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Abstract
Background: Although the gene encoding for glutamine synthetase (glnA) is essential in several
organisms, multiple glnA copies have been identified in bacterial genomes such as those of the
phylum Actinobacteria, notably the mycobacterial species. Intriguingly, previous reports have shown
that only one copy (glnA1) is essential for growth in M. tuberculosis, while the other copies (glnA2,
glnA3 and glnA4) are not.

Results: In this report it is shown that the glnA1 and glnA2 encoded glutamine synthetase
sequences were inherited from an Actinobacteria ancestor, while the glnA4 and glnA3 encoded GS
sequences were sequentially acquired during Actinobacteria speciation. The glutamine synthetase
sequences encoded by glnA4 and glnA3 are undergoing reductive evolution in the mycobacteria,
whilst those encoded by glnA1 and glnA2 are more conserved.

Conclusion: Different selective pressures by the ecological niche that the organisms occupy may
influence the sequence evolution of glnA1 and glnA2 and thereby affecting phylogenies based on the
protein sequences they encode. The findings in this report may impact the use of similar sequences
as molecular markers, as well as shed some light on the evolution of glutamine synthetase in the
mycobacteria.

Background
Gene duplication is a common occurrence in bacterial
genomes and may result from evolutionary pressures
exerted on the organism by the niche it occupies, thereby
enabling adaptation to changing environments [1-3].
Glutamine synthetases (GS; glutamate ammonia ligase EC
3.6.2) are enzymes present in most living organisms
where they are involved in the ATP-dependant synthesis
of glutamine from glutamate and ammonium. There are
two main GS families, namely GSI, which is further sub-
divided into a GSIβ and the less common GSIα, and GSII.

Both the GSI and GSII enzymes are found in prokaryotes,
while the GSI enzyme is largely absent in eukaryotes. Var-
ious studies have shown that the genes encoding the vari-
ous GS sub-types are widely distributed in various
organisms and encode proteins that have very conserved
catalytic and structurally important regions. This finding
suggests that all the GS families diverged from a single
ancestral sequence through duplication events prior to the
divergence of prokaryotes and eukaryotes [4-7]. The GS
sub-classes are distinguishable from each other by specific
insertion sequences and mechanisms of regulation [5].
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The GSIβ sub-type is subjected to post-translational mod-
ification by adenylylation of a conserved tyrosine residue
by an adenylyltransferase [8], while GSIα and GSII activity
may mainly be regulated through feedback mechanisms.
The enzymes also appear to differ in structure; the GS I
enzymes form dodecamers [9], while GSII molecules are
octamers [10]. The DNA and protein sequences of GS
have thus been used as molecular markers in the construc-
tion of the phylogenetic relationships between evolution-
ary diverse prokaryotic and eukaryotic organisms [6,11].
These sequences are considered useful as phylogenetic
markers due to their higher degree of sequence variation
in comparison with other markers, such as 16S rRNA [12],
which are very similar in ecologically related organisms.

Organisms belonging to the phylum Actinobacteria have
adapted to occupy a wide variety of ecological niches and
include species that are major antibiotic producers, as well
as various human, animal and plant pathogens. The
genome sequence of M. tuberculosis, a member of the
Actinobacteria, revealed that this important human patho-
gen has four glnA gene copies that may encode GSIβ
(glnA1 and glnA4) and GSII (glnA2 and glnA3) enzymes
[13]. Of the four glnA gene copies, it has been shown that
glnA1 encodes the main and essential GS in M. tuberculosis
[14], while the other glnA sequences (glnA2, glnA3 and
glnA4) encode functional, but non-essential GS enzymes
[15]. Although these glnA sequences have been shown to
encode enzymes that catalyse glutamine synthesis, their
evolution and importance in M. tuberculosis is not well
understood. Evidence has been presented that suggests
that M. tuberculosis GSIβ (encoded by glnA1) may have
evolved to perform other specialised functions not present
in non-tuberculosis causing mycobacteria and may play a
role in enabling M. tuberculosis to survive during infection
and growth in the human host [16,17]. These functions
may include the synthesis of poly-L-glutamic acid, a cell
wall constituent unique to M. tuberculosis that might play
a role in maintaining cell wall homeostasis [18].

These observations suggest that M. tuberculosis might have
been subjected to varying environmental pressures that
may have influenced GS sequence evolution. This hypoth-
esis questions the retention of potentially non-essential
and/or non-functional sequences in the mycobacterial
genome. Furthermore, if such sequences are retained, do
they evolve at the same rate as the organism, but with
enough changes over time, thereby enabling its use as a
marker of evolution? In this report we attempted to study
the evolution of the Actinobacteria, with specific reference
to the Mycobacteriae, through a comparison of the GS
sequences present in these genomes. The GS sequence
data was used to construct Actinobacteria phylogenies,
which were compared to phylogenies constructed from
16S rRNA and cytidine triphosphate (CTP) synthase

genes. Through these comparisons it was determined that
the GS sequences may undergo adaptive or reductive evo-
lution due to the different evolutionary pressures exerted
by the ecological niche the organism occupies. These dif-
ferences may lead to subtle differences in phylogenetic
reconstructions, although broad phylogenies could be
defined.

