum as a subspecies) included in this
study form a clade, but with the genus Schizoeaca and the
monotypic Oreophylax moreirae nested among them.

Divergence time estimates and divergence rates
Divergence time estimates based on the concatenated
dataset suggest that the ovenbird-woodcreeper radiation
started to diverge at ca 33 Mya (Figure 2), the time when
Sclerurus and Geositta split off from the core-ovenbird-
woodcreeper clade in the Oligocene. The divergence time
estimates also suggest that the synallaxines started to
diverge at ca 19 Mya, but that most of the generic diversi-
fication has occurred during the last 15 My.

The mean diversification rate for the ovenbird-wood-
creeper clade was estimated to 0.15, while the estimated
diversification rate for the different sub-clades (A - J in
Table 1 and Figure 2) varied between 0.05 and 0.22 (at a
relative extinction rate of = 0). The synallaxine clade was
found to have the highest diversification rate (0.22). This
rate was significantly higher than the mean diversification
rate for the overall ovenbird-woodcreeper lineage at rela-
tive extinction rates between 0 and 0.75 (Figure 3). The
calculated diversification rates for sub-clades nested
within the synallaxines show that there is a variation in
diversification rates among the sub-clades (Table 1).
However, a majority of the sub-clades (both terminal and
more basal clades) have higher diversification rates than
the background rate for the Furnariidae at both low and
intermediate extinction rates.

Discussion

The phylogeny of the ovenbird-woodcreeper assemblage -
an extraordinary example of adaptive radiation

The analysis resulted in a well resolved and generally
strongly supported phylogeny. Topological conflicts
between the different gene trees, as well as between the
combined tree and previously published molecular phyl-
ogenies almost exclusively concern short internodes with
weak support. In some loci with rather few variable posi-
tions (e.g., B-fibrinogen intron 5), homoplasious charac-
ters may have a significant effect on the tree topology [14].
It is difficult, however, to ascertain whether this is an effect
of real biological processes [44] or analytical factors [45-
47]. It may thus be assumed that a phylogeny based on
DNA sequences from multiple genes provides a better esti-
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mate than does a single gene tree. Arguably, the phylog-
eny presented here is therefore the best estimate of
relationships in the ovenbird-woodcreeper assemblage to
date, as it includes data from five independent loci and
more taxa than previous studies. Our assumption is sup-
ported by the observations that: 1) there is a general con-
gruence between the well supported parts of the gene
trees, 2) there is a good congruence between the mito-
chondrial tree and the tree obtained from the concate-
nated nuclear dataset, and 3) the results are in good
agreement with other studies utilizing independent
molecular markers [16,17].

The phylogenetic tree obtained from the combined data-
set (Figure 1) supports the major phylogenetic relation-
ships demonstrated in previous molecular studies [10-
14,16,17,43], including that woodcreepers are nested
among ovenbirds, that the traditional subdivision of
ovenbirds to a large degree reflects functional groups
rather than monophyletic groups, and that the most basal
taxa are terrestrial (Sclerurus and Geositta), which is a trait
shared with the closest relatives of the entire ovenbird-
woodcreeper radiation (see below). The results also reveal
several new examples where the traditional classifications
have been misled by convergently evolved morphological
characters. The major patterns of diversification in the
ovenbird-woodcreeper clade now seem well corrobo-
rated, although a denser taxon sampling is needed to fully
resolve generic delimitations and to test the monophyly
of some larger genera. The phylogenetic hypothesis pre-
sented covers most major ecological and morphological
shifts in the group, and it is unlikely that the few genera
not included in the analysis would change the conclu-
sions below.

The ovenbird-woodcreeper family constitutes one of the
best study cases of adaptive radiations in passerines with
several examples of convergent evolution in morphology
and behavior. Convergence may lead to erroneous conclu-
sions about systematic relationships. This has certainly
been the case with the furnariids, as evident from the fact
that the long accepted subfamilies of ovenbirds, Furnarii-
nae, Synallaxinae and Philydorinae, are not recovered as
reciprocally monophyletic (Figure 1).