Results
Distribution of glnA sequences in the Actinobacteria
The distribution and similarity of GS protein sequences in
all the available genomes of organisms defined as mem-
bers of the phylum Actinobacteria [19] were detected
through a BLAST sequence comparison of the M. tubercu-
losis glnA1, glnA2, glnA3 and glnA4- protein sequences
(Table 1). Protein sequence data has been preferred to
DNA sequences, since the various Actinobacteria genomes
may differ with respect to G/C content that may result in
skewing of sequence alignments. Protein sequences of
high similarity (>60%) to the M. tuberculosis glnA1 and
glnA2 encoded protein sequences could be detected in all
the Actinobacteria genomes (Table 1), with Symbiobacte-
rium thermophilum being the only exception, where only a
single GS sequence with greater similarity to the glnA1-
encoded M. tuberculosis GSIβ (50% similarity) was
observed. The genome of S. thermophilum, a high G+C
gram positive organism belonging to an as yet undefined
taxon situated just outside the phylum Actinobacteria, was
included due to its close relationships to the actinobacte-
rial ancestor [19,20]. It was observed that the glnA1 and
glnA2 sequences were situated in close proximity to each
other in many genomes, but that considerable variance in
the distribution and similarity of GS sequences similar to
that M. tuberculosis glnA3 and glnA4 sequences was
observed. Some Actinobacteria genomes contained an
additional glnA protein sequence similar to the M. tuber-
culosis glnA4 protein sequence. However, this sequence
was less conserved than the glnA1 and glnA2 sequences.
Only the mycobacteria and some other closely related
actinomycetes, such as Frankia and Rhodococcus species,
contained sequences similar to the four glnA-encoded GS
sequences (summarised in Figure 1). An exception was
observed in that sequences similar to glnA3 and glnA4
were absent in the genomes of M. leprae and M. ulcerans,
which had glnA sequences similar to glnA1 and glnA2
only. It is well known that M. leprae and M. ulcerans have
undergone major reductive evolution [21,22] and as such
may have lost these genes. Since the distribution of the
glnA sequences (as seen in Figure 1) reflects the evolution
of phylum Actinobacteria as defined by 16S phylogenetic
analysis [19], it might be argued that there was a sequen-
tial acquisition of first glnA4 and later glnA3, rather than a
loss of these genes from an actinomycete progenitor. In
order to prove that glnA3 and glnA4 were lost in these two
mycobacterial species specifically, rather than being sepa-
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0% YP_873609 (446 aa) 61%

9% YP_831086 (446 aa) 31%
7% NP_696466 (445 aa) 29%

9% ZP_00381218 (454 aa) 56%

5% NP_940011 (466 aa) 28%

9% NP_738737 (516 aa) 29%
9% YP_226471 (446 aa) 29%

9% YP_250455 (448 aa) 29%
8% YP_001505022 (470 aa) 56%

ZP_00997071 (461 aa) 59%

1% YP_001361387 (460 aa) 61%

8% YP_061977 (445 aa) 32%

0% YP_882894 (468 aa) 78%

00% NP_856530 (457 aa) 100%
00% YP_978966 (475 aa) 100%

7% NP_302123 (448 aa) 29%
4% YP_886932 (457 aa) 74%

7% YP_938091 (455 aa) 74%
00% NP_337439 (457 aa) 100%

00% ZP_01685769 (462 aa) 100%
00% NP_217376 (457 aa) 100%
7% YP_905360 (446 aa) 30%
6% YP_001135323 (469 aa) 74%
4% YP_953098 (459 aa) 72%
8% YP_117870 (446 aa) 31%

8% YP_923778 (464 aa) 59%
0% YP_055378 (468 aa) 30%
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Table 1: GlnA protein sequence distribution and similarity in the Actinobacteria

Sequence accesion number, length (amino acids) and percentage s
Organism glnA1 glnA2 glnA3

Acidothermus 
cellulolyticus 11B

YP_872682 (474 aa) 72% YP_872678 (453 aa) 68% YP_872678 (453 aa) 3

Arthrobacter sp. FB24 YP_947504 (474 aa) 63% YP_947491 (446 aa) 65% YP_831086 (446 aa) 2
Bifidobacterium longum 
NCC2705

NP_696248 (478 aa) 62% NP_696466 (445 aa) 60% NP_696466 (445 aa) 2

Brevibacterium linens 
BL2

ZP_00378605 (474 aa) 62% ZP_00378066 (452 aa) 62% ZP_00378066 (452 aa) 2

Corynebacterium 
diphtheriae NCTC 
13129

NP_939986 (478 aa) 67% NP_940011 (446 aa) 64% NP_940011 (446 aa) 2

C. efficiens YS-314 NP_738714 (477 aa) 70% NP_738737 (516 aa) 66% NP_738737 (516 aa) 2
C. glutamicum ATCC 
13032

YP_226455 (477 aa) 70% YP_226471 (446 aa) 65% YP_226471 (446 aa) 2

C. jeikeium K411 YP_250482 (500 aa) 71% YP_250455 (448 aa) 71% YP_250455 (448 aa) 2
Frankia sp. EAN1pec YP_001506114 (474 aa) 66% YP_001506110 (452 aa) 65% YP_001510745 (496 aa) 3
Janibacter sp. 
HTCC2649

ZP_00994949 (474 aa) 66% ZP_00995601 (445 
aa) 70%

ZP_00995688 (446 
aa) 42%

Kineococcus 
radiotolerans 
SRS30216

YP_001363019 (474 aa) 68% YP_001363024 (447 aa) 65% YP_001363024 (447 aa) 3

Leifsonia xyli subsp. 
xyli str. CTCB07

YP_062980 (474 aa) 62% YP_061977 (445 aa) 63% YP_061977 (445 aa) 2

Mycobacterium avium 
104

YP_881471 (478 aa) 90% YP_881448 (446 aa) 94% YP_882016 (450 aa) 8

M. bovis AF2122/97 NP_855893 (478 aa) 100% NP_855895 (446 aa) 100% NP_855562 (450 aa) 1
M. bovis BCG str. 
Pasteur 1173P2

YP_978326 (478 aa) 100% YP_978328 (446 aa) 100% YP_978005 (450 aa) 1

M. leprae TN NP_301707 (478 aa) 91% NP_302123 (448 aa) 93% NP_302123 (448 aa) 2
M. smegmatis str. 
MC2 155

YP_888567 (478 aa) 84% YP_888571 (446 aa) 88% YP_887864 (453 aa) 6

M. sp. KMS YP_939366 (478 aa) 85% YP_939374 (446 aa) 89% YP_936250 (437 aa) 4
M. tuberculosis 
CDC1551

NP_336749 (478 aa) 00% NP_336751 (446 aa) 100% NP_336385 (450 aa) 1

M. tuberculosis F11 ZP_01685137 (478 aa) 100% ZP_01685139 (446 aa) 100% ZP_01684789 (450 aa) 1
M. tuberculosis H37Rv NP_216736 (478 aa) 100% NP_216738 (446 aa) 100% NP_216394 (450 aa) 1
M. ulcerans Agy99 YP_905364 (478 aa) 90% YP_905360 (446 aa) 93% YP_905360 (446 aa) 2
M. gilvum PYR-GCK YP_001134193 (478 aa) 84% YP_001134174 (446 aa) 89% YP_001134583 (453 aa) 6
M. vanbaalenii PYR-1 YP_954385 (478 aa) 85% YP_954396 (446 aa) 88% YP_953732 (442 aa) 6
Nocardia farcinica IFM 
10152

YP_117877 (478 aa) 77% YP_117870 (446 aa) 83% YP_117870 (446 aa) 2

Nocardioides sp. JS614 YP_923487 (474 aa) 71% YP_923242 (455 aa) 66% YP_923242 (455 aa) 2
Propionibacterium YP_055385 (473 aa) 66% YP_055378 (468 aa) 63% YP_055378 (468 aa) 3
B
M

C
 E acnes KPA171202

Rhodococcus sp. RHA1 YP_701142 (478 aa) 81% YP_701152 (446 aa) 84% YP_701692 (433 aa) 47% YP_705251 (451 aa) 33%
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Salinispora tropica 
CNB-440

YP_001160144 (474 aa) 70% YP_001160151 (451 aa) 68% YP_001160151 (451 aa) 2

Streptomyces avermitilis 
MA-4680

NP_827182 (469 aa) 70% NP_827131 (453 aa) 69% NP_827131 (453 aa) 2

S. coelicolor A3(2) NP_626450 (469 aa) 71% NP_626490 (453 aa) 69% NP_626490 (453 aa) 2
Symbiobacterium 
thermophilum IAM 
14863

YP_074027 (471 aa) 50% YP_074027 (471 aa) 33% YP_074027 (471 aa) 2

Thermobifida fusca YX YP_289049 (474 aa) 68% YP_289043 (453 aa) 68% YP_289043 (453 aa) 2
Marine 
actinobacterium 
PHSC20C1

ZP_01131573 (478 aa) 64% ZP_01129622 (445 aa) 62% ZP_01129567 (416 aa) 2

GlnA protein sequences distribution in the Actinobacteria. The percentage similarity to the M. tuberculosis GS sequences is indicated by means o
amino acid length of the protein sequence is indicated for each sequence.

Table 1: GlnA protein sequence distribution and similarity in the Actinobacteria (Continued)
B
M
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rately acquired in different members of the mycobacteria,
the chromosomal regions containing the glnA3 and glnA4
genes in M. tuberculosis were compared to the correspond-
ing chromosomal regions of M. leprae and M. ulcerans
(Figure 2). It was observed that the chromosomal regions
of M. leprae and M. ulcerans contained copies of glnA3 in
the form of pseudogenes situated in gene clusters corre-
sponding to that of the M. tuberculosis H37Rv chromo-
some. In M. ulcerans it was observed that the glnA3
sequence had been disrupted by an insertion element
(Figure 2). A copy of glnA4 can be observed in a gene clus-
ter similar to that found on the M. tuberculosis chromo-
some, suggesting that both sequences have been retained
from the mycobacterial ancestor during mycobacterial
speciation, but that they have become non-functional
through the evolutionary process in some members of the
genus Mycobacterium.

Origins of the glnA4 and glnA3 sequences
The sequence annotations of the M. tuberculosis glnA genes
suggest that glnA1 and glnA3 encode GSI enzymes and
glnA2 and glnA4 GSII enzymes, which together with the
results summarised in Figure 1, suggest that the glnA4 and
glnA3 GS sequences were acquired either through sequen-

tial duplication of a GSI and GSII sequence, or through
separate lateral genetic transfer events. Therefore the
ancestry of the glnA sequences was investigated through a
phylogenetic analysis of all the glnA sequences present in
the phylum Actinobacteria (Table 1). The simplified tree
shown in Figure 3 (see additional file 1) indicates that,
consistent with previous reports, the glnA-encoded pro-
tein sequences may have been derived from a common
ancestral GS sequence [4]. The sequence phylogeny fur-
ther shows that the glnA2, glnA3 and glnA4-encoded
sequences are clustered on a separate branch from the
glnA1-encoded sequence, indicating that these sequence
are related and may share a common ancestor.

This finding was unexpected, since the glnA4-encoded GS
sequence has a conserved tyrosine residue in the adeny-
lylation region of the GS sequence, suggesting that it may
rather be derived from glnA1 and would encode a GSIβ
enzyme. Therefore the structural relationships between
the GS protein sequences encoded by the four M. tubercu-
losis glnA genes were investigated by aligning the glnA1
(Rv2220; 478 amino acids), glnA2 (Rv2222; 446 amino
acids), glnA3 (Rv1878; 450 amino acids) and glnA4
(Rv2860c; 457 amino acids) -protein sequences according