The nearest relatives of ovenbirds, tapaculos (Rhinocrypti-
dae) and ground antbirds (Grallaridae, Formicaridae) are
ground-feeding forest birds, and it is therefore plausible
that the genus Sclerurus, which finds its food on the forest
floor by flicking away dead leaves, represents an ancestral
ecological niche in the Furnariidae. It seems plausible to
assume that Geositta adapted to tree-less landscapes in
response to the aridification that took place in the south-
ern part of the continent from the early Miocene. How-
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Figure 2

Chronogram with divergence time estimates of the ovenbird-woodcreeper clade. The divergence times and confi-
dence intervals (grey bars) were estimated under a relaxed clock model implemented in Beast 1.4.7 [34]. For the calibration of
the chronogram the postulated separation of Acanthisitta from all other passerines in the phylogeny was used. The letters A - |
(on the right) correspond to the clades for which diversification rates have been compared (see Table 2).
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Figure 3

Plot of diversification rates of major furnariid clades.
The 95% confidence intervals of expected species diversity
through time of a clade that diversifies with a rate equal to
the ovenbird-woodcreeper radiation as a whole with a rela-
tive extinction rate of = 0.5 (solid line). The shaded area
represents the 95% confidence intervals for extreme values
of relative extinction rates ( = 0.90; upper boundary, and =
0; lower boundary). The observed numbers of species in
clades A - | (see Table 2) have been plotted against the esti-
mated age of the each clade.

ever, all other early furnariid groups adopted scansorial
habitats, as they forage on tree-trunks and in vine-tangles,
mainly in evergreen forest habitats, specializing on differ-
ent sections and kinds of tree trunks [12,13]. The highest
diversity of early furnariids is found in the humid tropics,
although some deep branches in the temporal austral
rainforest (Pygarrhicas, Aphrastura) suggest a wider distri-
bution at some point during the mid-Tertiary, when Pat-
agonia had more extensive and biologically rich forests
[48]. The later radiation in the tropics may to a large
extent be linked with the habitat complexity of the Ama-
zon basin and the many marine incursions and formation
of various kinds of swamp forests [49], but some mem-
bers of these scansorial groups became widespread gener-
alists and some switched to drier woodlands.

Within the ovenbird-woodcreeper family, open habitats
have been colonized independently at least six times; by
Geositta (see above), Drymornis bridgesii [11], Ochetorhyn-
chus (sensu [14]), Tarphonomus (sensu [50]), Clibanornis
dendrocolaptoides, the modified Furnariinae lineage (Cin-
clodes to Furnarius in Figure 1) and several synallaxines
(especially Coryphistera, Anumbius and some Asthenes spe-
cies). Among the examples of shifts in habitat utilization
revealed by the present study is the Canebrake ground-
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creeper, Clibanornis dendrocolaptoides. This species has for-
merly been associated with the Furnariinae genus
Cinclodes, but in recent classifications it is often placed
near the Synallaxinae genus Phacellodomus [7]. Our results
strongly support that Clibanornis is deeply nested among
core-philydorine ovenbirds. Clibanornis feeds on or near
the ground, a near unique habit among philydorine oven-
birds, and previous classifications have thus been
deceived by its ecological and morphological modifica-
tions to this habit.

A particularly interesting example, discussed by Fjeldsa et
al. [13], is now made more complete by the inclusion of
Xenops (Microxenops) milleri, which is a rare and poorly
known canopy bird of the Amazonian lowland forest. We
must assume that its scansorial habits, along with those of
the austral Pygarrhicas albogularis, represent ancestral hab-
its, and that the Ochetorhynchus species, which inhabit the
intervening geographical areas in the Andes, diverged and
became terrestrial, as they adapted perfectly to the harsh
and treeless landscapes that arose as a consequence of
Andean uplift and aridification. Thus they became super-
ficially similar to the Upucerthia earthcreepers (in the fur-
nariine group), and were until recently included in that

group.