The distribution of glnA sequences within the genomes of different actinobacterial species reflects the evolutionary history of the phylum Actinobacteria as derived from 16S rRNA phylogenetic analyses and indicates that the glnA3 and glnA4 sequences were acquired in a serial fashionFigure 1
The distribution of glnA sequences within the genomes of different actinobacterial species reflects the evolu-
tionary history of the phylum Actinobacteria as derived from 16S rRNA phylogenetic analyses and indicates 
that the glnA3 and glnA4 sequences were acquired in a serial fashion. *(The glnA3 and glnA4 sequences are present 
as pseudogenes in the genomes of M. leprae and M. ulcerans.)
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to maximum probability of amino acid identities (Figure
4). Inspection of the aligned protein sequences of the four
M. tuberculosis glnA sequences (Figure 4) showed differ-
ences in functional regions that separate the GSI and GSII
protein families. This data reflects a low level of similarity
between the GS sequences due to the low level of
sequence conservation in regions containing putative
functional domains, notably those that might be involved
in the formation of the GS-catalytic site [23]. Further-
more, the protein sequences encoded by glnA2, glnA3 and
glnA4 lack the insert sequence that is used to identify GSIβ
sequences [5]. In addition, the tyrosine residue in the
glnA1 protein sequence involved in post-translational reg-
ulation of GSIβ through adenylylation [24] is situated in
a run of amino acids that is not conserved in the other
three proteins. Therefore the tyrosine residue present in
the glnA4-encoded GS sequence might not be subjected to

post-transcriptional regulation by adenylylation, which
indicates that the protein sequences encoded by the glnA3
and glnA4 genes are of the type II GS family. This observa-
tion supports the phylogenetic analysis which indicated
that the glnA3 and glnA4 protein sequences are related to
or may have been derived from the glnA2 protein
sequence.

Alignment scores of the GS sequences (calculated as a per-
centage of amino acid identities per GS sequence length,
Table 1) showed that the glnA3 and glnA4 protein
sequences were dissimilar to those encoded by the glnA1
and glnA2 genes. From the alignment scores it is evident
that the protein sequences encoded by glnA1 and glnA2
are most similar (32.4% – 32.7%, Table 1), while the
sequence encoded by glnA3 shows the lowest similarity to
the protein sequences encoded by glnA1, glnA2 and glnA4

The chromosomal regions of M. leprae and M. ulcerans similar to that of M. tuberculosis containing the glnA3 and glnA4 sequences show that these GS encoding sequences were disrupted by insertions (glnA3, M. ulcerans) or deletions (glnA3, M. leprae; glnA4, M. ulcerans)Figure 2
The chromosomal regions of M. leprae and M. ulcerans similar to that of M. tuberculosis containing the glnA3 
and glnA4 sequences show that these GS encoding sequences were disrupted by insertions (glnA3, M. ulcerans) 
or deletions (glnA3, M. leprae; glnA4, M. ulcerans). Similar genes are indicated in the same colour and the percentage 
amino acid identity to the M. tuberculosis H37Rv reference sequence is indicated between brackets. Open arrows indicate no 
significant similarity to sequences in the corresponding chromosomal regions.
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(less than 23%; Table 1). Because it was expected that
recent gene duplicates would share a high degree of simi-
larity, the low level of glnA4 and glnA3 sequence conserva-
tion in comparison to the glnA1 and glnA2 sequences
suggests that these sequences either may have undergone
rapid evolution after duplication, or have been derived
from separate lateral gene transfer events during the speci-
ation of the later actinobacteria. Therefore the glnA3 and
glnA4-encoded protein sequences were compared to all
available microbial genomes on the NCBI BLAST server.
Sequences with similarity to the glnA4 sequence were
detected in members of the proteobacteria, such as Nitro-
coccus mobilis (61% similarity) and Acidiphilum cryptum
(54% similarity). Both these organisms had an additional
GSI copy, although it had lower similarity to the glnA1-
encoded GS of M. tuberculosis (50% and 51% similarity
respectively). The similarity of these sequences to the
glnA4 sequence was confirmed by a protein sequence
BLAST of the N. mobilis protein sequence against all the
genomes of the Actinobacteria. Higher protein sequence
similarity to the glnA4 sequence (see Table 1) were
observed in all cases, with the sequence of A. cellulolyticus
(YP_873609) being the most similar (63% identity). In
organisms where a glnA4 sequence is absent (see Figure
1), no sequences of significant similarity could be
detected. However, it could not be conclusively shown
whether these sequences were similar enough to suggest
that the presence of the glnA3 and glnA4 sequences could
be due to a lateral transfer event. The comparison of the
chromosomal regions on which the glnA4 gene is found
showed remarkable consistency even in more distantly
related actinobacteria, while the same was not true for the
glnA3 gene. For instance, the gene arrangement surround-
ing the glnA4 gene remained the same in M. tuberculosis as
in K. radiotolerans, while very few genes of significant sim-
ilarity surround the glnA3 locus. These observations sug-

gest that the genomic region containing the glnA4 gene
was inherited from the Actinobacteria progenitor, rather
than being transferred from an organism outside the phy-
lum. The ancestry of the glnA3 gene is more difficult to
explain, since a similar sequence could not be detected,
suggesting that the glnA3 gene arose through a duplication
event, but may be undergoing reductive evolution.

Actinobacteria GS sequences as phylogenetic markers
The lower level of GSIβ sequence conservation observed
in comparison to the GSII sequence between species
(Table 1) was surprising, since GSIβ may be the major GS
of M. tuberculosis and other Actinobacteria [14,15,25].
Since this observation suggests that the GSIβ and GSII
sequences evolve differently, Actinobacteria phylogenies
based on the GSIβ and GSII sequences were compared to
phylogenies based on 16S rRNA sequences [19]. Since the
glnA3 and glnA4 protein sequences might be undergoing
reductive evolution, they were excluded from the phylog-
eny. Figure 5 shows that the Actinobacteria phylogeny
based on the glnA2-encoded GSII sequence reflects the
16S rRNA phylogeny, while shifts are observed in the phy-
logeny based on the glnA1-encoded GSIβ sequence. In the
GSII sequence phylogeny, organisms are clustered accord-
ing to suborders, such as the Micrococcineae (B. linens,
Arthrobacter, L. xyli, and Janibacter), Corynebacterineae
(Corynebacteria sp., Mycobacterium sp., Rhodococcus and N.
farcinica), Streptomycineae (Streptomyces sp.), Streptospo-
rangineae (T. fusca) and the Frankineae (A. cellulolyticus,
Frankia sp). Exceptions were observed in that K. radiotoler-
ans (Frankineae), P. acnes and Nocardiodes sp. (Propioni-
bacterineae) were dispersed amongst the Micrococcineae.
However, bootstrap values below 50 were obtained for
these branches making a true interpretation of the inter-
relatedness of these organisms impossible. In the phylo-
genetic tree based on the GSIβ sequence, bootstrap values
above 50 were obtained at some of the nodes, but the
clustering of organisms to defined Actinobacteria subor-
ders were not observed.

The differences in the GS phylogenies are most marked in
the mycobacteria. Although the slow-growing and fast-
growing mycobacteria are clustered in two separate line-
ages, only the GSII sequence phylogeny reflects the sug-
gested 16S rRNA phylogeny [26]. For instance, the GSI
phylogeny put members of the M. tuberculosis complex
(M. tuberculosis, M. microtti and M. africanum) in different
lineages with M. ulcerans and M. avium as M. tuberculosis
complex ancestors. This differs from the GSII phylogeny,
which clusters the M. tuberculosis complex and puts M. lep-
rae and M. avium just outside the complex similar to what
is observed in 16S rRNA phylogenetic analyses. The
branch depth reflects the small amount of variation
between the sequences, and the synonymous to nonsyn-
onymous substitution ratio (Figure 5) indicates that there

Phylogenetic analysis of the all the actinobacterial glnA pro-tein sequences showed that the glnA3 and glnA4 protein sequences are closer related to the glnA2 protein sequence that to that of glnA1Figure 3
Phylogenetic analysis of the all the actinobacterial 
glnA protein sequences showed that the glnA3 and 
glnA4 protein sequences are closer related to the 
glnA2 protein sequence that to that of glnA1. (Dis-
tances not drawn to scale).
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is a selective constraint that preserves the accumulation of
amino acid changes over time. However, most of the
sequence variation within these sequences occurred out-
side important functional GS domains. Since phylogenies
are not absolute, the results suggest that using GS as a
marker in phylogenetic reconstructions gives a broad def-
inition of phylogeny, although subtle differences between
trees are observed.

GSI  remains conserved between species
Since the sequence encoded by the glnA1 locus is the
major GS of M. tuberculosis, it is expected to undergo little
evolutionary change over time. However, the genetic con-

servation of the gene was studied to assess whether it is
subject to gradual changes over time. The glnA1 gene
(1434 bp) and its 5' and 3' regions were PCR amplified
from purified genomic DNA of 54 clinical M. tuberculosis
isolates. These strains were selected on the basis that they
were genotyped by IS6110 insertion mapping in a previ-
ous study and included highly prevalent and less preva-
lent strain families as defined in a high tuberculosis
incidence community [27]. These clinical isolates are
genetically diverse and encompassed the broad M. tuber-
culosis strain families that are grouped according to IS6110
banding pattern identities exceeding 65%. The glnA1
sequence data obtained in this manner was compared

Multiple protein sequence alignment of the M. tuberculosis glnA encoded sequences shows the amount of variation between these proteinsFigure 4
Multiple protein sequence alignment of the M. tuberculosis glnA encoded sequences shows the amount of vari-
ation between these proteins. Identical amino acid sequences are blocked; the insert sequence distinguishing GSIβ are in 
bold type and the active site tyrosine (position 429) is indicated in red.
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glnA3 -------------------LPSTLWAQYGVAGVLEHEAFVR

QAEINYQFNSLLHAADDMQLYKYII

glnA2 -------------------VPVDNAGYFDQAVHDSALNFRRHAIDALEFMGISVEFSHHEG-APGQQEIDLRFADALSMADNVMTFRYVI

glnA3 -------------------LPSTLWAQYGVAGVLEHEAFVRDVNAAATAAGIAIEQFHPEY-GANQFEISLAPQPPVAAADQLVLTRLII

glnA4 --------------YRGLTPASDYNIDYAILASSRMEPLLRDIRLGMAGAGLRFEAVKGEC-NMGQQEIGFRYDEALVTCDNHAIYKNGA

280 290 300 310 320 330 340 350

DVNAAATAAGIAIEQFHPEY-GANQFEISLAPQPPVAAADQLVLTRLII

glnA4 --------------YRGLTPASDYNIDYAILASSRMEPLLRDIRLGMAGAGLRFEAVKGEC-NMGQQEIGFRYDEALVTCDNHAIYKNGA

280 290 300 310 320 330 340 350 360
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

glnA1 KNTAWQNGKTVTFMPKPLFGDNGSGMHCHQSLWKDG-APLMYDETGYAGLSDTARHYIGGLLH

360
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

glnA1 KNTAWQNGKTVTFMPKPLFGDNGSGMHCHQSLWKDG-APLMYDETGYAGLSDTARHYIGGLLHHAPSLLAFTNPTVNSYKRLVPGYEAPI

glnA2 KEVALEEGARASFMPKPFGQHPGSAMHTHMSLFEGD-VNAFHSADDPLQLSEVGKSFIAGILEHACEISAVTNQWVNSYKRLVQGGEAPT

glnA3 GRTARRHGLRVSLSPAPFAGS

HAPSLLAFTNPTVNSYKRLVPGYEAPI

glnA2 KEVALEEGARASFMPKPFGQHPGSAMHTHMSLFEGD-VNAFHSADDPLQLSEVGKSFIAGILEHACEISAVTNQWVNSYKRLVQGGEAPT

glnA3 GRTARRHGLRVSLSPAPFAGSIGSGAHQHFSLTMSE-GMLFSGGTGAAGMTSAGEAAVAGVLRGLPDAQGILCGSIVSGLRMRPGNWAGI

glnA4 KEIADQHGKSLTFMAK-YDEREGNSCHIHVSLRGTDGSAVFADSNGPHGMS

IGSGAHQHFSLTMSE-GMLFSGGTGAAGMTSAGEAAVAGVLRGLPDAQGILCGSIVSGLRMRPGNWAGI

glnA4 KEIADQHGKSLTFMAK-YDEREGNSCHIHVSLRGTDGSAVFADSNGPHGMSSMFRSFVAGQLATLREFTLCYAPTINSYKRFADSSFAPT

370 380 390 400 410 420 430 440 450
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