The synallaxine group has undergone complex habitat
changes. The most basal species inhabit forest (Aphrastura
in the austral beech forest, Leptasthenura setaria in the Bra-
zilian auricaria forests), more open woodlands or bushy
habitats in the southern cone of the continent and in the
Andes (other Leptasthenura species), as well as humid
undergrowth in the austral forest zone (Sylviorthorhynchus
desmursii). The latter species has been assumed to be
related to Schizoeaca thistletails based on general mor-
phology, decomposed tail structure and nest type [7].
Gonzales and Wink [43] recently provided molecular evi-
dence for placing it near Leptasthenura, and our data dem-
onstrates that it is actually nested within that genus. In
fact, its dome-shaped nest is similar in construction to
that of Leptasthenura yanacensis and fuliginiceps (JF, unpub-
lished), and unlike other Leptasthenura species that nest in
somewhat improved or lined holes, or in abandoned
nests of other furnarids. Other synallaxines have become
adapted to forage in the structurally complex and micro-
phyllic scrubby vegetation in drier habitats in the south-
ern regions and in the Andes, where in some cases they
switched to terrestrial feeding. Many species in the
Andean zone and Patagonia adapted to shrub steppe and
grasslands (Asthenes, Schizoeaca and Oreophylax). In addi-
tion, there are also examples of recolonization of humid
forests habitats. This is most pronounced within the Meto-
pothrix-Cranioleuca clade. Roraimia adusta, which is confi-
dently placed within this clade, has in fact traditionally
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been assumed to be related to the small and acrobatic Phi-
lydorinae genera Premnornis, Premnoplex and Margarornis
[51].

Rates of diversification and nest habits

Among the "key" features that have been proposed as
important for diversification among birds are small body
size and short generation time [52], intense sexual selec-
tion [53], the ability to build nests of many different types
[54], and behavioral flexibility [55]. Several of these fea-
tures vary significantly among the ovenbirds and it is rea-
sonable to assume that several of them may have
influenced diversification rates in the ovenbird-wood-
creeper clade. In addition to these factors, it can be
assumed that the climatic and ecological development of
South America during this time has had an effect on diver-
sification rates.

For the ovenbird-woodcreeper clade, changes in the bill
kinesis has been proposed to play a significant role for the
earliest diversification of the group. Particularly the
unique, flexible pseudo-rhynchokinetic bill is likely to
have been important for the evolution of substrate-ori-
ented specializations [13]. The synallaxine radiation is by
far the most species rich within the ovenbird-woodcreeper
lineage. Irestedt et al. [12] proposed that a shift in nest
habit, from cavity-nesting to the ability to build exposed
vegetative nests, served as an ecological release that facili-
tated the diversification of the synallaxines into more
open habitats.

The temporal variation in diversification rates is reflected
by the variation in branch lengths in the chronogram.
Recent studies (e.g., [56]) have shown that it may also be
possible to estimate the relative contribution of speciation
and extinction to the overall diversification rate. However,
this would require taxonomically almost complete phyl-
ogenies to avoid that biased taxon sampling obscures the
pattern. Our phylogeny lacks too many taxa to make such
a study meaningful, as variation in branch lengths in our
phylogeny in several cases may reflect incomplete sam-
pling. Instead, we estimated the diversification as
described by Magall6n & Sanderson [42], which assumes
that clades can be treated as independent data points. Our
diversification rate estimates show that the synallaxine
group has the highest diversification rate of all major fur-
nariid clades (Table 1). This rate is significantly higher
than the mean diversification rate for the overall oven-
bird-woodcreeper clade assuming low to high ( < 0.75)
relative extinction rates (Figure 3). For higher relative
extinction rates ( > 0.75), the species richness in the syn-
allaxines lies within the 95% confidence interval of the
mean diversification rate. Although the relative extinction
rate in the ovenbird-woodcreeper clade currently is

http://www.biomedcentral.com/1471-2148/9/268

unknown, it should be noted that the upper limit used
here ( = 0.9) could be considered high [42]. The diversifi-
cation rate in the synallaxines can therefore be considered
as excessively high under most plausible scenarios. None
of the other groups were found to be exceptionally species
rich or species poor (Figure 3). The calculated diversifica-
tion rates for sub-clades nested within the synallaxines
suggest there is a variation in diversification rates within
the synallaxines. However, as several sub-clades (both ter-
minal and more basal clades) have higher diversification
rates than the background rate for the Furnariidae, the
observed high diversification for the synallaxines is not
driven by a particular sub-clade nested within the synal-
laxines.

By comparing the age estimates calculated in this study
(Figure 2) with the climatic and ecological development
of South America, it is evident that the radiation of synal-
laxine ovenbirds mainly took place during the last 15
Mya, which was a period when South America experi-
enced a period of cooling and aridification [57,58]. It is
notable that a similar large-scale diversification into open
habitats during that time also has been suggested to have
occurred within tyrannidae [59]. Cavity-nesting birds may
be constrained by a paucity of potential nesting holes in
areas with dense shrub steppe habitats (and lack of larger
trees, or exposed rocky areas). This should also be the case
in the riverine thickets and marsh vegetation, and in the
dense vegetation of stunted cloud-forest and paramo
shrubbery that developed during the Neogene uplift in
the tropical Andes region. The ability, and flexibility, in
building vegetative nests in the dense, bushy vegetation
may have allowed the synallaxines to build up large pop-
ulations in such habitats and thus to expand and diversify
[60].

The ability to build exposed vegetative nests also occurs in
a few species outside the synallaxines, many of which also
inhabit open environments. However, these species are
nested within clades B, D and G, where cavity-nesting is
pleisomorphic, and the ability to build exposed vegetative
nests may thus be recently derived. The only other clade
where exposed vegetative nest building is synapomorphic
is clade E. In contrast to the synallaxines, this clade has a
relatively low diversification rate (Table 1). One possible
explanation for this is that clade E is confined to a forest
environment, which may have restricted its potential to
diversify.

Both environmental and behavioral factors constitute
morphological constraints on birds, as exemplified by the
many similarities in external morphology between vari-
ous ovenbird-woodcreeper lineages and other passerines.
That this "morphological drift" could be rather fast and
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pronounced in passerines when new habitats or behavio-
ral niches are colonized is evident from the many exam-
ples revealed within the ovenbird-woodcreeper radiation,
as well as in other passerine birds, e.g., Pseudopodoces
humilis [61].

Conclusion

The major patterns of diversification in the ovenbird-
woodcreeper clade now seems well corroborated, as our
results largely support the phylogenetic relationships
demonstrated in previous molecular studies. Our results
also reveal additional examples of convergent evolution,
suggest that some large genera are not monophyletic and,
using molecular methods, place some enigmatic furnari-
ids for the first time. The phylogenetic results further sug-
gest that the ovenbird-woodcreeper clade has
independently colonized open habitats several times and
that the diversification of clades adapted to open habitat
coincides with the aridification of South America.
Although several key features may have played an impor-
tant role for the exceptional adaptive radiation of the
ovenbird-woodcreeper family, the observation that the
synallaxine clade has the highest diversification rate of all
furnariid clades suggests that the shift from a cavity-nest-
ing habit to building more flexible vegetative nests, com-
bined with an expansion into more open and bushy
habitats, may have played an important role in the diver-
sification of this group. The results manifest the ovenbird-
woodcreeper assemblage as one of the most remarkable
examples of adaptive radiation and convergent evolution
in passerine birds.
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