glnA1 NLVYSQRNRSACVRIPITGSN

SMFRSFVAGQLATLREFTLCYAPTINSYKRFADSSFAPT

370 380 390 400 410 420 430 440 450
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

glnA1 NLVYSQRNRSACVRIPITGSNPK-AKRLEFRSPDSSGNPYLAFSAMLMAGLDGIKNKIEPQAPVDKDLYELPPEE--AASIPQTPTQLSD

glnA2 AASWGAANRSALVRVPMYTPHKTSSRRVEVRSPDSACNPYLTFAVLLAAGLRGV

PK-AKRLEFRSPDSSGNPYLAFSAMLMAGLDGIKNKIEPQAPVDKDLYELPPEE--AASIPQTPTQLSD

glnA2 AASWGAANRSALVRVPMYTPHKTSSRRVEVRSPDSACNPYLTFAVLLAAGLRGVEKGYVLGPQAEDNVWDLTPEERRAMGYRELPSSLDS

glnA3 YACWGTENREAAVRFVKGGAGSAYGGNVEVKVVDPSANPYLASAAILGLALDGMKTKAVLPSETTVDPTQLSDVDRDRAGILRLAADQAD

glnA4 ALAWGLDNR

EKGYVLGPQAEDNVWDLTPEERRAMGYRELPSSLDS

glnA3 YACWGTENREAAVRFVKGGAGSAYGGNVEVKVVDPSANPYLASAAILGLALDGMKTKAVLPSETTVDPTQLSDVDRDRAGILRLAADQAD

glnA4 ALAWGLDNRTCALRVVGHGQNIR----VECRVPGGDVNQYLAVAALIAGGLYGIERGLQLPEPCVGNAYQG-------ADVERLPVTLAD

460 470 480 490 500
....|....|....|....|....|....|....|....|....|....|.

TCALRVVGHGQNIR----VECRVPGGDVNQYLAVAALIAGGLYGIERGLQLPEPCVGNAYQG-------ADVERLPVTLAD

460 470 480 490 500
....|....|....|....|....|....|....|....|....|....|....

glnA1 VIDRLEADHEYLTEGGVFTNDLIETWISFKRENEIEPVNIRPHPYEFALYYDV-

glnA2 ALRAMEASELVAEALGEHVFDFFLRNKRTEWAN----YRSHVTPYELRTYLSL-

glnA3 AIAVLDSSKLLRCILGDPVVDAVVAVRQLEHERYG-

...

glnA1 VIDRLEADHEYLTEGGVFTNDLIETWISFKRENEIEPVNIRPHPYEFALYYDV-

glnA2 ALRAMEASELVAEALGEHVFDFFLRNKRTEWAN----YRSHVTPYELRTYLSL-

glnA3 AIAVLDSSKLLRCILGDPVVDAVVAVRQLEHERYG-DLDPAQLADKFRMAWSV-

glnA4 AAVLFEDSALVREAFGEDVVAHYLNNARVELAA----FNAAVTDWERIRGFERL
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with the corresponding sequences of the M. tuberculosis
H37Rv reference strain, M. tuberculosis CDC1551 and M.
tuberculosis 210 (clinical isolate) through BLAST. The
glnA1 sequences were 100% similar in all respects and no
mutations, deletions or insertions were found in any of
the M. tuberculosis glnA1 loci, showing that the glnA1
sequence undergoes no evolutionary change within M.
tuberculosis.

Discussion
Glutamine synthetase has long been considered a good
molecular marker for evolutionary studies because, simi-
lar to the 16S rRNA gene, it is a universally present and
essential component of most living organisms and there-
fore may be constrained to evolve at a slow rate [4,28]. In
addition, the GS sequence is long enough to be used
together with other sequences, such as 16S rRNA, to
obtain a higher degree of confidence in phylogenetic anal-
yses [29]. However, multiple copies of GS encoding genes
have been observed in the genomes of some organisms,
notably M. tuberculosis (which has four GS encoding
genes) [13]. Of these sequences, only the glnA1 gene
(encoding a GSIβ) has been shown to be essential for M.
tuberculosis growth, while the other sequences are not [15].

To further understand the evolution of GS and the use of
duplicated proteins as evolutionary markers, it was
attempted to reconstruct Actinobacteria speciation by
using GS sequences as phylogenetic markers. Through this
study insight was gained into the possible evolutionary
scenario of the glnA genes in the mycobacteria.

Through sequence comparisons it was shown that most
members of phylum Actinobacteria had at least one copy
of both the glnA1 and glnA2 genes and that the protein
sequences these genes encode are conserved between spe-
cies. Symbiobacterium thermophilum was an exception hav-
ing only one glnA gene similar to the glnA1 sequence.
Since S. thermophilum may be closely related to the Actino-
bacteria ancestor [19], the absence of the glnA2 gene may
indicate that glnA2 (which is present outside of the phy-
lum Actinobacteria) was either not passed down from the
Symbiobacterium ancestor, or may have been lost from this
organism. Previous studies have shown that the GSI and
GSII sequences are duplicated derivatives of an ancient GS
sequence [4], which suggests that S. thermophilum may
have lost the glnA2 sequence during speciation. It remains
to be investigated if other members of the Symbiobacterium
species may have retained a glnA2 gene. It is interesting to

Dendograms of aligned actinobacterial GSIβ (encoded by glnA1) and GSII (encoded by glnA2) sequences constructed using PAUP 4.0 with the GS sequence of Bifidobacterium longum as out-group (*)Figure 5
Dendograms of aligned actinobacterial GSIβ (encoded by glnA1) and GSII (encoded by glnA2) sequences con-
structed using PAUP 4.0 with the GS sequence of Bifidobacterium longum as out-group (*). Percentage bootstrap 
support values are shown. The ratio of nonsynonymous (Ka) to synonymous mutations (Ks) in the GS sequences of the myco-
bacteria and C. diphteria were computed using the GS sequences in C. efficiens, and is shown between brackets.
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note that in many cases, the glnA1 and glnA2 genes were
situated in close proximity to each other. This arrange-
ment has been observed in the genomes of other organ-
isms [30], which suggests that these GS enzymes may be
functionally linked. In support of this observation it has
been demonstrated that the synthesis of the GSII enzyme
was up regulated while the synthesis of GSI was reduced
significantly during nitrogen starvation in the Frankia
[31], therefore suggesting a synergistic role of both
enzymes under different conditions. The close proximity
of the coding genes for the two GS enzymes also suggests
that the chromosomal region containing the glnA copies
may be conserved. The genomic region containing the
glnA2 sequence has been studied in M. tuberculosis and C.
glutamicum and in both cases it was shown that the glnA2
gene was situated adjacent to and transcriptionally linked
to the glnE gene [15,32]. The glnE gene encodes the adeny-
lyltransferase involved in the post-translational regulation
of GSIβ, and deletion of this gene is fatal owing to distur-
bances caused from the resulting unchecked GS function
[33]. Therefore it is possible that disruptions in the chro-
mosomal region containing the glnA2 sequence may be
under negative selection pressure.

The distribution and ancestry of the other GS-encoding
genes (apart from glnA1 and glnA2) have not yet been
described. The relationships between the glnA proteins
were investigated by generating a phylogeny of all Actino-
bacteria GS sequences. Through this phylogeny it was
revealed that the glnA3 and glnA4 protein sequences are
most closely related to the glnA2 protein sequence. Our
results suggested that the genes might have been derived
from either serial duplications of the glnA2 gene, or from
separate lateral gene transfer events with glnA4 being the
first and glnA3 the most recent acquisition. Analysis of the
functional regions of the GS sequences confirmed the pos-
sibility, since it was noted that glnA2, glnA3 and glnA4
encode GSII enzymes. We attempted to establish whether
these sequences may have entered the Actinobacteria
genomes through other mechanisms, such as lateral gene
transfer. No clear conclusion could be reached other than
that similar sequences were present in some members of
the γ-proteobacteria. It is known that lateral gene transfer
between mycobacterial species and members of the pro-
teobacteria has occurred [34]. However, these transferred
elements are usually related to virulence [35] or patho-
genicity [36]. Since GS is involved in central metabolism,
no definite conclusion could be made.

The evolutionary history of species within the genus Myco-
bacterium has been investigated using the DNA sequence
encoding 16S rRNA [26]. Intriguingly, in comparison to
this, subtle differences were observed in the mycobacterial
phylogeny based on the GSIβ protein sequence, although
the phylogeny based on the GSII sequence reflected the

proposed mycobacterial speciation more closely. This
observation suggests that, although the coding sequences
are constricted as measured by synonymous to non-syn-
onymous substitution rates, change in the GSIβ and GSII
sequences may be influenced by environmental pressure.
The greater similarity between the GSII sequences may
suggest that this sequence remains more conserved and
undergoes change at a different rate to the GSIβ sequence.
The greater conservation between the GSII sequences indi-
cates that this enzyme might have played a more impor-
tant role in the early Actinobacteria species, although it
may have become redundant in some of the later myco-
bacteria. In this respect, it is interesting to note that dele-
tions of the glnA2 sequence lead to attenuation of M. bovis
in guinea pigs [37], whilst the same result was not
observed in mice infected with M. tuberculosis strains with
glnA2 disruptions [38]. From the analysis of actinobacte-
rial genomes containing sequences similar to the glnA
sequence, it seems that the glnA3 and glnA4 duplication
event may have occurred independently, since some Actin-
obacteria genomes contain either glnA3, glnA4 or both,
together with the glnA1 and glnA2 sequences. However,
some bacteria, such as M. leprae and M. ulcerans, might
have had a copy of glnA3 and glnA4, which was lost due to
transposon insertions or deletions, suggesting that a lack
of glnA3, glnA4 or both genes might also be due to reduc-
tive evolution such as is observed in the genomes of M.
leprae and M. ulcerans [21,39]. If it is accepted that some
of the mycobacteria have lost the glnA3 and glnA4
sequences, this could indicate the redundancy of the GS
encoded by these sequences, since if they had a function
besides glutamine synthesis they might have been under
different evolutionary pressure to be retained in the
genome.

The influence of evolutionary pressures on such a critical
metabolic enzyme may be explained by adaptive evolu-
tion of GS due to pressures exerted by the distinct ecolog-
ical niches these organisms occupy. Adaptive evolution
may lead to functional promiscuity whereby an enzyme
can exert other functions, whilst still using the same active
site as for the original singular activity [40]. In this respect,
it has been shown that the GSIβ enzyme may be exported
in great quantities by M. tuberculosis and M. bovis (also the
BCG sub-strains) and that it might be involved in the for-
mation of poly-L-glutamic acid, a cell wall constituent
unique to these two mycobacterial species [14]. Evidence
has been presented that these functions might be essential
for M. tuberculosis survival in vivo [18], and that the GSIβ
enzyme may have functions that contribute to the viru-
lence of these important human pathogens, which cannot
be substituted by the GSIβ from non-pathogenic myco-
bacteria (such as M. smegmatis) [38]. The ability of the GSI
sequence to undergo evolutionary specialisation may be
the underlying reason why this enzyme has been func-
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tionally replaced by the more evolutionary stable GSII
sequence in eukaryotes. It was suggested that the GSII
enzyme is present in eukaryotes due to lateral transfer
from endosymbionts early in the eukaryote evolution
and, that in some cases, these eukaryotes had other GS-
enzymes that were functionally replaced by GSII [41].
Indeed, a remnant of GSI, lengsin, has been observed in
the vertebrate eye lens [42,43]. Lengsin has a dodecameric
structure and conserved GSI functionally important
regions, but is not catalytically active and has undergone
significant evolutionary change in the N-terminal region
and probably specialised to play a role in lens homeosta-
sis and transparency.

Conclusion
In conclusion, the specialisation of critical metabolic
enzymes may have implications for the use of such
enzymes as molecular markers for evolution. Although
diversity in these protein sequences may be useful for dis-
criminating between closely related species that show lit-
tle variance in the 16S rRNA sequences [28], adaptive
evolution of these sequences may skew phylogenies.

Methods
Sequence retrieval and multiple sequence alignments
Mycobacterium tuberculosis glnA1, glnA2, glnA3 and glnA4
protein sequences were retrieved from Genolist (Pasteur
Institute) [44] and compared to the Actinobacteria genome

databases on the NCBI microbial genomes BLAST server
[45]. Glutamine synthetase protein sequences were
retrieved and compared through multiple sequence align-
ment using ClustalW 1.8 software at the European Bioin-
formatics Institute [44,46]. The alignments were manually
checked for errors using BioEdit 5.0.9 [47]. For phyloge-
netic reconstructions, some alignments were manually
edited during which unaligned regions (inserts) were
removed. BLAST searches against the genomes of M. afri-
canum, M. marinum and M. microtti were carried out on the
Sanger Institute website [48] by using the function
TBLASTN.

Phylogenetic trees
The edited GS protein sequences were subjected to phylo-
genetic analysis using the neighbour joining algorithm
(PAUP 4.0*; Phylogenetic Analysis Using Parsimony
(*Other Methods) Version 4b10. Sinauer Associates, Sun-
derland, Massachusetts). A 1000 subsets were generated
for bootstrap resampling of the data to establish a degree
of statistical support for nodes within each phylogenetic
reconstruction [49]. A consensus tree was generated using
the program contree (PAUP 4.0*) in combination with
the majority rule formula. The GS protein sequence of
Symbiobacterium thermophylum was selected as out-group
to assign roots due the closer relation of this organism to
the Actinobacteria ancestor [19]. Only branches which
occurred in > 50% of the bootstrap trees were included in
the final tree and all branches with a zero branch length
were collapsed. Overall topology of the trees were con-
firmed using PhyML 3.0 [50] (data not shown). Synony-
mous (Ks) and non-synonymous (Ka) substitutions were
calculated using DnaSP software [51]. In these calcula-
tions, the glnA1 or glnA2 DNA sequence of C. efficiens was
selected as the out-group.

M. tuberculosis clinical isolate DNA preparation and 
glnA1 sequencing
DNA was isolated from M. tuberculosis clinical isolates rep-
resentative of the various strain families [52] and genotyp-

Table 3: PCR primer sequences and priming sites

Name Sequence (5'-3') Product size: Pair Tm (°C) Genome Coordinates

glnA Up F AGATGGACACGGTGGAGT 796 bp 55 2486860
glnA Up R CTTTACTGTATCCGCGGC 2487605
AI FI CACGGTCAGTAACGTCTGC 550 bp 55 2487524
AI RI TCCACCTCGTAGAAGGAGC 2488081
AI FII TTCGATTCGGTGAGCTTC 574 bp 57 2488029
AI RII GCCGCTTGTAGGAGTTCA 2488602
AI FIII ACGACGAGACGGGTTATG 294 bp 54 2488483
AI RIII ATCAGCATGGCCGAGAAC 2488768
AI FIV TGGTCTATAGCCAGCgcA 597 bp 56 2488633
AI RIV GAGATGATTGCCAAGCGG 2489229

Polymerase chain reaction primers used to amplify the glnA1-locus of M. tuberculosis, including its' 5'- and 3' surrounding regions, as overlapping 
PCR fragments, which facilitated the assembly of the full target region for sequencing (2369 bp).

Table 2: GlnA protein sequence similarity in M. tuberculosis

glnA1 glnA2 glnA3 glnA4

glnA1 ------- 32.5 17.1 22.3
glnA2 32.5 ------ 19.9 30.2
glnA3 17.1 19.9 ------ 24.3
glnA4 22.3 30.2 24.3 ------

Alignment similarities of the M. tuberculosis glnA2, glnA3 and glnA4 
protein sequences to each other showed that these sequences are 
largely unrelated.
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ically classified through the internationally standardised
IS-3' fingerprinting method [53]. The Southern-blot auto-
radiographs were normalised and the IS-3' bands were
assigned using GelCompar software (version 4.1). Assign-
ments were visually checked by two independent persons
and bands with a >20% intensity than the other bands
were scored as representing the IS6110-mediated evolu-
tionary events [54]. This DNA was used as template for the
PCR amplification of glnA1 using the primers listed in
Table 2. PCR reactions were carried out in a GeneAmp
2500 PCR-system (Perkin Elmer) with an initial enzyme
activation and DNA denaturing step of 15 min 92°C, fol-
lowed by 30 cycles at 92°C (2 min); Tm (Table 3, 30 sec)
and 72°C (1 min) and a final 7 min elongation step at
72°C. PCR products were purified using the Promega SV-
miniprep system and submitted for direct automated
DNA sequencing (Central Analytical Facility, Stellenbosch
University, South Africa). Full-length glnA1 sequences
were assembled from sequencing data using DnaMan
software and compared to each other through multiple
sequence alignment using ClustalW 1.8 software [44].
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